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Cellular homeostasis is a continuous phenomenon that if compromised can lead to

several disorders including cancer. There is a need to understand the dynamics of

cellular proliferation to get deeper insights into the prevalence of cancer. Mechanistic

Target of Rapamycin (mTOR) is implicated as the central regulator of the metabolic

pathway involved in growth whereas its two distinct complexes mTORC1 and mTORC2

perform particular functions in cellular propagation. To date, mTORC1 is a well defined

therapeutic target to inhibit uncontrolled cell division, while the role of mTORC2 is not

well characterized. Therefore, the current study is designed to understand the signaling

dynamics of mTOR and its partner proteins such as PI3K, PTEN, mTORC2, PKB

(Akt), mTORC1, and FOXO. For this purpose, a qualitative model of mTOR-associated

Biological Regulatory Network (BRN) is constructed to predict its regulatory behaviors

which may not be predictable otherwise. The depleted expression of PTEN and FOXO

along with the overexpression of PI3K, mTORC2, mTORC1 and Akt is predicted as a

stable steady state which is in accordance with their observed expression levels in the

progression of various cancers. The qualitative model also predicts the homeostasis of

all the entities in the form of qualitative cycles. The significant qualitative (discrete) cycle

is identified by analyzing betweenness centralities of the qualitative (discrete) states.

This cycle is further refined as a linear hybrid automaton model with the production

(activation) and degradation (inhibition) time delays in order to analyze the real-time

constraints for its existence. The analysis of the hybrid model provides a formal proof

that during homeostasis the inhibition time delay of Akt is less than the inhibition time

delay of mTORC2. In conclusion, our observations characterize that in homeostasis Akt is

degraded with a faster rate than mTORC2 which suggests that the inhibition of Akt along

with the activation of mTORC2 may be a better therapeutic strategy for the treatment of

cancer.

Keywords: mTOR signaling pathway, SMBioNet, Biological regulatory networks (BRNs), René Thomas, Qualitative

modeling, Model checking, Cancer
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INTRODUCTION

Cells need continuous supply of resources that maintain
intracellular energy and require nutrient levels contributing
to macromolecular biosynthesis and serving as an upstream
regulator of cell size and growth rate (Schmelzle and Hall,
2000; Wullschleger et al., 2006; Avruch et al., 2006; Sonntag
et al., 2012). Compromised growth homeostasis can lead to
several diseases including metabolic disorders, aging and cancer
(Zoncu et al., 2011). A serine/threonine protein kinase mTOR,
a member of the phosphatidylinositol kinase related kinases
(PIKKs) family (Schmelzle and Hall, 2000), acts as a central
regulator of homeostasis during growth and starvation (Zoncu
et al., 2011). Recent studies have shown that dysregulation in
mTOR signaling could lead to cancer and other pathologies
(Menon and Manning, 2008). In these studies, abnormally
elevated levels of mTOR have been linked with several human
cancers including prostate, pancreas, liver, breast, colorectal,
urinary tract, and female reproductive organs. On the other hand,
due to excess nutrients supply, hyperactivation of mTOR has also
been implicated to cause diabetes (Zoncu et al., 2011). Moreover,
being the central regulator of growth, mTOR also monitors
the process of aging (Zoncu et al., 2011). mTOR functions in
the form of two distinct complexes namely mTOR Complex
1 (mTORC1) and 2 (mTORC2) (Wullschleger et al., 2006;
Guertin and Sabatini, 2007). These complexes are distinguished
by their unique accessory proteins, i.e., raptor and PRAS40
in case of mTORC1 and rictor, Protor and mSin1 in case of
mTORC2 (Hara et al., 2002; Kim et al., 2002; Sarbassov et al.,
2004). The function of these accessory proteins is to specify
their binding with different substrates and regulators (Hara
et al., 2002; Kim et al., 2002; Nojima et al., 2003; Schalm
et al., 2003; Wullschleger et al., 2005; Sancak et al., 2007;
Pearce et al., 2007). Both mTORC1 and mTORC2 share also
some components including mLST8 and Deptor that act as
positive and negative regulators, respectively (Loewith et al.,
2002).

Signaling of mTOR
The mTOR signaling pathway (Figure 1) is initiated by
insulin, insulin-like growth factor 1 (IGF1) and Ras (Laplante
and Sabatini, 2012) along with others. The binding of
insulin with insulin/IGF1 signaling (IIS) receptors causes its
autophosphorylation with subsequent recruitment of insulin
receptor substrate (IRS) with its cytosolic domain. Activated IRS
then activates several downstream effector proteins including
PI3K.

The role of PI3K pathway in metabolism and growth is
well-established and its dysregulation could result in certain
metabolic disorders and cancers (Carracedo and Pandolfi,
2008). In addition to the activation of JNK pathway (Vivanco
et al., 2007) that down-regulates PTEN transcription and
promotes cellular proliferation by hindering apoptosis, it is
also involved in the activation of Akt (Carracedo and Pandolfi,
2008). PI3K phosphorylates and converts phosphatidylinositol
(4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-
trisphosphate to (PIP3) (Engelman et al., 2006; Manning and

FIGURE 1 | mTOR Signaling Pathway. Collectively growth factors and amino

acids (via Rags mediated binding of mTORC1 to Rheb) activate mTORC1.

Insulin binds to its IRS1 that activates PI3K and recruits PDPK1 from cell

membrane via to PIP3 conversion. PI3K and mTORC2 phoshorylate Akt at

Thr308 and Ser473, respectively. Through inhibition of TSC1-TSC2 and FOXO,

Akt stimulates mTORC1 to promote mRNA translation and inhibits apoptosis

by phosphorylating S6K1 and 4E-BP1. Negative feedback inhibition of IRS1 is

initiated by S6K1 to downregulate glucose metabolism. PTEN regulates

mutagenic stimulation of PI3K (via PIP3 to PIP2 reconversion) to keep cellular

propagation within controlled levels while FOXO is responsible to control

hyperactivation of mTORC1.

Cantley, 2007). This event is important for the activation of
phosphatidylinositol dependent protein kinase 1 (PDPK1)
that eventually stimulates Akt. The activation of Akt is
achieved through phosphorylation at two sites i.e., Thr308
and Ser473. Activated PDPK1 phosphorylates Akt at position
Thr308 whereas another protein mTORC2 phosphorylates it at
Ser473 (Alessi et al., 1997; Sarbassov et al., 2005). Both these
phosphorylation events are essential for the complete activation
of Akt. Thobe et. al. examined the influence of PI3K pathway
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kinases on mTORC2 and found PI3K mediated regulation
essential for mTORC2 recruitment and further activation Thobe
et al. (2017).

Akt regulates several downstream proteins such as Tuberous
Sclerosis proteins 1 and 2 (TSC1/TSC2) and FOXO. The
heterodimer of TSC1 (hamartin) and TSC2 (tuberin) primarily
inhibits the activity of mTORC1 via conversion of active Ras
homolog enriched in brain (Rheb)-GAP into inactive Guanosine
diphosphate (GDP)-bound Rheb (Inoki et al., 2003; Tee et al.,
2003). Akt phoshorylates and inhibits TSC1/TSC2 in order to
activate mTORC1 (Inoki et al., 2002; Manning et al., 2002; Potter
et al., 2002; Roux et al., 2004; Ma et al., 2005). Akt also elevates
the expression of mTORC1 indirectly through the inhibition of
FOXO (Guertin et al., 2006; Chen et al., 2010; Zoncu et al., 2011).
FOXO acts a homeostatic regulator of cellular energy production
and consumption processes under energy stress conditions.
Another role of FOXO is to increase the activation of Rictor (a
major component of mTORC2) and subsequently mTORC1.

PI3K signaling is mainly buffered through PTEN (Carracedo
et al., 2008). PTEN serves as a tumor suppressor and mostly
found mutated in its phosphatase domain (Eng, 2003) in several
cancers (Li and Sun, 1997; Steck et al., 1997) causing overactive
PI3K signaling. PTEN hydrolyzes phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) to phosphatidylinositol (4,5)-bisphosphate
(PIP2) (Figure 1) . In this way, PTEN inhibits PIP3 dependent
downstream signaling events like membrane recruitment and
activation of AKT to prevent cell growth and proliferation.
Hence, PTEN holds critical position in maintaining homeostasis
through the inhibition of oncogenic transformation (Carracedo
and Pandolfi, 2008).

Finally, the activated mTORC1 activates several downstream
effectors mainly eukaryotic translation initiation factor 4E
(eIF4E)-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1),
that represses autophagy and promotes protein synthesis. S6K1
phosphorylates rictor causing mTORC2 disassembly (Dibble
et al., 2009; Julien et al., 2010; Treins et al., 2010) and also
degrades IRS proteins (Harrington et al., 2004; Shah et al., 2004)
which dampens the PI3K mediated signaling cascade.

Mutations in the genes encoding for the proteins of mTOR
associated BRN can lead to different types of cancers including
sporadic cancers, hamartoma syndromes or phakomatoses,
cowden syndrome (PTEN), neurofibromatosis (NF1, NF2) and
peutz–Jeghers syndrome (LKB1) (Menon and Manning, 2008).
Deregulation of entities in mTOR associated BRN result in
certain other complications like insulin resistance and type 2
diabetes. Moreover, mTOR pathway can also be hyper-stimulated
(e.g., in adipose tissues) under situation of excessive nutrients
that can ultimately lead to the same complications (Um et al.,
2004; Khamzina et al., 2005; Tremblay et al., 2007).

Computational Modeling
Gene expression is a complex process and its regulation
determines the overall cellular dynamics (De Jong, 2002).
Computational techniques in systems biology facilitate to
explore the role of genes, proteins and overall dynamics of
the system (Glass and Kauffman, 1973). Qualitative modeling
framework is one of the established methods to analyze gene

expression dynamics (Thomas, 1978; Thomas and d’Ari, 1990;
De Jong et al., 2004) in the form of biological regulatory
networks (BRNs) (Lewin, 2000). A BRN is modeled by a
directed graph where vertices represent biological entities e.g.,
DNA, RNA, proteins and other biological molecules whereas
edges correspond to regulatory interactions (i.e., activation and
inhibition) (Bernot et al., 2007). The design of the study is
illustrated in Figure 2.

Contributions
The main objective of this study is to build a refined
computational model of mTOR regulation that could predict
therapeutic targets to inhibit the progression of cancer. A BRN
of mTOR and its interacting proteins (PI3K, PTEN, mTORC2,
Akt, mTORC1 and FOXO) has been abstracted from the pathway
(Figure 1) in order to explore the dynamics based on the logical
formalism of René Thomas (Peres and Jean-Paul, 2003; Bernot
et al., 2004, 2007). The unknown parameters in the logical model
are inferred based on biological observations formally encoded
as CTL (Computational Tree Logic) formulas in SMBioNet
(Selection of Models of Biological Networks) tool (Mcadams

FIGURE 2 | Workflow Design of the study of the therapeutic strategy for

cancer.
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and Shapiro, 1995). The qualitative model (State Graph) of the
BRN infers the dynamics such as homeostasis in the form of
qualitative cycles and stable behavior in the form of stable state
(SS). The most significant qualitative cycle is selected based on
the centrality values of the qualitative states in the model. A
linear hybrid automaton of the selected cycle is constructed
using Hytech model checker (Henzinger et al., 1997) with new
parameters for production and degradation time delays. Hytech
inferred the values of these parameters in the form of linear
constraints. These constraints are further analyzed to infer the
pairwise relations between any possible pair of delays of genes.
These relations show only one significant relation between AKT
and mTORC2 in terms of delays. The analysis of the hybrid
model provides a formal proof that during homeostasis the
inhibition time delay of Akt is less than the inhibition time
delay of mTORC2. This enforces that in homeostasis Akt is
degraded with a faster rate than mTORC2 which suggests that
the inhibition of Akt along with the activation of mTORC2
may be a better therapeutic strategy for the treatment of
cancer.

METHODS

Reduction of Signaling Pathway
The signaling pathway shown in Figure 1 is further reduced to a
BRN shown in Figure 3 by the reduction rules described in (Naldi
et al., 2009; Saadatpour et al., 2013). These rules have already been
applied to reduce the TLR4 and JAK/STAT signaling pathways
to a BRN with all possible regulatory feedback circuits (Paracha
et al., 2014). The abstracted mTOR-associated BRN is composed
of six proteins which are PI3K, PTEN, mTORC2, Akt, mTORC1,
and FOXO.

FIGURE 3 | The mTOR-associated BRN: abstraction of mTOR signaling

pathway (Figure 1) in BRN. Positive (activation) and negative (inhibition)

regulations are represented by “+” and “−” signs respectively.

Qualitative Modeling
Biological regulations (production and degradation) are
subjected to expression levels of entities in BRN. An entity p1
activates or inhibits another entity p2, at a specific threshold.
A qualitative threshold can be described as a discrete level
(first, second, third etc.). René Thomas proposed a modeling
framework which assumes qualitative thresholds and parameters
to derive the dynamics of a BRN. Several methods are in
use to model the behavior of biological systems (Peres and
Jean-Paul, 2003; Bernot et al., 2004, 2007). Continuous
modeling frameworks based on ordinary and partial differential
equations are widely used. These frameworks rely on precise
quantitative values, which in many cases are not known. This
limitation led to the development of qualitative modeling
framework. Kauffman et al., introduced a logical formalism
based on Boolean logic where each entity was considered
as “ON” (1) or “OFF” (0) to represent its activation or
inhibition, respectively (Kauffman, 1969, 1993; Somogyi
et al., 1997). This approach was further extended to kinetic
logic formalism by Thomas to incorporate multi-valued
(0,1,2,3,...) expression levels of entities. Formal methods such
as model-checking approach can help to infer the parameters
of complex systems (Bernot et al., 2007). BRNs are complex
systems and their parameters can be inferred with such
approaches.

This study is based on the kinetic logical formalism developed
by René Thomas (Thieffry and Thomas, 1995) to model
the biological regulatory network (BRN) of mTOR using
GENOTECH tool Ahmad (2009) (available at https://github.
com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.
jar). An important feature of kinetic modeling is positive or
negative feedback circuits. An entity favors the activation of
another entity in the BRN through positive feedback and is
necessary to generate multi-stationarity (stable states), whereas
an entity favoring the inhibition of another entity through
negative feedback is a necessary condition to generate oscillatory
behavior (homeostasis) (Thomas, 1981). Number of studies
performed on genetic networks that incorporated analysis of
positive and negative feedbacks with formal methods can be
found in Kauffman (1993), Somogyi and Sniegoski (1996), and
Szallasi and Liang (1998). Formal definitions provided in Aslam
et al. (2014) and Paracha et al. (2014) can be obtained for detailed
description.

Parameters Inference using Model
Checking
Qualitative dynamics of Thomas networks depend on the values
of logical parameters which are unknown a priori. These
parameters are used to render system dynamics as a directed
state graph (discrete or qualitative model), which incorporates
important behaviors such as cycles or stable states. The inference
of biologically coherent parameters is an important aspect of
qualitative modeling. In this direction, Bernot et al., introduced
an approach to infer these logical parameters using a formal
method approach called model checking. This approach is
implemented in SMBioNet (Selection of Models of Biological

Frontiers in Physiology | www.frontiersin.org 4 June 2017 | Volume 8 | Article 416

https://github.com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.jar
https://github.com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.jar
https://github.com/DrJamilAhmad/GENOTECH/blob/master/GenoTechE.jar
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Bibi et al. Modeling of mTOR-associated BRN

Networks) tool. It performs an exhaustive enumeration ofmodels
and selects those set of parameters which are consistent with
experimental observations expressed as temporal logic formulas.
Similar parameter estimation approach (by using SMBioNet
tool) has been employed to study qualitative behavior of several
biological systems including immunity control mechanism
in lambda phage network (Mcadams and Shapiro, 1995),
pathogenesis and clearance mechanism of dengue virus (Aslam
et al., 2014), MAL-Associated network of Cerebral Malaria
(Ahmad et al., 2012) and the role of OGT in Cancer progression
(Saeed et al., 2016).

Network Analysis
Graph-theoretic approaches have been successfully applied on
large protein networks (Barabasi and Oltvai, 2004; Stelniec-
Klotz et al., 2012). The state graph can be further analyzed
using network analysis techniques in terms of graph connectivity
(Junker and Schreiber, 2011) by sorting it on the basis of
maximum betweenness centrality (Freeman, 1977). The states
with higher betweenness centralities represent higher chances of
their occurrences. This may in terms of biological phenomenon
represent the entities with frequent expressions. The qualitative
states in the model with high betweenness centralities are
compared to the rest of the state space in order to identify most
favorable cycle (Tareen et al., 2015; Saeed et al., 2016).

Hybrid Modeling
René Thomas’ framework provides useful insights into the
discrete qualitative behavior of a biological system. However,
naturally, the expression levels of proteins evolve in a continuous
manner. Hybrid modeling combines discrete changes of a system
with continuous changes (differential equation) in a single
formalism Bio-Linear Hybrid Automaton (Bio-LHA) has been
proposed for the hybrid modeling of qualitative BRNs (Ahmad
et al., 2007). Bio-LHA uses time delays along with continuous
variables (clocks) to compute production and degradation time
of gene expressions. Production (δ+) or degradation (δ−) delay
is the time required for a gene expression to reach from a lower
level to a higher level or vice versa (Figure 4). In this approach, a
clock variable (h) is associated with each entity which is initially
set to zero and it evolves with rate 1 when the expression evolves.
A clock is reset when it measures a production or degradation
delay as shown in Figure 5. Hybrid model checking tool such as
HyTech (Henzinger et al., 1997) can be used to infer the values
of delays in the form of linear delay constraints for behaviors
(paths toward stable states and cycles) observed in the qualitative
model. Invariance kernel (Ahmad et al., 2007; Ahmad and Roux,
2010) represents cycles in the hybrid models which can also
be characterized with delay constraints. These delay constraints
are further converted into the relation matrix in order to find
constraints between any two types of delays (production or
degradation) of all entities. This modeling approach has been
successfully applied to model a variety of BRNs (Ahmad et al.,
2007, 2008, 2012; Ahmad, 2009; Aslam et al., 2014; Bibi et al.,
2016).

FIGURE 4 | Time delays in expression evolution Ahmad et al. (2012). The

evolution of qualitative states is characterized by time delays: δ+ represents

production delay or time required to pass from low level to next high level

whereas δ− is the time delay required for a gene to pass from high level to low

level (degradation delay).

FIGURE 5 | The production and degradation time delays δ+/− associated with

an entity p. The clock hp measures the production or degradation time delays.

RESULTS

Parameters Inference
To construct qualitative model of the mTOR associated BRN,
SMBioNet tool has been employed to correctly estimate logical
parameters according to biologicalobservations in literature
(Chen et al., 2010; Zoncu et al., 2011; Laplante and Sabatini,
2012). This tool takes Computation Tree Logic (CTL) formulas
representing biological observations and BRN as inputs and
selects those sets of parameters which verify these formulas.
In BRN modeling these parameters are used to incorporate
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behaviors in the form of paths, cycles and stable states (SS) as
specified in the CTL formulas (Table 1). Formula 1 in Table 1

represents that in a particular homeostatic behavior (represented
by CTL operator E) all entities with 0 expression levels after
next qualitative state (represented by CTL operator X) finally
reach the same expression levels in future (represented by CTL
operator F). Formula 2 represents the biological observation
that the overexpression of PTEN, FOXO, PI3K, mTORC1, and
inactivation of Akt gradually leads to (represented by CTL
operator ⇒) a steady carcinogenic state (represented by CTL
operators F and G) with the overexpression of Akt, mTORC1,
mTORC2, PI3K, and inactivation of PTEN and FOXO. The
effect of PTEN inhibition on Akt/mTORC1 pathway eventually
leads to a SS where FOXO and PTEN are not expressed. This
behavior is encoded by Formula 3. On the basis of CTL formulas,
SMBiogenerated eight sets of logical parameters for mTOR
associated BRN (see Supplementary Files 1, 2).

Selection of a Qualitative Model
The eight qualitative models of these sets were further analyzed
for cycle(s) and SS(s) using GENOTECH tool. Almost all the
parameter sets provide comparable results, revealing similar
cycles and SS(s). First four models were selected on the basis of
biological plausible SS (1, 0, 1, 1, 1, 0) representing the activation
and inactivation states of entities in order of PI3K, PTEN,
mTORC2, Akt, mTORC1 and FOXO, respectively. This SS
represents the activation of PI3K, mTORC2, Akt and mTORC1
along with the inactivation of PTEN and FOXO. Subsequently,
these 4 models were further compared for the logical parameter
values which are coherent with biological observations. The set of
logical parameters for this model (Supplementary File 3) is given
in the last column of Table 2. The selected model (Figure 3) also
shows eight cycles along with one SS (1, 0, 1, 1, 1, 0).

Several states lead the BRN directly into SS which represent
critical divergence toward disease. All such states that eventually
progress toward deadlock state do not possess functional

TABLE 1 | CTL formulas.

No. CTL Formulas References

1 (PI3K = 0 ∧ FOXO = 0 ∧ mTORC2 = 0,∧Akt =

0 ∧ mTORC1 = 0 ∧ PTEN = 0) →, (EX (EF (PI3K =

0 ∧ FOXO = 0 ∧ mTORC2 = 0 ∧ Akt =

0 ∧ mTORC1 = 0)))

Zoncu et al., 2011

2 (PTEN = 1 ∧ FOXO = 1 ∧ Akt = 0 ∧ PI3K =

1 ∧ mTORC1 = 1 ∧ mTORC2 = 1) →

(EF (AG(Akt = 1 ∧ PTEN = 0 ∧ FOXO =

0 ∧ mTORC1 = 1 ∧ mTORC2 = 1 ∧ PI3K = 1)))

Carracedo and

Pandolfi, 2008;

Chen et al., 2010;

Zoncu et al., 2011;

Laplante and

Sabatini, 2012

3 (PI3K = 1 ∧ FOXO = 0 ∧ Akt = 1 ∧ mTORC1 =

1) → (EF (AG(Akt = 1 ∧ FOXO = 0 ∧ PTEN = 0))) Carracedo and

Pandolfi, 2008;

Zoncu et al., 2011

These CTL formulas are used in SMBioNet tool to infer the set of logical parameters.

Formula 1 is designed to observe homeostasis while the other two formulas are used for

observing stable steady state(s).

PTEN or FOXO while having cellular proliferatory elements
fully activated, e.g., (1,1,1,1,1,0), (1,0,1,1,1,1) as represented in
(Figure 6). Thus, the down regulation of these tumor suppressor
genes (PTEN and FOXO) bring this deadlock (SS) where
no regulator is present to perform its function. The states
(1,0,1,1,0,0), (0,0,1,1,1,0), (1,0,0,1,1,0), and (1,0,1,0,1,0) with
temporary inhibition of PI3K, mTORC2, Akt, or mTORC1
are restrained in proceeding states resulting in their full and
uncontrollable activation. This impact of tumor suppressor gene
can be observed in cyclic state (1,1,1,1,1,0) that progresses into
(0,1,1,1,1,0) (Figure 6) where PI3K is down-regulated through
the inhibitory effect of PTEN to slow down further increase
in cell mass and number. So the pre-occupation of PTEN is
desired to recover the system into homeostatic state (0,1,1,1,1,0)
that otherwise could divert into SS (1,0,1,1,1,0). The selected
cyclic trajectory along with its respective constraints is given in
Figure 8, specifies the stay conditions for each cyclic state and
its violation would activate counter mechanism of autophagic
inhibition by mTORC1 leading to cancer.

Validation of Qualitative Model with ASP
We applied exhaustive model-checking to validate the qualitative
model of this study as proposed in Ben Abdallah et al. (2015).
In this approach, the authors present a logical approach (using

TABLE 2 | Selection of logical parameters.

Parameter Resource(s) Range of Values Selected

Parameters

KPI3K {} 0 0

KPI3K {mTORC1} 0,1 1

KPI3K {PTEN} 0,1 1

KPI3K {mTORC1,PTEN} 0,1 1

KPTEN {} 0 0

KPTEN {PI3K} 1 1

KmTORC2 {} 0 0

KmTORC2 {FOXO} 0,1 1

KmTORC2 {mTORC1} 1 1

KmTORC2 {PI3K} 0,1 1

KmTORC2 {FOXO,mTORC1} 1 1

KmTORC2 {FOXO,PI3K} 0,1 1

KmTORC2 {mTORC1,PI3K} 1 1

KmTORC2 {FOXO,mTORC1,PI3K} 1 1

KAkt {} 0 0

KAkt {mTORC2} 0 0

KAkt {PI3K} 0 0

KAkt {mTORC2,PI3K} 1 1

KmTORC1 {} 0 0

KmTORC1 {Akt} 0,1 0

KmTORC1 {FOXO} 1 1

KmTORC1 {Akt, FOXO} 1 1

KFOXO {} 0 0

KFOXO {Akt} 1 1

KFOXO {mTORC1} 0 0

KFOXO {Akt,mTORC1} 1 1

This table describes the ranges of logical parameter values. Some parameters are fixed

to single values 0 or 1 based on biological observations. The last column lists one of the

eight selected parameter sets generated by SMBioNet.
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FIGURE 6 | State graph of the mTOR-associated BRN. Nodes of the state graph represent the states of the BRN and edges between states represent the evolution

of states. A state in this graph shows the expressions of the entities PI3K, PTEN, mTORC2, Akt, mTORC1, and FOXO respectively. The stable steady state

(1,0,1,1,1,0) represents high expression levels of all entities except tumor suppressors. Cycle having maximum betweenness centrality is represented in green color

with bold arrows, also showing bifurcation toward stable state (1,0,1,1,1,0).

the Answer Set Programming language (ASP) Baral, 2003) to
simulate and exhaustively analyze the dynamics of multivalued
biological regulatory networks. The ASP method searches the
attractor basins (stable states) which the region from which it is
not possible to exit. By translating the model of Figure 3 to an
automata network (Supplementary Files 6–9) and giving it as an
input to the method of Ben Abdallah et al. (2015), we found that
the set of all the attractor basins is reduced to a single stable state:
(PI3K = 1,AKT = 1, PTEN = 0,MTORC2 = 1, FOXO =

0,MTORC1 = 1). This result is effectively coherent with the
qualitative model given in Figure 6.

Selection of Cycle
Since the model shows eight cycles therefore it is important
to identify the most probable biological cycle. Thus, on the

basis of betweenness centrality a cycle was computed by using
Cytoscape tool (Shannon et al., 2003) that sorts all the states on
the basis of their betweenness centralities (Freeman, 1977; Tareen
et al., 2015), as presented in Figure 7 (Supplementary File 4).
The nodes with larger diameter represent states with higher
betweenness centrality. The cycle with maximum betweenness
centrality: (1, 1, 1, 0, 0, 1) → (1, 1, 1, 1, 0, 1) → (1, 1, 1, 1, 0, 0) →
(1, 1, 1, 1, 1, 0) → (0, 1, 1, 1, 1, 0) → (0, 1, 1, 0, 1, 0) →

(0, 1, 0, 0, 1, 0) → (0, 1, 0, 0, 1, 1) → (0, 1, 0, 0, 0, 1) →

(0, 1, 1, 0, 0, 1) → (1, 1, 1, 0, 0, 1) shows oscilation of all entities
except PTEN. The cycle reveals that the constant activation of
PTEN is required for homoeostasis. Any diversion from this
cycle would either lead toward carcinogenic SS (1,0,1,1,1,0). All
the cyclic trajectories represented in Figure 6 show expression of
PTEN that positively regulates PI3K and enforces the model to
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FIGURE 7 | State graph of mTOR associated BRN: size and color of nodes are scaled on the basis of betweenness centrality, larger nodes represent higher

centralities with variable shades of green color (darker the color, higher is the centrality). The graph comprises of 64 states and 192 edges. Cycle with maximum

betweenness centrality is extracted out at top layer. Red and green arrows represent degradation and production of entities, respectively.

remain in homeostasis. On the contrary, uncontrolled expression
of PI3K and subsequent stimulation of cellular proliferative
machinery mainly Akt and mTORC1 would either cause diabetic
disorders or more severe circumstances like oncogenesis.

Hybrid Model
The cycle in Figure 7 shows homeostatic biological regulation
of entities in the form of the switching of their low and high
expression levels. In the cycle, the stable high expression of PTEN
gene is revealed as a mandatory condition in all the states to
maintain homeostasis (represented by 1 expression level in all
cyclic states) while the expression of other entities oscillate in
relation to each other. The Bio-LHA model in Figure 8 of this
cycle was implemented in HyTech tool (Supplementary File 5)
in order to predict its underlying causality relations of delays
by analyzing the invariance kernel (Ahmad et al., 2008). The

invariance kernel represents a set of viable cyclic trajectories in
the state space of the Bio-LHA. Delay constraints characterizing
the invariance kernel of the selected cycle were computed by
HyTech tool (Table 3). In Table 3, the notation π is used to
represent the sum of production and degradation delays as
period (Ahmad, 2009). Conjunctions of all these constraints
(1–9) constitute a necessary and sufficient condition for the
existence of the invariance kernel and hence the qualitative cycle.
Violation of any constraint would result in a null invariance
kernel and eventually the qualitative cycle will no more exist. It is
therefore sufficient that all the constraints should be valid (true)
for the existence of the invariance kernel or qualitative cycle. For
example, in Table 3, constraint 1 (δ+FOXO ≤ |δ−mTORC1| + |δ−

Akt
|

) shows that the production (activation) of FOXO is required
before the degradation of Akt andmTORC1 and hence constitute
a necessary condition for cycle (homeostasis). Again constraint
2 establishes another necessary condition for the existence of
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FIGURE 8 | (A) Discrete representation of cycle selected on the basis of centrality, larger circles represent higher centrality states. (B) Bio Linear Hybrid Automata of

selected cycle: Each square symbol represents a hybrid location by capturing the discrete expression dynamics (top) and the continuous evolution of all clocks. Clock

value h resets to 0 after each transition. P1 = PI3K, P2 = PTEN, P3 = mTORC2, P4 = Akt, P5 = mTORC1, P6 = FOXO.
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TABLE 3 | Delay constraints.

Number Delay Constraints

1 δ+
FOXO

≤ |δ−
mTORC1

| + |δ−
Akt

|

2 |δ−
FOXO

| ≤ δ+
Akt

+ δ+
mTORC1

3 |δ−
PI3K | ≤ δ+

mTORC1
+ |δ−

Akt
|

4 π (FOXO)+ |δ−
PI3K | ≤,π (Akt)+ π (mTORC1)

5 π (FOXO)+ π (PI3K) ≤ π (Akt)+ π (mTORC1)+ δ+
mTORC2

6 δ+
FOXO

+ |δ−
PI3K | ≤ π (mTORC1)+ |δ−

Akt
|

7 π (FOXO)+ π (PI3K) ≤ π (mTORC2)+ δ+
Akt

+ δ+
mTORC1

8 δ+
PI3K + δ+

FOXO
≤ δ+

Akt
+ π (mTORC2)

9 π (PI3K)+ δ+
FOXO

≤ δ+
Akt

+ π (mTORC2)+ δ+
mTORC1

Delay Constraints of the selected cycle characterizing its invariance kernel. δ+ represents

production (activation) delay while δ− represents degradation (inhibition) delay. Notation

π (e) refers to the sum of production and degradation delays of the entity e.

the cycle that explains that the degradation of FOXO should
occur earlier than the production of mTORC1 and Akt. Similarly,
other remaining constraints imposes necessary conditions for the
existence of the cycle.

From the delay constraints in Table 3, a relation matrix is
derived in Table 4 containing pairwise relations of delays of
the entities FOXO, PI3K, mTORC1, mTORC2, and Akt. A
relation between a pair of delays with both ≤ and ≥ reveals
that the cycle is desensitized to the violation of such constraints.
The table contains only one pairwise constraint between the
degradation delays of Akt and mTORC2. It is important to note
that these relationships are enforcing homeostasis represented by
the qualitative cycle. From the results, it can be implicated that if
cellular systems tends to escape homeostasis it may lead toward
pathogenesis.

The only pairwise relation between δ−
Akt

and δ−mTORC2 (Table 4)
reveals a significant property of the selected homeostatic cycle
where the degradation delay of Akt is less than or equal to the
degradation delay of mTORC2. In other words, the degradatin
of AKT occurs at faster rate than the degrdation of mTORC2.
Interestingly, this is the only observed property of the cycle
that enforces its existence dramatically. Thus, this constraint
provides a governing rule that if violated may bifurcate the
trajectory toward stable steady state (1,0,1,1,1,0) (represented by
red colored state in Figure 6).

DISCUSSION

The pathological roles of PTEN, mTOR, and Akt have been well
established in different diseases including diabetes and different
types of cancer (Altomare and Testa, 2005; Zoncu et al., 2011;
Hopkins et al., 2014). The risk for the development of cancer
in diabetic patients is increased with hyperinsulinemia and
oxidative stress (Vigneri et al., 2009). With nutrient uptake, levels
of growth factors and hormones rise in the blood stream that
triggers certain biochemical processes. Feeding promotes insulin
levels in the bloodstream that binds to its particular receptors
causing stimulation of PI3K downstream signaling. Deregulation
of PI3k/Akt mediated mTOR signaling pathway contributes to
insulin resistance and associated conditions (Harrington et al.,

2004; Shah et al., 2004). PI3K tends to stimulate mTORC2 and
both of these proteins initiate activation of Akt (Alessi et al.,
1997; Sarbassov et al., 2005). Subsequently, Akt favors mTORC1
activation by phosphorylating TSC1/TSC2 complex (Zoncu et al.,
2011). mTORC1 is able to impair insulin signaling via its
substrates S6K1 which then phosphorylates serine residues of
IRS1 causing downregulation of PI3K/Akt pathway (Harrington
et al., 2004; Shah et al., 2004). In this way, mTORC1 activity
can contribute to insulin resistance. Therefore, it is important
to identify therapeutically favorable regulatory event in mTOR-
associated BRN that plays a major role in triggering pathological
signaling cascade (Vigneri et al., 2009).

Formal methods are widely applicable for the correctness
of ICT Systems due to their computational ability of rigorous
testing. For the last few decades, formal methods have been
successfully used for the modeling and verification of complex
biological systems (Kitano, 2002). Kinetic Logic formalism is a
well-known approach for the qualitative modeling of a BRN that
deciphers its qualitative dynamics in the form of a directed graph,
where a node represents a qualitative state and an edge represents
an evolution from one state to its successor state (Thomas,
1979; Thomas and d’Ari, 1990; Thomas et al., 1995). Since the
qualitative model ignores the time in the evolution of expression
levels, a hybrid model is built in order to ensure that evolutions
due to activation or inhibition are taking place after production
and degradation delays (Ahmad et al., 2007, 2008; Ahmad,
2009). Of course, these delays are un-known and are treated as
unvalued parameters in the hybrid model. Consequently, any
behavior captured in the qualitative model (cycle or path) can
be temporally verified against the production and degradation
time delay parameters by using the hybridmodel checkerHyTech
(Henzinger et al., 1997) that automatically synthesizes the values
of parameters (delays) in the form linear parametric constraints.
Moreover, this approach has been successfully applied on a
variety of BRNs for the temporal analysis of their behaviors
(Ahmad et al., 2012; Aslam et al., 2014; Saeed et al., 2016).

The qualitative model (state graph) of the mTOR-associated
BRN predicted cycles and a stable state. The most biologically
probable cycle was selected that shows the oscillation of PI3K,
mTORC2, Akt, mTORC1, and FOXO while PTEN is constantly
expressed (level 1). On the other side, simultaneous deactivation
of PTEN and FOXO along with the activation of Akt, PI3K,
mTORC1 and mTORC2 tends to maintain the system in a
stable state (1, 0, 1, 1, 1, 0). The same pattern of activation and
deactivation of entities has also been observed in diabetes and
different types of cancers (Altomare and Testa, 2005; Hopkins
et al., 2014).

Genes’ expression goes through various levels (low and high)
under regulatory mechanism to maintain homeostasis. The
regulation of the expressions of PI3K is under the regulatory
mechanism of PTEN and mTORC1 that has been found
perturbed in almost all cancer types (Hopkins et al., 2014).
Downregulated PTEN has deleterious impacts on cell cycle
regulation, growth and survival. In the stable state of the
qualitative model PTEN is downregulated while PI3K is found
overexpressed. In recent studies, PTEN has been demonstrated to
downregulate the activity of mTORC1 through various pathways
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TABLE 4 | Relation matrix.

δ
+
FOXO

|δ−
FOXO

| δ
+
PI3K

|δ−
PI3K

| δ
+
mTORC1

δ
−
mTORC1

δ
+
mTORC2

|δ−
mTORC2

| δ
+
Akt

|δ−
Akt

|

δ+
FOXO

=

|δ−
FOXO

| ≤,≥ =

|δ−
PI3K | ≤,≥ ≤,≥ =

δ+
PI3K ≤,≥ ≤,≥ ≤,≥ =

δ+
mTORC1

≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

|δ−
mTORC1

| ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

δ+
mTORC2

≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

|δ−
mTORC2

| ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

δ+
Akt

≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ =

|δ−
Akt

| ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤,≥ ≤ ≤,≥ =

Relation matrix of the selected cycle that shows the pairwise relationships of delays of the entities FOXO, PI3K, mTORC1, mTORC2 and Akt.

(Sonntag et al., 2012) which is also evident in the qualitative cycle.
However, in the stable state of the qualitative model, PTEN is
constantly downregulated and mTORC1 is thus overexpressed.
These findings opens up various aspects of future exploration for
the role of PTEN in hyperinsulinimia.

The hybrid model of the selected cycle predicted the time
delays of the entities to maintain homeostasis. The pairwise
relationships of delays suggest one unique pattern of faster
Akt degradation than mTORC2 degradation for maintaining
homoeostasis. It also suggests that therapeutics must be designed
based on the fact that Akt must be cleared out of the system
as soon as it performs its function along with keeping a slower
degradation rate for mTORC2. This also eliminates the risk
of prolong Akt activation that may hyper-activate downstream
signaling cascade. Another important fact that is perceived
through this constraint relationship is that mTORC1 has to
be suppressed (under cancerous circumstances) to reduce its
inhibitory effect upon mTORC2 which would prevent early
degradation of mTORC2 as compared to Akt. This trend would
keep an equilibrium between cellular proliferative elements PI3K,
Akt, mTORC1, and that of apoptotic factors (e.g., FOXO). Based
on these observations, further wet-lab exploration for the roles
of PTEN, mTORC1, mTORC2, and Akt is required in the
perspective of targeting cancer cell proliferation.

CONCLUSION

In last few decades, understanding of the glucose metabolism in
both proliferating cancer and normal cells is studied extensively.
PI3K, Akt and mTOR play significant roles in metabolism and
their deregulation can lead to different cancers. In this context,
the regulatory network of these entities has been modeled
and analyzed to explore its dynamics. Discrete and hybrid
models have been constructed to predict the qualitative and
timed dependent behaviors. In the qualitative model, cycles
representing homeostasis and a stable state representing the
disease state have been predicted. The most biologically probable
cycle represents that the expression levels of the entities except
PTEN should oscillate to maintain homeostasis. Moreover, the
cycle states show the constant expression (level 1) of PTEN.

On the other hand in the stable state, PI3K, mTORC2, Akt,
and mTORC1 are always overexpressed while PTEN and FOXO
are constantly down regulated which can ultimately lead to
cancer. The hybrid model revealed the time delay constraints
of the most biologically probable cycle. Further analysis of
the constraints predicted the pairwise relations between the
production and degradation time delays of all the entities.
One relation highlighted that during homeostasis, the inhibition
time delay of Akt is less than the inhibition time delay of
mTORC2. In conclusion, our observations characterize that
during homeostasis, Akt is degraded with a faster rate than
mTORC2 which further suggests that this inhibition of Akt along
with the activation of mTORC2 may be exploited for a better
therapeutic strategy against cancer.
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