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Continuous intracranial pressure (ICP) monitoring is a cornerstone of neurocritical care

after severe brain injuries such as traumatic brain injury and acts as a biomarker of

secondary brain injury. With the rapid development of artificial intelligent (AI) approaches

to data analysis, the acquisition, storage, real-time analysis, and interpretation of

physiological signal data can bring insights to the field of neurocritical care bioinformatics.

We review the existing literature on the quantification and analysis of the ICP waveform

and present an integrated framework to incorporate signal processing tools, advanced

statistical methods, and machine learning techniques in order to comprehensively

understand the ICP signal and its clinical importance. Our goals were to identify the

strengths and pitfalls of existing methods for data cleaning, information extraction,

and application. In particular, we describe the use of ICP signal analytics to detect

intracranial hypertension and to predict both short-term intracranial hypertension and

long-term clinical outcome. We provide a well-organized roadmap for future researchers

based on existing literature and a computational approach to clinically-relevant

biomedical signal data.

Keywords: data science, intracranial pressure, traumatic brain injury, machine learning, prognostics and health

maintenance

INTRODUCTION

Traumatic brain injury (TBI) is one of the most common forms of acquired brain injury (1).
While the primary injury associated with brain trauma consists of focal hematomas, contusions,
and diffuse injury, secondary injury occurs once the patient has survived to hospitalization.
Secondary injuries include cellular damage, inflammation, changes in the regulation of blood flow
and, as the brain tissue begins to swell, elevations in the pressure exerted on the contents of the
intracranial space, or intracranial pressure (ICP). ICP measurement is a cornerstone of physiologic
neuromonitoring after brain injury in neurocritical care, and the use of ICP measurement after
severe TBI, in particular, is thought to act as a biomarker of secondary brain injury. Guidelines
provide Class II recommendations for the use of ICP monitoring after severe TBI (2) and targeted
treatment to reduce ICP is thought to have a positive impact on long-term functional outcome.
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METHODS

We performed a narrative overview of existing literature.
The objectives of this overview were to discuss the existing
approaches to the study of ICP signals from the perspective
of data science and to highlight existing work related to signal
processing and computational analytics organized around a
conceptual framework. All studies were selected based on the
expertise of the authors in order to highlight concepts important
to the objectives of this overview.

DISCUSSION

Background: The Intracranial Pressure
Signal
The intracranial space is generally composed of three elements:
80% brain tissue, 12% venous and arterial blood, and 8%
cerebrospinal fluid (3). The Monro-Kellie hypothesis familiar
today was crystallized by Harvey Cushing (4, 5) and can be
formulated as follows:

Vintracranial vault = Vbrain + Vblood + VCSF

This indicates that the volume of the intracranial contents
Vintracranial vault is the sum of volumes of brain Vbrain,
cerebrospinal fluid (CSF) VCSF , and the intracranial blood Vblood

in the cranial cavity and is constant or nearly constant. An
increase in any of these three should cause a decrease of the
other two. The circulatory CSF component can be expressed by
Davson’s equation (6):

ICP (CSF) = R× F + P

where R is the resistance to CSF outflow, F is the CSF formation
and P is the pressure in sagittal sinus. Under pathological
conditions, such as after TBI, a variety of mechanisms may cause
an increase in ICP including an increase in brain volume (e.g.,
cerebral edema), an increase in arterial blood volume related
to disruption in autoregulation, or obstruction of normal CSF
circulation and absorption. The perfusion pressure within brain
tissue capillaries is estimated by the following:

CPP = MAP− ICP

where CPP is the cerebral perfusion pressure and MAP is
the mean arterial (input) pressure, and ICP functions as the
resistance. Thus, elevations in ICPmay lead to a decrease in CPP.
As CPP declines and the lower limits of the brain’s autoregulatory
capacity are reached, cerebral blood flow reduces, and ischemia
may develop depending on the metabolic needs of the tissue.

ICP is typically measured either by catheters placed into
the ventricular system, creating a closed fluid column, or using
mini-strain gauge probes placed directly into brain tissue. ICP
measured at adequate sampling frequencies (usually 64Hz or
greater) exhibits a characteristic waveform with three peaks,
reflecting cerebral arterial pulsations with contributions from the
venous compartment (7, 8). The three sub-peaks are referred

to as percussion (P1), tidal (P2), and dicrotic waves (P3;
Figure 1). ICP waveforms during normal intracranial physiologic
conditions (Figure 1A) differ from waveforms recorded when
brain compliance is reduced (Figure 1B) (9). Therefore, the
pulse morphology contains useful clinical information, but
quantification is challenging without the aid of advanced
technologies (10).

In addition to the pulse component of the ICP waveform, the
ICP signal also oscillates over slower timescales. The ICP signal
can be decomposed into frequency domain components based on
contributing sources (8, 11, 12) (Figure 2). The pulse waveform
described above is related to the cardiac cycle and has a frequency
band of 1–1.3Hz. Mayer’s waves (analogously termed C-waves)
have a frequency of ∼0.1Hz, and are potentially associated with
sympathetic nervous activity involved in the regulation of blood
pressure (13). Respiratory waves are related to the respiratory
cycle and oscillate between 0.26 and 0.3Hz. Finally, B-waves have
been defined by a frequency range between 0.33 and 3 cycles per
minute, may be associated with fluctuations in cerebral blood
volume (14–16), and can be stratified by amplitude (17).

Despite the richness and complexity of the ICP signal, current
clinical measurements are reported almost exclusively as a simple
average of the peak ICP over a short time window. Management
is driven by medications or physiologic manipulation aimed at
reducing the mean ICP below a set threshold deemed to be
critically elevated. By attempting to maintain an ICP below a
critical threshold, clinicians hope to decrease the likelihood of
unfavorable outcome. However, the value of this threshold is not
definitively established. Historically, studies have suggestedmean
ICP thresholds between 15 and 25 mmHg should be used (18–
20). The most recent recommendation from the Brain Trauma
Foundation is a threshold of 22 mmHg, largely stemming from
a study comparing the average ICP over a 5 days period in a
cohort of patients with TBI and demonstrating an association
with increased mortality when the average ICP was above this
threshold (2).

One size may not fit all. It seems likely that ICP thresholds
for a given individual vary with personal characteristics (e.g.,
age, sex, medical history, and treatment intervention) (21). A
retrospective cohort study of 355 patients concluded that critical
ICP thresholds also vary with time and may exists below 20
mmHg after the 1st day of monitoring (22). Finally, TBI with
mass lesions or elevations in ICP may require decompressive
hemicraniectomy (DC) (23), a surgery which effectively reduces
intracranial pressure while limiting the assumptions of the
Monro-Kellie doctrine. In a meta-analysis of 590 participants
in trials designed to evaluate the use of decompression to treat
ICP-related morbidity and mortality, effective reduction in ICP
via DC was not associated with an overall improvement in
“favorable outcome,” although the relative risk of death and/or
the minimally conscious state at 1 year following injury was
reduced significantly (24). The targeted treatment of ICP based
on threshold values may be rooted in reasonable inference, but
may reflect an overly simplistic approach to the intracranial
compartment’s complex physiology. ICP is crucially linked to
other factors such as cardiac output and arterial blood pressure,
the effects of carbon dioxide tension on cerebral vasculature, and
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FIGURE 1 | ICP pulse morphology: (A) Normal ICP Waveform with dominant P1, (B) Abnormal ICP waveform with dominant P2. ICP waveforms during normal

intracranial physiologic conditions (A) differ from waveforms recorded when brain compliance is reduced (B). The waveform (A) represents the dominant P1 with

amplitude P1 > P2 > P3 while waveform (B) represent the dominant P2 with amplitude P2 > P1,P3.

the delivery of oxygen and glucose to injured tissue. However,
a first step to understanding the relationships between ICP
and other physiologic parameters requires a comprehensive
characterization of the ICP signal itself.

Conceptual Data Science Framework
Data mining approaches are ideal to quantify the multiple
signal characteristics of ICP over time in order to achieve
a more comprehensive understanding of the role of ICP in
brain monitoring (Table 1). A proposed framework for a data
mining approach to the ICP signal is presented in Figure 3. This
framework is formulated as an engineering problem in order to
solve biomedical questions using data science and will guide the
following review of the literature on this subject.

A variety of non-invasive techniques have been described
to facilitate ICP monitoring without the risks associated with
ventricular or parenchymal catheters, such as symptomatic
hemorrhage (25). At their simplest, non-invasive measures
merely dichotomize critical thresholds of ICP. Optic nerve
ultrasonography measures the diameter of the nerve sheath,
which is in continuity with the subarachnoid space and therefore
increases when ICP is critically elevated (26). Other approaches
rely on intermittent measurements, such as CT or MRI imaging
(27). Intermittent Doppler-based techniques have been used to
insonate vessels exposed to pressures within the skull. Recently,
the use of transcranial Doppler fixation devices has allowed for
the relatively continuous assessment of mean middle cerebral
artery blood flow velocity (CBFV) in patients who are sedated
or comatose. Using a combination of CBFV and arterial blood
pressure pulse waveform data, ICP can be estimated through a
variety of modeling techniques including regression andmachine
learning algorithms (28–31). Some of these approaches require
a “gold standard” ICP measurement on which to learn the
relevant relationship between CBFV and ABP whereas others are
based on computational models of the intracranial compliance
and resistance (32, 33). However, these models require very
careful signal acquisition and alignment, rest on reasonable but

simplified assumptions, and ultimately estimate a mean ICP.
Therefore, despite the complex signal processing required to
generate an ICP estimation, the resulting signal does not retain
the information contained within the ICP pulse wave. For the
purposes of this review, we will focus on directly measured
ICP signals.

Layer 1: Data Processing
ICP signals are frequently contaminated by noise or artifacts
that may hinder peak detection and applications, such as
accurate forecasting of elevations in ICP. Therefore, it is essential
to understand, filter, and remove noise before implementing
any data analytical tools. There are two types of noise
for a given signal: high-frequency noise and low-frequency
noise. High-frequency noise corrupts ICP recordings whereas
low-frequency noise occurs in the same frequency band as
important characteristics of the underlying data, and thus
requires more nuanced data cleaning processes. ICP signals
are non-stationary and non-linear with a frequency spectrum
that is not consistent over time. Unlike electromyography
(EMG) or electroencephalography (EEG), reference signals
are not available in the case of ICP monitoring. Further,
magnetoencephalography (MEG), electrocardiography (ECG),
or EMG can be considered as the summation of multiple
statistically independent components, which assumes that the
subcomponents are non-Gaussian signals that are statistically
independent from each other (34, 35). The noise components
can thus be removed based on thresholding statistical features
of components like kurtosis and variance (36). However, this
assumption does not hold for the ICP signal (37). These
characteristics limit the performance of some popular signal
processingmethods for artifact removal, such as adaptive filtering
or independent component analysis (ICA) (37).

Data Processing: Filtering
High-frequency noise originates from measurement and
amplifier devices, electrical interference, and random
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FIGURE 2 | The frequency components in a typical ICP signal. The ICP signal can be decomposed into frequency domain components based on contributing

sources. The bandpass filter technique has been applied to raw ICP signal (A) to extract cardiac cycle (B), respiratory waves (C), Mayer’s waves (D), and slow waves

(E). The passband frequency ranges (Hz) for bandpass filter is set to [1, 1.3], [0.26, 0.3], [0.1, 0.101], and [0.0055, 0.5], respectively.

quantization noise (3). It is relatively straight-forward to
remove these components through traditional filtering methods,
such as low-pass filtering. The cut-off frequency rate is typically
set at 40Hz (37–39) in accordance with the Nyquist–Shannon
sampling theorem, considering that the biological signal
components within the ICP signal cannot reasonably exceed

the heart rate. The cut-off frequency rate may be set to 10Hz in
other cases because most of the energy associated with the signal
is confined under the threshold of 8Hz (40, 41), as shown by
Figure 4A (40).

A variety of low-pass filters can be designed. The finite
impulse response (FIR) filter is recommended over the infinite

Frontiers in Neurology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 959

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dai et al. ICP TBI

TABLE 1 | Main strength and limitation of techniques summary.

Methods Techniques Strength Limitation

Processing: signal filtering Low-pass filters Remove small amount of high frequency

noise when cutoff frequency can be

explicitly set

Need to customize filter design for better

effects

Processing: artifact removal Signal decomposition Recover the underlying process of ICP

signal; efficient, and easy to implement in

real time

Threshold may be difficult to set at

patient-level

Dominant ICP pulse Robust to various artifacts due to

averaging and retains the morphology of

major ICP clusters

Remove useful signal potentially

Information extraction Mean ICP features Robust to artifacts and easy to implement

in real time

Unable to detect ICP pulse waveform

abnormalities

Morphology features Tracks and characterizes ICP morphology Sensitive to artifacts; requires reference

library. Extraction may require additional

signals (e.g., ECG)

Modeling application Statistical modeling Explicitly infer the significance and

relationship of variables between control

and treatment groups

Require pre-define rules

Machine learning Make the most accuracy prediction as

possible and easy to implement in real time

Can be black box and hard to explain

FIGURE 3 | Framework of data mining approaches for ICP signals in patients with TBI. In this framework, the raw ICP signal is fed into a data processing layer to

remove high frequency noise and artifacts. Then, features are extracted in the information layer, across two major categories: morphology and segment signal

characteristics, including time and frequency domain features. In order to extract the morphology of the ICP waveform, ECG or ABP serve as reference signal to help

identify ICP pulse waves and peak detection can validate the accuracy of extracted features. Final, an application layer provides a link between the ICP waveform and

clinically relevant events.

impulse response filter because a linear phase response is
important to preserve the wave-shape of the signal. FIR
filters tend to be preferred for fixed-point implementation
in ICP signals which are robust to quantization effects.
Figure 4B shows the effects of removing high-frequency noise
from the ICP signal via a low-pass filter (Fs = 128,
Fpass = 10Hz, Fstop = 15Hz, Apass = 1, Astop = 50,
minimum order).

Data Processing: Artifact Removal
Low-frequency noise in the ICP signal may be recognized
as artifact embedded within the higher frequencies of the
signal itself. These artifacts originate from environmental factors
which may occur during routine care (e.g., adjustment of the
bed angle, movement of the patient, coughing, shifts of the
sensors, recalibration of the sensor, or connection errors). The
artifacts also depend on types of devices. For example, modern
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FIGURE 4 | High- frequency Noise Removal for ICP signal. (A) PSD estimation of ICP signal. (B) Comparison of before and after signal filtering. The high frequency

noise can be removed by low-pass filtering. The periodogram is obtained using fast Fourier transform (FFT). In order to conserve the total power, both the positive and

negative frequencies multiply by a factor of 2. The zero frequency (DC) equation is psdx = 1
Fs×N

× |fft (x)1 :
N
2 +1|

2, where psdx is the estimated power spectral density,

Fs is the ICP signal sample rate, N is the ICP total sample size and fft is the FFT function. The PSD results indicate the cut-off frequency rate can be set to 10Hz in

other cases because most of the energy associated with the signal is confined under the threshold of 8Hz. (B) shows the effects of removing high-frequency noise

from the ICP signal via a low-pass filter (Fs = 128, Fpass = 10Hz, Fstop = 15Hz, Apass = 1, Astop = 50, minimum order).

intraparenchymal fiberoptic sensors do not typically require
“zeroing,” whereas external ventricular drains may be clamped
or require releveling in order to provide accurate measurement.
Some examples of artifacts are shown in Figure 5.

Artifact Removal: Signal Decomposition Approaches
Signal decomposition techniques such as Empirical Mode
Decomposition (EMD), Wavelet Transformation, and Median
Filtering are used to recover the underlying structure of the signal
of interest.

Many artifacts in the mean ICP time series are visually
recognized as tall and sharp “spikes.” EMD is thus employed as a
filter to extract variability or changeability of different scales (37).
EMD decomposes the mean ICP signals into several Intrinsic
Mode Functions (IMFs). An IMF is defined as any function
having the same number of zero crossings and extreme values,
and also having symmetric envelopes defined by the local maxima
and minima, respectively (42). Based on this observation, the
first IMF component with large oscillations may be an effective
indicator of artifacts. In a study using EMD to remove artifacts
across 203.5 h of mean ICP signal, EMD achieved an average of
82% accuracy and F score of 0.848 (37).

The wavelet transform is sensitive to abrupt changes in the
mean ICP signal using the Haar basis function. The mean ICP
signal is transformed into aggregate energy based on the Haar
wavelet and then the first deviation is extracted, which may
act as an indicator for artifacts. A median filter is a non-linear
digital filter that can be used to extract trend components in
ICP signal and the residual component can be regarded as an
effective indicator for artifacts (43). Both wavelet and median
filters were found to outperform EMD with regard to mean
square error (MSE), relative absolute error (RAE), and forecast
error (FER) (43). In addition, themedian filter method was found

to be computationally more efficient, and thus may have more
potential for online or real-time application.

Artifact Removal: Dominant ICP Pulse Approaches
Dominant ICP pulses refer to the clustering of different
morphological characteristics extracted by frameworks such as
the Morphological Clustering Analysis of ICP Pulse (MOCAIP)
(44). An averaging process is used to obtain an averaged
waveform for the largest cluster of ICP pulse waves, referred to as
the dominant ICP pulse. One of the benefits of the dominant ICP
pulse is the robustness to effects of artifacts due to the averaging
process, but simultaneously this has the potential to remove large
fragments of potentially useful signal.

A simple threshold-based approach (TB) can be used to
recognize artificial ICP pulses if the wave amplitude is between
1.0 and 35.0 mmHg and latency between 0.08 and 0.4 s. Wave
amplitude is the pressure difference between the starting diastolic
minimum pressure and systolic maximum pressure, while wave
latency is the time interval when the pressures change from
diastolic minimum pressure to systolic maximum pressure (45).

The dominant pulse peaks could be artifacts if the whole
segment consists of noise. Therefore, a non-artifactual ICP
pulse recognition approach has been introduced with a template
matching (TM) method. A reference library of non-artifactual
ICP pulses from multiple patients are constructed. If the
dominant pulse correlates with any of the reference pulses with
a correlation coefficient greater than a certain threshold, it is
recognized as non-artifactual. A self-identification method is
also incorporated in order to handle those dominant pulses
that are excluded in the reference library. An assumption is
made that artifactual dominant pulses are less coherent than
non-artifactual ones. Coherence can be defined as the average
of the correlation coefficients between pulses compared to the
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FIGURE 5 | (A–D) Artifacts in the time series of the continuous ICP signal. Several low-frequency artifacts are shown.

average pulse. This approach was validated by comparing non-
artificial pulse recognition with a human labeled ICP pulses and
demonstrated a final recognition accuracy of 97.84% (46).

Besides the TM method, an ICP stability algorithm (IS) was
developed (45) in which the amplitude Ai and duration Di of a
dominant pulse are compared with the mean amplitude Am and
duration Dm of the past and future three pulses.

Am =

∑−1
j=−3 Ai+j +

∑3
j=1 Ai+j

6

Pm =

∑−1
j=−3 Pi+j +

∑3
j=1 Pi+j

6

The pulse is recognized as non-artifactual ICP if |Pi−Pm|
Pm

≤ 15%

and |Ai−Am|

Am
≤ 10%.

One recent study leveraged an active learning (AL)
framework, further enhancing the identification of non-
artifactual ICP signals (45). AL is a semi-supervised learning
approach that incorporates a learning model that interactively
generates data that is then labeled by experts. It provides an
efficient platform for experts that can release them from labeling
longer segments of similar samples. The Cohen’s Kappa statistic
is used to evaluate similarity in following situations: (1) a dataset
manually labeled by multiple experts (2) labels classified in AL
models which include logistic regression and (3) labels classified
by AL models on unlabeled data. The AL based framework
exhibited the highest area under the receiver operating curve
(AUC) (0.96 ± 0.012), compared to existing threshold based

(0.5± 0.02), template machine (0.71± 0.04), and stability-based
(0.51± 0.036) methods (45).

Data Processing: Signal Segmentation
Signal segmentation is a fundamental tool of signal processing
and refers to dividing a signal into epochs prior to further
analysis. ICP signal segmentation falls into two categories: (1)
frame-by-frame and (2) beat-to-beat. The former is often applied
in extracting the mean ICP, usually defined as a 3–8 s moving
average of the ICP peak amplitude (10). Frame-by-frame signal
segmentation is sensitive to artifacts and outliers thus artifact
removal or imputation is required, particularly in order to extract
morphological features embedded within the non-artificial pulse.
Beat-to-beat segmentation means that the raw ICP signals can
be converted into dominant ICP pulse waveforms with the
assistance of other signals for example ECG, plethysmography,
or arterial blood pressure (ABP) waveforms.

Hu et al. leveraged the established technique of ECG QRS
detection to first identify each ECG beat (44, 46). The ICP latency
was then defined as the time interval between the peak of the QRS
of the ECG and the onset point of ICP pulse. The average ICP
latency was reported as 72.6 ± 19.5ms. By combining the ECG
QRS-based ICP latency extraction algorithm and an adaptive
peak detection algorithm, the ICP pulse detection algorithm
reached a baseline sensitivity of 0.97 and an accuracy of 0.88.

Others have used ABP pulse-wave signals because they also
carry information about the real-time variation of the pulsatile
waveform within the cardiac cycle (47). However, this approach
may be limited as the ABP signal is frequently contaminated by
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artifacts requiring independent detection and removal as part of
its preprocessing.

Layer 2: Information From ICP Signal
Time-Series
The mean ICP refers to the average of the peak amplitude across
specific windows of time, as described above. Themean ICP is the
value typically used clinically to guide therapeutic interventions
to lower the mean ICP, such as hyperventilation or mannitol
administration. However, the mean ICP is only one feature that
can be generated from the ICP signal over time. The information
contained within the ICP pulse signal can be generally divided
into four categories in complex systems terminology (48): time
domain, frequency domain, scale invariant features, and entropy.
In contrast to morphological analysis, which focuses on the
features of individual ICP waveforms, ICP signal time-series
information is extracted across pre-specified time-windows.

Information: Time Domain Features
Time domain information refers to variations in the amplitude
of a signal along with time. The clinical use of “mean ICP” is
an example of a time domain feature of the ICP pulse signal
over time. Other forms of time domain analysis were popular
in the 1970’s, such as the peak-to-peak pulse pressure amplitude
(49). More recently, time domain information has been used to
extract multiple features, including: statistical summary features
(maximum value, average, and standard deviation), covariance
coefficients, similar to what is used in EEG analysis, and higher-
order time domain features such as coefficients of absolute
difference, autocorrelation coefficients, and instant ICP values
(50). The power of using time-domain features is that they
exist in an intuitive feature space and can be used to develop
real-time alarms. For instance, after transforming the ICP to a
time domain feature space, hierarchical Gaussianmixture models
(hGMMs) can be adopted to develop novel alarm functions based
on posterior probabilities (50).

The ICP pressure burden is a feature in the time domain which
combines the clinically-standard mean peak ICP feature and
time information. It may be defined as the mean daily duration
of time that the mean ICP is recorded above a pre-specified
threshold [e.g., 25 mmHg (51)]. ICP pressure burden can also be
calculated as “pressure times time dose” (mmHg·h) over a pre-
specified threshold (52). Alternatively, geometric approaches can
be used to define pressure burden as a time-weighted elevation
in ICP, such as the trapezoidal method (53). In this method,
the mean ICP is calculated by approximating the integral of the
curve of the ICP trend line for each patient. Then, the AUC is
calculated by the trapezoid rule: 0.5×(Ti+1−Ti)(ICP

+
i +ICP+i+1),

where Ti+1 − Ti represent the time interval between the ith and
i + 1 time window and the ICP+i represents the ICP values that
exceeded the threshold, in this case 20 mmHg. The AUC value
is then divided by the duration of the whole monitoring time
(53). Count methods may be used with higher-resolution data
and in one study, minute-to-minute mean ICP was visualized
using a map of intensity vs. duration and color-coded based
on correlations with group-based outcome. A time-dependent

relationship was observed wherein longer durations of time spent
at lower thresholds of mean ICP and shorter durations of time
spent at higher thresholds of mean ICP increased the odds of
poorer outcomes (54).

Intracranial pressure variability (IPV) can be extracted by the
successive variation (SV) method. SV is the average difference
in the mean ICP between two successive parameters. SV =
√

1
(n−1)

∑n−1
i=1 (Xi+1 − Xi)

2, where Xi is the ICP value at i time

stamp and n is the number of time points. SV1 can be calculated
from using each hour’s mean ICP value (X1, X2,X3 . . . ,Xn);
SV2 is defined as the average of consecutive pairs of ICP data
(X21, X22,X23 . . . ,X2 n

2
) where X21 =

X1+X2
2 . ICP-SV2 was

associated with 30-day functional outcome in one study (55).
Time domain features are also useful in conjunction with

time-windowing in order to create moving average correlation
coefficients between ICP signal features or between the ICP signal
and other physiologic parameters within the same time window.
Cerebrospinal compensatory reserve (RAP, which stands for the
correlation R between the pulse amplitude A and the pulse
pressure, or ICP, P) is calculated as moving average correlation
coefficient between the ICP pulse amplitude, defined as the
difference between the peak amplitude of the ICP signal and
the trough of the ICP signal and the mean ICP averaged over a
10 s window (56). The RAP serves as an index of compensatory
reserve and predictor of neurological deterioration (57). A RAP
value of 0 indicates that as the pulse amplitude increases, the ICP
does not—an indication of compensatory reserve, as a change in
volume (in this case inferred by the pulse amplitude) does not
result in substantial changes in intracranial pressure. In contrast,
poor compensatory reserve occurs when the pulse amplitude
increases alongside the mean ICP, resulting in a RAP closer to
one. At the extreme end of the pressure-volume relationship, the
RAP becomes −1 as there is loss of autoregulatory capacity and
vessels become passive to external compression from elevated
ICP (58). As useful as this may be, the RAP does have limitations
based on its use of themean ICP whichmay be prone to errors (as
described above) and the pulse amplitude alone may be a more
reliable marker of critical changes in cerebral blood volume and
therefore pressure (59).

Pressure reactivity index (PRx) is another form of correlation
analysis between time domain features and has been particularly
well-studied. The PRx is calculated as a moving average
correlation coefficient between the 10-s mean of the arterial
blood pressure (ABP) signal and the mean ICP signal over
a 5-min time window (60). PRx quantifies cerebrovascular
reactivity and approximate global cerebral autoregulatory reserve
by observing the responses of each signal to slow spontaneous
changes. PRx values that are negative or close to zero indicate
preserved autoregulation, whereas PRx values closer to one
indicate impaired autoregulation (61). The PRx can subsequently
be plotted against the perfusion pressure, which demonstrates
a characteristic U-shaped curve in ∼60% of patients with
TBI undergoing ICP monitoring (62). The nadir of the curve
indicates the CPP at which the PRx, or autoregulatory capacity,
is optimized. This optimum CPP varies patient-to-patient but
in a retrospective study of 327 patients, the average optimum
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CPP was 75 mmHg, higher in comparison to the Brain Trauma
Foundation Guidelines that suggest an empiric CPP 60–70
mmHg. Further, CPP values that fell outside the optimum were
associated with higher mortality and disability (63).

Information: Frequency Domain Features
Frequency domain features are usually calculated using spectral
or wavelet analyses. Initially, the ICP signal is projected from
time domain to frequency domain using algorithms such
as the fast Fourier transform (FFT). The discrete wavelet
transformation (DWT), similarly, divides the waveform into
component sinusoidal waves based on different frequency bands
(64). Using DWT, the high-frequency centroid of the ICP signal
has been defined as the power-weighted average frequency within
the 4–15Hz band of the ICP power density spectrum. A rapid
increase in the high-frequency centroid frequency was found to
be associated with deterioration caused by expanding intracranial
hematomas (65). The frequency domain-based amplitude (AMP)
can be extracted using spectral analysis and was shown to
be an effective metric wherein higher AMP was correlated
with decreased brain compliance (66, 67). However, frequency
domain-based analysis may lose information when converting
the signal from time domain to the frequency domain. Holm
and Eide showed that the frequency domain method could
underestimate pulse amplitude if there is heart rate variability
or high harmonic distortion. Thus, the time domain method
is superior to the frequency domain method with respect to
preserving the pulse amplitude (68).

Information Scale (Fractal) Invariant Features
Scale (fractal) invariance is a feature of objects that do not change
if scales of length, energy or other variables are multiplied by
a common factor, and thus represent universality. Detrended
Fluctuation Analysis (DFA) describes the second-order statistical
properties of signals that may reflect long memory processes,
long-range correlations, fractal scaling, and evolving intrinsic
non-stationarities (69). One study explored the association of
two DFA-based ICP coefficients, namely the scaling exponent
and the intercept, with 6-month functional outcome, while
controlling for the initial neurological exam. They found that
lower DFA intercept values and higher scaling exponent values
were significantly associated with unfavorable outcome in a
sample of 147 moderate-to-severely injured TBI patients (70).
The scaling exponent, similarly, has been shown to significantly
increase during periods of elevated intracranial pressure in a
study of 30 patients with severe TBI (71). The scaling exponential
can also be combined with measures of entropy to better reflect
the complexity of the ICP signal (69).

Information: Entropy Features
Entropy is a concept that is used to quantify randomness,
unpredictability, or irregularity within a system. Approximate
entropy (ApEn) is the most commonly used entropy calculation
and serves as a benchmark for other entropies. ApEn is a family
of parameters and statistics that can quantify regularity in data
without any prior knowledge about the system generating them
(72). In one study, the mean of the ApEn of the ICP signal was

reduced during periods of elevated ICP (>25 mmHg) for 5min
or less (73). Sample entropy (SampEn) was introduced as an
advancement over ApEn specifically for physiological time-series
signals (74). SampEn addresses the problems of eliminating self-
match compared with ApEn, which requires massive data and
larger time windows to avoid an overestimation of regularity.
While SampEn has not been used for ICP signals, a modification
termed Multiscale Entropy (MSE) has been used (75). MSE
attenuates the stationarity assumption of SampEn by taking into
account more than one temporal scale in its calculation and
as such it is more robust than classical entropies in describing
the complexity of signals. For instance, ApEn and SampEn
tend to falsely judge white noise as having high complexity
due to its randomness, whereas MSE recognizes the relatively
low complexity of the randomness. Therefore, MSE may be
preferable to single-scale entropy-based analyses for signals such
as ICP (76). The MSE of the ICP signal was found in one study
to be superior in predicting functional neurological outcome
compared with other measures of entropy. In this study of 290
patients with a range of TBI, reductions in the MSE of the mean
ICP was associated with poor outcome (75).

Wavelet entropy is a relatively novel entropy based on
energy distribution in wavelet sub-bands (77, 78). The traditional
spectrum estimation would be easily affected by noise and
artifact; therefore, segmenting and windowing procedures have
been added to the calculation of wavelet entropy and relative
Wavelet Entropy (rWEn) was introduced to measure the
dissimilarity of between two ICP signals (78). The advantages and
limitation of these four entropies are illustrated in Table 2.

Layer 2: Information From ICP Morphology
Changes in the configuration of the three ICP pulse peaks may
be a relevant indicator of cerebrovascular pathophysiology. For
example, in clinical practice the ICP pulse is often reviewed
at bedside and a dominant P2 wave is used to infer abnormal
cerebral compliance (70). The quantification of morphological
features is challenging, as discussed previously and, to date,
the clinical usefulness of quantified ICP morphology has been
restricted by these limitations.

As introduced above, the Morphological Clustering and
Analysis of ICP Pulse (MOCAIP) framework was developed to
allow for systematic quantification of the ICP waveform based
on its morphology and to understand its application using
continuous ICP waveforms (46, 79, 80). The MOCIAP was first
proposed to identify non-artificial dominant ICP and optimally
designate three sub-peaks in an ICP pulse (46). An automated
and robust system was subsequently developed to extract the
morphological features of the real-time ICP waveform. These
features allow a comprehensive quantitative characterization of
the ICP waveform including amplitude, time intervals between
sub-peaks, curvature, slope, and time decay constants. This
approach was validated by manually labeled datasets with an
accuracy of 90.17, 87.56, and 86.53% for each of three sub-peaks
P1, P2, and P3, respectively. A total of 24 MOCAIP metrics or
features have been developed and validated (80).

Although high accuracy is achieved by using dominant ICP
clustering, morphological clustering using only ECG signals
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TABLE 2 | Summary of approximate entropy, sample entropy, wavelet entropy and multiscale entropy.

Entropy Interpretation Advantages Limitations

Approximate Entropy

(ApEn)

The larger the ApEn,

the less the

predictability or the

higher the randomness

1. ApEn correlates with hidden and subclinical

changes often undetected by other classical

time series analysis (moment statistics,

spectral analysis, and correlation analysis)

2. ApEn can assess subtle disruption, typically

preceding change in signal mean and

standard deviation

1. The higher entropy value only indicates an

increase in the degree of randomness rather

than complexity

2. The calculation usually require very long

data sets and a bias may exist leading to

overestimation of the time series regularity

Sample Entropy

(SampEn)

The larger the SampEn,

the less the

predictability or the

higher the randomness

The larger value of

SamEn, the

less self-similarity

1. Simpler than ApEn

2. Largely independent of record length and

thus consistency

3. Less biased than ApEn since it

eliminates self-matches

1. The estimation of SampEn critically depends

on the selection of the parameters’ sequence

length

2. The stationarity assumption is invalid for

prolonged time periods

1. Wavelet Entropy

(WEn)

2. Relative Wavelet

Entropy (rWEn)

The larger the wavelet

entropy, the less the

predictability or the

higher the randomness

1. Wavelet entropy has similar performance

with ApEn

2. Inherits the high computational efficiency of

wavelet decomposition

3. rWEn could be further used to measure

dissimilarity between two time series signals

1. The higher entropy value only indicates an

increase in the degree of randomness rather

than complexity

2. Parameter selection in wavelet

decomposition could cause bias in

clinical practice

Multiscale Entropies

(MSE)

The larger the

multiscale entropy, the

increase degree of

complexity

1. Characterize complexity in signal better than

other entropies

2. Multiscale entropy can attenuate the effect

of the stationarity assumption in the

underlying distribution of signals

Multiscale entropy requires substantially more

samples than single scale sample entropy

has the potential to lose the characteristics of individual pulse
signal peaks in relation to their arterial inputs. By introducing
simultaneous ABP signals, ICP pulse morphologies can be
delineated by landmarks including peaks, troughs, and flats.
Then, rule-based and modified K-means clustering algorithms
can be used for peak clustering. This algorithm successfully
identified the three distinguishing peaks of the ICP with
satisfactory accuracy: 95.3, 87.8, and 87.5% for P1, P2, and
P3 (47).

Morphological analysis of ICP has traditionally been limited
in performance due to the appearance of artifacts. The artifact
and noise from the ICP signal may introduce unwanted error
and ultimately create unreliable data for clinical monitoring
and management. Current morphological feature extraction
techniques used for research purposes require manual artifact
removal and access to an ICP morphological reference library,
although newly developed AL frameworks (45) and similar data
analytic frameworks to what we propose here may mitigate these
limitations. Though some have suggested that the ICP artifacts
account for<10% of total data (47), ICP artifact detectionmay be
time-prohibitive or create other barriers to implementing these
algorithms online.

Layer 3: Modeling and Application of ICP
Signal Processing Techniques
There are two primary objectives that have been described for
the applied use of ICP pulse signals in neuromonitoring. The
short-term term goal is to detect or predict elevated ICP and
other secondary brain injury patterns. The long-term goal is to

link novel ICP features with clinical outcomes and to use this
information to create ICP signal-based alarms based on these
predictions. Future goals will need to focus on the coupling
between ICP features and other physiological parameters, but
these studies to date have been largely exploratory and fall outside
the scope of the current discussion.

Intracranial hypertension, or secondary brain injury,
prediction (IHP) uses features called precursors that always occur
several minutes ahead of the onset of elevated ICP. In contrast,
features used to detect critical intracranial hypertension (IHD)
are within the period of time in which the mean ICP is elevated.
Both IHP and IHD are formulated as classification problems,
although IHP is more challenging since the precursors are not
readily distinguished. Long-term objectives instead focus on
data modeling. Long-term outcome evaluation (LOE) mostly
leverages statistical modeling such as regression, which deals
with the relationships between variables to infer an outcome.
Long-term outcome prediction (LOP) employs machine learning
algorithms that can learn from test data in order to predict
outcome without a rule-based approach. The outputs from
LOE are the relationship parameters (e.g., significance levels
between predictor features and long-term outcomes; LOP
emphasizes the performance of the predictive models). The
applications and modeling of ICP pulse signals are summarized
in Table 3.

Application: Intracranial Hypertension Detection or

Prediction
Intracranial Hypertension (IH) is defined by elevations in ICP
that are thought to potentially compromise blood flow and

Frontiers in Neurology | www.frontiersin.org 10 August 2020 | Volume 11 | Article 959

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dai et al. ICP TBI

TABLE 3 | Summary of modeling and application in ICP signal.

References Application Features or information Modeling approach Performance or delivery

Quachtran et al. (81) IHD CNN based features Regression; CNN, CNN +

Autoencoder *

ACC: 92.05%

Scalzo et al. (82),

Scalzo and Hu (39)

IHD MOCAIP Metrics improved by

CDF; Trending features

Threshold-based; SR-DA, SVM,

SR-KDA*

AUC: 85.9%; Reduce FPR by

31%

Soehle et al. (71) IHD Complexity (scaling exponent,

SampEn, multiscale entropy)

Statistical analysis scaling exponent (p < 0.001),

SampEn (p = 0.004), MSE

(p < 0.05)

Scalzo et al. (41) IHP MOCAIP Metrics with backward

sequential feature selection

MLR; Adaboost; Extra-Tree*; AUC: 96%, SPE: 98%, SEN:

93% (1min prior to the elevation)

Xiao et al. (80) IHP Optimal MOCAIP metrics found

by DE algorithms

Regularized quadratic

discriminator

SPE: 99%, SEN: 37% (5min

prior to the elevation)

Hamilton et al. (83) IHP Top 10 MOCAIP metrics found

by PSO

A quadratic classifier (QDC) ACC: 77%, SEN: 90%, SPE:

75% (5min prior to the elevation)

Hornero et al. (73) IHD ApEn Statistical analysis:

non-parametric bootstrap

hypothesis testing

p < 0.01 (IH group vs.

recovering group)

Teplan et al. (50) LOP 7 Time domain features hGMMs, ROC analysis YI = 0.33, SPE: 85%, SEN: 48%

Pimentel et al. (84) LOP GPs based dynamic features,

PRx-based statistical features

GPs-based, PRx-based,

Combined Model*

ACC: 74%, SPE: 65%, SEN:

83%, AUC: 76%

Güiza et al. (54) LOE Insult Intensity (I), Insult duration

(D), LAx

Multivariate logistic regression

models and color-coded plot

ICP- time burden Visualization,

Howells et al. (8) LOE Pressure reactivity indices in

various frequency band

Statistical analysis: correlation,

Spearman’s R, two-tailed

Wilcoxon matched pairs test

ρ = −0.46 (correlation with

GOSe)

Lazaridis et al. (85) LOE PRx, Cumulative area under the

curve above threshold

Logistic regression models, AUC: 0.77, 95% CI 0.70–0.83

Lu et al. (75) LOE and LOP Multiscale entropy Statistical analysis: ANOVA,

Logistic regression

Favorable (F = 28.7, p <

0.0001), Unfavorable (F = 17.21,

p < 0.0001) ACC: 82%, SPE:

94%, SEN: 50%

IHD, Intracranial Hypertension Detection; IHP, Intracranial Hypertension Prediction; LOE, Long-term Outcome Evaluation; LOP, Long-term Outcome Prediction; ACC, Accuracy; SPE,

Specificity; SEN, Sensitivity; AUC, Area Under receiver operating characteristic Curve; CNN, Convolutional Neural Networks; DE, differential evolution; hGMMs, hierarchical Gaussian

mixture models; YI, Youden index; GPs, Gaussian processes; Lax, low-frequency autoregulation index; GOSe, extended Glasgow Out- come Scale; ANOVA, Analysis of Variance; ApEn,

Approximate Entropy; PSO, Particle Swarm Optimization; SR-DA, Spectral regression- discriminant analysis; SR-KDA, Spectral Regression-Kernel Spectral Regression.

*is the algorithm with best performance.

therefore create secondary brain injury. The recommended
threshold for the treatment of ICP after severe TBI is above
22 mmHg, although individual thresholds above which brain
tissue and blood flow are compromised are unknown (2).
Therapeutic interventions are typically targeted once elevations
in ICP occur for a pre-specified amount of time (41).
Since the pressure-time ICP burden appears to correlate with
outcome, IH detection and prediction can potentially lead to
earlier intervention.

Formulating a detection or prediction problem in IH relies
on the definition of selected data, namely pre-IH episodes, IH
episodes or control episodes. One study defined IH episodes as
mean ICP values of more than 20 mmHg over a period of at
least 5min (80, 83), while another used ICP values more than 30
mmHg lasting at least 10min (86). Pre-IH episodes are usually
selected as 5, 10, 15, and 20min prior to onset of ICP elevation
(80, 83). Control episodes are selected either from segments at
least 1 h prior to ICP elevation from patients with at least one
episode of IH, or segments from patients without a single episode
of IH (80). If only IH and control episodes are compared, the

problem would be IH detection (81, 87), whereas IH prediction
compares the pre-IH episodes and IH episodes.

From a modeling perspective, the two approaches, namely
statistical analysis vs. machine learning and other artificial
intelligence algorithms, can be distinguished based on the
final goal. Machine learning models often involve many more
explanatory variables or features than statistical models, while
statistical analysis is usually concerned with the significance
of individual features. Machine learning models focus on
optimizing predictive power using combinations of a large
number of features. Predictive power is then evaluated by
accuracy, sensitivity, and AUC (area under receiver operating
characteristic curve) through a comparison of actual vs. predicted
labels. The labels are usually annotated by experts or known based
on clinical course or outcome. The significance of individual
features in a typical statistical model is usually evaluated by p-
values or the confidence intervals surrounding model coefficients
and is associated with explanation, not prediction. Hypothesis
tests are used to test the validity of a claim about a population.
For instance, the null hypothesis might be that a feature (e.g.,

Frontiers in Neurology | www.frontiersin.org 11 August 2020 | Volume 11 | Article 959

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dai et al. ICP TBI

FIGURE 6 | Overview of intracranial hypertension detection and prediction modeling. Intracranial hypertension detection uses intracranial hypertension episodes and

control episodes while intracranial prediction uses pre-hypertension episodes and control episodes. The statistical analysis is usually evaluated by p-value which is

concerned with the significant difference of individual features between pre-intracranial hypertension/intracranial hypertension and control groups. Machine learning

models are often evaluated by accuracy, AUC values etc. to demonstrate the predictive power to distinguish pre-intracranial hypertension/intracranial hypertension

groups from other control groups. ACC, Accuracy; AUC, Area Under receiver operating characteristic Curve; CNN, Convolutional Neural Networks; MLR, Multivariate

linear regression; SEN, Sensitivity; SR-DA, Spectral Regression- Discriminant Analysis; SVM, Support Vector Machine; SPE, Specific; SR-KDA, Spectral

Regression-Kernel Spectral Regression; QD, Quadratic Classifier.

complexity) is not different between IH episodes and control
episodes. A small p-value (typically ≤ 0.05) indicates strong
evidence against the null hypothesis; the null hypothesis is
rejected and a conclusion can be reached that there is a difference
in complexity between IH and control groups. An overview of
this distinction is shown in Figure 6.

To detect IH episodes, several models have demonstrated the
capability of features to detect the difference between IH groups
and control groups. WEn analysis has shown that episodes of
IH have more focused energy in the low wavelet frequency band
(0–3.1Hz) than control episodes (77). An increase in ApEn
between IH episodes and control episodes was determined to be
statistically significant p < 0.01 (73). SampEn was significantly
reduced during the IH period (ICP= 31.7± 7.8 mmHg, SampEn
= 1.45 ± 0.46, mean ± SD) compared to control episodes (ICP
= 15.7 ± 3.2 mmHg, SampEn = 1.45 ± 0.46; p = 0.004). The
scaling exponent α derived from detrended fluctuation analysis
significantly increased (α = 1.02 ± 0.22) during IH episodes
compared to control episodes with p < 0.001 (71).

The development of machine learning algorithms has allowed
models to incorporate more features in order to enhance the
predictive power of IH detection. The MOCAIP algorithm was
leveraged to extract 24 morphological features for individual ICP
episodes and an optimal subset of these morphological features
was then determined using a global optimization algorithm.

Four machine learning algorithms, spectral regression (SR),
discriminant analysis (DA), kernel spectral regression (SR-KDA),
and support vector machines (SVM) were then introduced to
reduce the false alarm rate generated from traditional threshold-
based technique. The SR-KDA achieved the best performance
with AUC 85.9% and reduced the false alarm rate by 27%
compared to a conventional threshold-based approach (82).
A semi-supervised learning-based framework using SR-KDA
and SVM on unlabeled samples led to FPR reductions to 9%
(supervised) and 27% (semi-supervised) for SR-KDA, and to 3%
(supervised) and 16% (semi-supervised) for SVM (39). More
recently, deep learning has been utilized to extract features that
are characteristic of IH episodes. A three-layer Convolutional
Neural Network (CNN) was trained onMOCAIP data and tested
with a 3-fold cross-validation; its accuracy reached 87.19% (82).
An autoencoder was used to reconstruct the features for pre-
training enhancement and increased the accuracy further to
92.05% (81).

IH prediction has been largely focused on the range of
morphological features (e.g., MOCAIP). A quadratic classifier
(QDC) model was introduced with Particle Swarm Optimization
(PSO) for locating the optimal combination of feature subsets.
The top 10 MOCAIP metrics achieved an adequate accuracy
(0.77), specificity (0.75), and sensitivity (0.90) to predict IH 5min
prior to an ICP elevation (83). The MOCAIP features were

Frontiers in Neurology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 959

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dai et al. ICP TBI

FIGURE 7 | Strengths and limitations of modeling techniques by prediction

accuracy and explainable degree.

further selected by a differential evolution algorithm and control
episodes vs. pre-IH episodes were classified by a regularized
quadratic discriminator. The performance was improved to a
specificity of 0.99 and sensitivity of 0.37 5min prior to an
ICP elevation. Up to 20min prior to ICP elevation, specificity
was retained, although the sensitivity was reduced to 21% (80).
Further improving this algorithm, backward sequential feature
selection was used followed by three classification algorithms:
multiple linear regression (MLR), Adaboost classifier and the
Extra-Tree algorithm. The Extra-Tree algorithm achieved the
best performance with 0.96 AUC, 0.98 specificity, and 0.93
sensitivity 1min prior to ICP elevation, and 0.85 AUC, 0.99
specificity, and 0.70 sensitivity up to 9min prior to onset of
elevated ICP (41).

While no signal method is optimal, the strengths and
limitations of these techniques can be conceptualized in
two dimensions: prediction accuracy and explainable degree
(Figure 7).

Application: Long-Term Outcome Evaluation or

Prediction
As described, statistical approaches are usually used to model
the relationship between ICP signal characteristics and long-term
outcome of TBI patients, often measured based on ordinal scales
that describe functional outcome, such as the Glasgow Outcome
Scale score (GOS) or the GlasgowOutcome Scale Score Extended
(GOS-E). An increased PRx, signifying impaired cerebrovascular
pressure reactivity, has been shown to be associated with poor
GOS in patients after TBI (88, 89) and GOS has been correlated
with PRx averaged both over the whole monitoring period
(p < 0.002) or within the first 24 h (p < 0.0001) (89).
The MSE of the ICP time-series achieved statistical significance
stratifying patients into dichotomous outcomes: death/survival
and unfavorable/ favorable (F = 28.7; p < 0.0001 and
F = 17.21; p < 0.0001). A higher F-value indicates better
differentiation of a variable across outcome strata. Interestingly,
MSE was a more significant factor (p < 0.0001 for mortality; p <

0.0001 for favorable outcome) than PRx (p= 0.23 for mortality; p
= 0.31 for favorable outcome) (75). The ICP pressure-time dose
(mm Hg•h) showed significant correlation with discharge GOS

score (favorable/ unfavorable) with p = 0.008 / p = 0.038 (52).
Pressure burden (53) has also been associated with a composite
endpoint of worse functional and neuropsychological outcome.

For logistic regression, the GOS score is often converted to
a binary response variable in order to simplify the classification
problem between favorable outcome (GOS 4 and 5) and
unfavorable outcome (GOS 1, 2, or 3). Using multiple features
to assess universal thresholds associated with GOS using logistic
regression with a 5-fold cross validation, one study found that
three ICP thresholds could be defined: PRx > 0.2, ICP > 20
mmHg, and ICP > 25 mmHg. The PRx threshold had the
highest performance to predict the GOS (AUC 0.81, 95%CI 0.74–
0.87) over ICP > 20 mmHg (AUC 0.75, 95% CI 0.68–0.81) and
ICP > 25 mmHg (AUC 0.77, 95% CI 0.70–0.83) (85). Others
have fit logistic regression models to the features extracted from
Gaussian process-based models and PRx to predict mortality
with model performance of 0.74 accuracy, 0.65 specificity, and
0.83 sensitivity, although this modeling was limited in its clinical
utility (84). Of note, most studies do not consider the effects
of clinical decisions to withdraw life-sustaining therapies, which
may result in differential classification bias.

Multivariate regression using clinical predictors has also been
used to strengthen long-term outcome predictive models. Lu
et al. used age, GCS (Glasgow Coma Scale), PRx and MSE
predictors to forecast the long-term outcome for patients. Using
a binary response variable, favorable/unfavorable outcome, the
averaged accuaracy, sensitivity, and specificity were 0.82 ±

0.07, 0.50 ± 0.19 and 0.94 ± 0.06 (75). The use of ICP features
to predict outcome should be only evaluated in conjunction
with clinical parameters, as it is critical to disentangle the
independent impact of ICP from the effects of injury severity
on the development of elevated ICP and its treatment. The
use of multiple physiologic data points (such as simultaneously
recorded brain tissue oxygen or regional cerebral blood flow)may
provide additional insight.

CONCLUSIONS AND FUTURE WORK

ICP measurement and monitoring in patients with severe brain
injuries is a cornerstone of intensive care and while there is
debate about the utility of ICP measurement, it is clear that
further research is needed in order to better understand the
information contained within the ICP signal and its clinical
importance. In this review, we propose an instructive framework
for data mining and application of ICP waveform signals. The
data processing layer serves to provide ICP signal cleaning for
analysis. The information layer generates features to extract
discriminative or relative information. Finally, the application
layer can model and map the features and information to
outcome measures such as intracranial hypertension or long-
term functional outcome.

Signal processing and Data science in neurocritical care
is rapidly progressing. Over the past 10–15 years, ICP-based
autoregulatory indices have been developed, automated ICP
morphology extraction has been refined, and predictive models
have been developed for clinically-relevant outcomes. However,
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the use of ICP is limited by several surmountable barriers,
namely: (1) real-time or online evaluation and forecasting has
not been deployed in clinical ICP monitoring and management;
(2) the information contained within frame-by-frame segmented
ICP signals need to be further characterized and clinically
correlated; (3) specific morphological features need to be
prioritized to maximize model fitting and allow for online
clinical use; (4) artifact detection, removal and imputation
needs to be standardized to allow for the systematic study
of ICP waveforms, to promote consistent online monitoring,
and for robust machine learning algorithm development; and
(5) model development and algorithm construction need to be
refined using open-source platforms with robust versioning and
regular reevaluation.

ICP monitoring as a system can benefit from advancements in
computer science and engineering. The development of Internet
of Thing (IoT) (90), big data techniques (91, 92), and CPS
(Cyber-Physical Systems) (93) promise to transform our ability
to monitor the brain in real time after injury.
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