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Abstract

Neurons process and convey information by transforming barrages of synaptic inputs into

spiking activity. Synaptic inhibition typically suppresses the output firing activity of a neuron,

and is commonly classified as having a subtractive or divisive effect on a neuron’s output fir-

ing activity. Subtractive inhibition can narrow the range of inputs that evoke spiking activity

by eliminating responses to non-preferred inputs. Divisive inhibition is a form of gain control:

it modifies firing rates while preserving the range of inputs that evoke firing activity. Since

these two “modes” of inhibition have distinct impacts on neural coding, it is important to

understand the biophysical mechanisms that distinguish these response profiles. In this

study, we use simulations and mathematical analysis of a neuron model to find the specific

conditions (parameter sets) for which inhibitory inputs have subtractive or divisive effects.

Significantly, we identify a novel role for the A-type Potassium current (IA). In our model, this

fast-activating, slowly-inactivating outward current acts as a switch between subtractive and

divisive inhibition. In particular, if IA is strong (large maximal conductance) and fast (acti-

vates on a time-scale similar to spike initiation), then inhibition has a subtractive effect on

neural firing. In contrast, if IA is weak or insufficiently fast-activating, then inhibition has a

divisive effect on neural firing. We explain these findings using dynamical systems methods

(plane analysis and fast-slow dissection) to define how a spike threshold condition depends

on synaptic inputs and IA. Our findings suggest that neurons can “self-regulate” the gain

control effects of inhibition via combinations of synaptic plasticity and/or modulation of the

conductance and kinetics of A-type Potassium channels. This novel role for IA would add

flexibility to neurons and networks, and may relate to recent observations of divisive inhibi-

tory effects on neurons in the nucleus of the solitary tract.

Author summary

Neurons process information by generating spikes in response to two types of synaptic

inputs. Excitatory inputs increase spike rates and inhibitory inputs decrease spike rates
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(typically). The interaction between these two input types and the transformation of these

inputs into spike outputs is not, however, a simple matter of addition and subtraction.

Inhibitory inputs can suppress outputs in a variety of ways. For instance, in some cases,

inhibition adjusts the rate of spiking activity while preserving the range of inputs that

evoke spiking activity; an important computational principle known as gain control. We

use simulations and mathematical analysis of a neuron model to identify properties of a

neuron that determine how inhibitory inputs affect spiking activity. Specifically, we dem-

onstrate how the gain control effects of inhibition depend on the A-type Potassium cur-

rent. This novel role for the A-type Potassium current provides a way for neurons to

flexibly regulate how they process synaptic inputs and transmit signals to other areas of

the brain.

Introduction

The activity of a neuron is driven by barrages of synaptic inputs. Synaptic inputs are classified

as either excitatory (those that promote spike generation) and inhibitory (those that impede

spike generation). The interplay between these two “opposing” inputs influences how neurons

process and transmit information in the brain.

To characterize the nature of inhibition, researchers often distinguish between inhibition

that has a subtractive effect on neural firing, versus inhibition that has a divisive effect [1]. Inhi-

bition is said to be subtractive if it reduces the firing activity of a neuron by (roughly) a con-

stant amount, regardless of the strength or amount of synaptic excitation. Inhibition is said to

be divisive if it reduces the firing activity of a neuron by an amount that is (roughly) propor-

tional to the neuron’s firing rate. We illustrate this distinction in Fig 1, by showing output fir-

ing rate of a neuron as a function of the rate of its excitatory inputs (not actual data).

The differences between these modes of inhibition has important consequences for neural

coding. Subtractive inhibition suppresses responses to “non-preferred” stimuli that evoke

infrequent responses in the absence of inhibition. This can be useful for promoting the repre-

sentation of “preferred” inputs. In contrast, divisive inhibition is a mechanism for neural gain

Fig 1. Comparison of firing rate input/output relations for subtractive and divisive inhibition (illustration only,

not actual data). A: Subtractive inhibition: output rate without inhibition is rout ¼
ffiffiffiffiffirin
p

, and output rate with

inhibition is rout ¼
ffiffiffiffiffirin
p
� c, where c is a constant with c> 0. B: Divisive inhibition: output rate without inhibition is

rout ¼
ffiffiffiffiffirin
p

(same as in A), and output rate with with inhibition is a
ffiffiffiffiffirin
p

, where α is a constant with 0< α< 1.

https://doi.org/10.1371/journal.pcbi.1006292.g001
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control: it reduces the firing rate of a neuron while preserving the overall range of inputs to

which the neuron is responsive [2]. Understanding the physiological mechanisms that deter-

mine how and why inhibition acts in these two modes is key for understanding how neurons

and networks function. Past studies have identified numerous possibilities for mechanisms

underlying these two modes of inhibition, including the stochastic (noisy) nature of synaptic

inputs [3], the balance between excitatory and inhibitory inputs [4], shunting inhibition [5, 6],

synaptic depression [7], and circuit structure [2, 8], and see [1] for additional review.

In this study, we identify a novel role for A-type voltage-gated potassium current in deter-

mining whether inhibition acts in a subtractive or divisive manner. Voltage-gated K+ channels

play an important role in regulating neuronal excitability [9, 10]. Here, we focus on the class of

K+ channels that produce an A-type current [11]. These outward currents are mediated by a

variety of membrane-bound channels [12–14], found primarily on dendrites [15] but with a

somatic location in some cells [16, e.g.]. A-type currents vary greatly in their voltage depen-

dence and kinetics. Although a limited number of channels are typically open (active) at the

resting membrane potential, producing a “window current” [17, 18], additional hyperpolariza-

tion further “primes” [19] or de-inactivates the membrane [20], making more channels avail-

able for activation by a depolarizing stimulus. Thus, the magnitude of A-type currents are

particularly sensitive to inhibitory inputs. Inactivation kinetics vary greatly, ranging from less

than 20 ms to as much as 600 ms, even within populations of neurons sharing a single potas-

sium channel subfamily [14, e.g.].

Through mathematical analysis and simulations, we explore the combined effects of synap-

tic inputs and voltage-gated ion currents on spiking dynamics of a neuron model. We find that

if the A-type current is sufficiently large and activates rapidly, then it combines with inhibitory

inputs to suppress firing activity in a subtractive manner. If, instead, the A-current is suffi-

ciently weak or activates slowly (relative to spike initiation dynamics), then inhibition has a

divisive effect on firing rates. Our work identifies a route through which adaptive or dynamic

changes to the intrinsic dynamics of neurons (for example, through modification of ion cur-

rents [21]) can modulate the effects of inhibition. This capability for individual neurons to

switch between different inhibition “regimes” could provide useful flexibility to neural

systems.

Materials and methods

We simulate and analyze two models of neural dynamics. The first is a one-compartment

model that approximates a neuron as a single, isopotential unit (a “point neuron” model). The

second is a multi-compartment model that includes a region of voltage-gated currents attached

to a spatially-extended region of passive membrane (“soma” and “dendrite” regions, respec-

tively). We describe these models below.

One-compartment neuron model

The dynamics of membrane potential, V, in the one-compartment neuron model are

CV 0 ¼ � IL � IK � IA � INa � ISyn;E � ISyn;I ð1Þ

where the membrane capacitance is C = 1 μF/cm2. Here, and throughout, we use V0 to indicate

the time-derivative of V, i.e. dV/dt. The ionic currents (leak, potassium, A-type potassium, and

sodium) are given by the equations

IL ¼ gLðV � VLÞ; IK ¼ gKn4ðV � VKÞ;

IA ¼ gAa3bðV � VKÞ; INa ¼ gNam3hðV � VNaÞ:
ð2Þ
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We use the following fixed parameter values for maximal conductances: gL = 1 mS/cm2, gK =

45 mS/cm2, and gNa = 37 mS/cm2. We use a range of values for the maximal conductance of

the A-current (gA) to observe transitions between subtractive and divisive effects of inhibition.

The reversal potentials are VL = −70 mV, VK = −80 mV, and VNa = 55 mV.

We make several simplifications, similar to those first suggested in [22], to the gating vari-

ables in the model. We identify sodium activation as a fast process and assume it evolves

instantaneously to its voltage-dependent steady-state value. That is, we let m = m1(V) = 1/(1 +

e−(V+30)/15). In addition, we observe an approximately linear relationship between sodium inac-

tivation and potassium inactivation and thus set h = 1 − n.

The remaining gating variables are n, a, and b. Their dynamics are described by equations

of the form

X 0 ¼ �X
X1ðVÞ � X

tXðVÞ
; X ¼ n; a; b: ð3Þ

The voltage-dependent steady-state functions are of the form X1ðVÞ ¼ 1=ð1þ eðX� yX Þ=sX Þ. For

the potassium activation variable, n, we assume that ϕn = 0.75, θn = −32 and σn = −8. The time-

scale for the n variable is voltage-dependent: τn(V) = 1 + 100/(1 + e(V+80)/26). Similar to the

model presented in [23], we assume that ϕa = 1, θa = −50 and σa = 20 for A-type potassium

activation, and ϕb = 1, θb = −70 and σb = −6 for A-type potassium inactivation. The time-scales

for the A-type current are constants: τa = 2 ms and τb = 150 ms.

Inputs to the model include synaptic excitation (ISyn,E) and inhibition (ISyn,I). Excitatory

current is ISyn,E = gSyn,E sE(V − VE) and inhibitory current is given by an analogous equation.

The maximal excitatory and inhibitory conductances (gSyn,E and gSyn,I) are parameters that we

vary in simulations. The reversal potentials are VE = 0 mV for excitation and VI = −85 mV for

inhibition. The gating variables, sE and sI, reset to one at the time of a synaptic event and decay

with an exponential time-course. That is, the excitatory gating variable is defined as

sEðtÞ ¼
1 if t ¼ tE
e� bEðt� tEÞ if t > tE

(

ð4Þ

where tE is the time of the most recent excitatory event and the decay time constant is βE = 0.2

ms−1. A similar equation holds for the inhibitory gating variable sI, but with a time constant

βI = 0.18 ms−1. Excitatory event times are randomly distributed according to a homogeneous

Poisson process with rate rE. Inhibitory event times are periodic with rate rI. We vary the val-

ues of the rate parameters (rE, rI) in our investigations. Our choice of these input patterns sim-

plifies some of our mathematical analysis. In addition, our choice of periodic inhibitory events

was motivated by the design of in vitro experiments, presented in [24], in which inhibitory

interneurons were activated periodically using optogenetic techniques. In additional simula-

tions included as S1 and S2 Figs we allowed the timing of inhibitory inputs to be random with

event times drawn from a homogeneous Poisson process. We did not observe substantially dif-

ferent results in simulations that used these non-periodic inhibitory inputs.

Multi-compartment neuron model

In some simulations we augment the one-compartment (point neuron) model by attaching

additional compartments that represent a dendritic process. We assume that the dendrite con-

sists of nine equally-sized compartments. Moreover, the neuron receives inhibitory input at its

soma (the first compartment) and excitatory input at a dendritic compartment.

Gain control with A-type potassium current
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Voltage in the first compartment (soma) is denoted V1 and is given by Eq 1 with synaptic

excitation removed and with a new term representing the flow of current between compart-

ments (axial current):

CV 0
1
¼ � IL;1 � IK � IA � INa � IAx;1 � ISyn;I: ð5Þ

The remaining dendritic compartments do not include potassium, A-type potassium, or

sodium currents, and thus Vj for 2� j� 10 follows the linear dynamics of a passive cable:

CV 0j ¼
� IL;j � IAx;j � ISyn;E at location of excitatory inputs

� IL;j � IAx;j at other locations:

(

ð6Þ

Leak conductance in the dendrite compartments is gL = 0.1 mS/cm2 (one-tenth the value in

the first compartment). Axial current is

IAx;j ¼

gAxðV1 � V2Þ for j ¼ 1

gAxð� Vj� 1 þ 2Vj � Vjþ1Þ for 2 � j � 9

gAxðV10 � V9Þ for j ¼ 10

8
><

>:
ð7Þ

where gAx = 10 mS/cm2.

Input currents are defined in a manner identical to inputs in the one-compartment model.

Excitatory and inhibitory gating variables follow Eq 4. Excitatory synaptic event times are

drawn from a homogeneous Poisson process with rate rE and inhibitory synaptic event times

are periodic with rate rI. These constants, as well as synaptic input strengths (gSyn,E, gSyn,I)

and the compartment targeted by the excitatory inputs, are parameters we vary in our

investigations.

Computations

We simulated the point-neuron and multi-compartment neuron models using software writ-

ten in the C computer programming language. We integrated differential equations using the

fourth order implicit Runge-Kutta method available in the GNU scientific library. We also

simulated the one-compartment model and a reduced model version of the one-compartment

using XPPAUT, and performed bifurcation analysis of these models using the AUTO feature

of XPPAUT [25]. Simulation code is available for download at https://github.com/jhgoldwyn/

Gain-Control-With-IA.

Results

Examples of divisive and subtractive inhibition

We first study the relationship between excitatory input rate (rE) and firing output rate (rout) of

the one-compartment model. In Fig 2A, we plot examples of this input/output relationship for

simulations without inhibition (empty circles, gSyn,I = 0) and with inhibition (filled circles,

gSyn,I = 1). The A-channel conductance in these simulations is gA = 20 mS/cm2. For these

parameters, we observe that inhibition reduces the model neuron’s output firing rate, but the

neuron continues to fire in response to arbitrarily low input rates.

An additional way to view the effect of inhibition is to plot output firing rates in the pres-

ence of inhibition as a function of output firing rates in the absence of inhibition, as we have

done in Fig 2C. There is a roughly linear relationship between these output firing rates, which
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we describe by fitting these data with a threshold-linear function of the form

y ¼ ½mðx � x0Þ�þ ð8Þ

where the symbol [�]+ indicates we set y = 0 if the argument m(x − x0) is negative. We obtain

the slope parameter m and the x-intercept parameter x0 by applying a curve-fitting procedure

(using the fminsearch command in MATLAB) to the portion of data for which the output fir-

ing rate in the presence of inhibition is less than five spikes per second. In this example, inhibi-

tion affects the value of the slope parameter m, but the value of x0 is nearly zero. We identify

responses with these characteristics as cases in which the effect of inhibition is divisive.

In Fig 2B, we increase the A-channel conductance to gA = 40 mS/cm2. We observe that inhi-

bition has a different effect on the input/output curve in these simulations. In the presence of

inhibition (filled circles), there is now a non-zero value of the input rate below which the neu-

ron model does not spike (rout = 0 for rE ⪅ 30). Moreover, when we view the relationship

between output firing rates with and without inhibition in Fig 2C, we observe a rightward shift

of the threshold-linear function fit to these data (positive-valued x-intercept). We identify

responses with these characteristics as cases in which the effect of inhibition is subtractive.

Although we refer throughout to the effect of inhibition on responses as being either divi-

sive or susbtractive, this is a simplification of a more complicated and subtle reality. In fact,

responses can show characteristics of both divisive and subtractive inhibition. In particular,

the input/output curves can be right-shifted (evidence of subtractive inhibition) and have

slopes that are decreased relative to slopes for gA = 0 (evidence of divisive inhibition). We pro-

vide evidence of such “mixed” responses in S3 Fig. To be clear: we refer to scenarios in which

the input/output curves have only a change of slope as divisive, and scenarios in which the

input/output curve is right-shifted as subtractive. In other words, the subtractive case will also

include “mixed” responses.

Fig 2. Examples of divisive and subtractive effects of inhibition in the one-compartment model. A, B: Output

firing rates as a function of excitatory input rate, computed from simulations without inhibition (empty circles, gSyn,I =

0) and with inhibition (filled circles, gSyn,I = 1 and rI = 50 Hz). Excitatory synaptic strength is gSyn,E = 0.5. In A: Divisive

rescaling of the input/output relation with gA = 20. In B: Subtractive shifting of the input/output relation with gA = 40.

C: Data from A and B are replotted with output firing rates in the absence of inhibition on the ordinate and output

firing rates in the presence of inhibition on the abscissa. Threshold-linear functions are fit to simulation data (black

lines). Rightward shift of threshold-linear function for gA = 40 is characteristic of subtractive inhibition.

https://doi.org/10.1371/journal.pcbi.1006292.g002

Gain control with A-type potassium current

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006292 July 9, 2018 6 / 23

https://doi.org/10.1371/journal.pcbi.1006292.g002
https://doi.org/10.1371/journal.pcbi.1006292


Parameter study: Inhibition is subtractive for strong A-current

conductance or weak excitatory conductance

We identify two parameters in the one-compartment model that are key factors in determin-

ing whether inhibition has a divisive or subtractive effect on firing rate responses: the A-chan-

nel conductance (gA) and the excitatory synaptic conductance (gSyn,E). In Fig 3A we show a set

of threshold-linear functions computed using gA = 20, 30 and 40, and synaptic excitation

strength fixed at gSyn,E = 0.5. The transition from divisive to subtractive inhibition is evident in

the rightward shift of these threshold-linear functions with increasing values of gA. This transi-

tion occurs, for this parameter set, for gA� 33, a point we investigate in more detail below,

with simulations and phase plane analysis.

In Fig 3B, we show a set of threshold-linear functions with gA = 30 fixed, but now varying

the value of gSyn,E from 0.4 to 0.7. The stronger excitatory inputs (gSyn,E = 0.5, 0.7) cause inhibi-

tion to have a divisive effect, while the weaker excitatory input (gSyn,E = 0.4) causes inhibition

to have a subtractive effect. In these simulations, we do not vary the parameters associated

with inhibition. They are gSyn,I = 1 and rI = 50 Hz.

From these simulations, we conclude that the effect of inhibition on firing rates in the one-

compartment model can switch from divisive to subtractive for sufficiently strong A-current

conductance or sufficiently weak excitatory synaptic conductance. In the parameter plane of

gA and gSyn,E, then, there is a boundary that separates parameter sets that produce divisive inhi-

bition from parameter sets that produce subtractive inhibition. We map this boundary by per-

forming simulations throughout the (gA, gSyn,E) parameter space. For each simulation, we fit

threshold-linear functions to characterize the relationship between output firing rates in the

presence and absence of inhibition. We then find the smallest value of gA for which the x-inter-

cept of the threshold-linear function is right-shifted by more than two spikes per second and

label this as boundary between subtractive and divisive inhibition.

In Fig 4, we show the results of this parameter exploration. We performed these simulations

and classification procedure for several values of inhibition conductance strength (varying

Fig 3. Inhibition is subtractive for large A-channel conductance or weak synaptic excitation. A, B: Firing rates

computed from simulations with inhibition (gSyn,I = 1, rI = 50 Hz, abscissa) plotted as a function of firing rates

computed from simulations without inhibition (gSyn,I = 0, ordinate). In A: Three values of A-channel conductance are

compared (gA = 20, 30, 40) with synaptic excitation strength fixed at gSyn,E = 0.5. Inhibition is subtractive for large gA
evident in the rightward shift of the threshold-linear relationship between firing rates for gA = 40. In B: Three values of

synaptic excitation strength are compared (gSyn,E = 0.4, 0.5, 0.7) with A-channel conductance fixed at gA = 30.

Inhibition is subtractive for weaker excitation, evident in the rightward shift of the threshold-linear relationship

between firing rates for gSyn,E = 0.4.

https://doi.org/10.1371/journal.pcbi.1006292.g003
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values of gSyn,I, in Fig 4A), and for several values of inhibition rate (varying values of rI, in Fig

4B). The lines in each panel separate parameter regions for which inhibition is divisive (lower

right corners in each panel) from parameter regions in which inhibition is subtractive. This

confirms our earlier observation that the effect of inhibition is subtractive if A-channel con-

ductance is sufficiently strong or excitatory inputs are sufficiently weak.

These simulations also demonstrate that inhibition parameters modify (weakly) the loca-

tion of the boundary between divisive and subtractive inhibition in the (gA, gSyn,E) parameter

plane. Stronger inhibition (either through larger gSyn,I or larger rI values) decreases the por-

tion of the (gA, gSyn,E) parameter plane in which inhibition has a divisive effect on firing rate

responses.

Analysis of a reduced one-compartment model

We use mathematical analysis to derive the parameter regions in which the model exhibits

either a divisive or subtractive response to inhibition. We begin by considering a reduced

model in which activation of the A-current is instantaneous; that is, a = a1(V). Later, we dis-

cuss how the model’s response to inhibition may change if this assumption does not hold.

Excitability analysis using fast/slow dissection. A first step in the analysis is to determine

under what conditions the neuron will fire an action potential in response to an excitatory

input. An important distinction between divisive and subtractive inhibition is whether the

neuron can respond to arbitrarily low excitatory input rates. We analyze the model by viewing

solutions in the (V, n) phase plane. A major challenge in this approach is that the phase plane

depends not only on the other dependent variable, b, but on the values of the synaptic inputs,

sE and sI. Suppose, for the time being, that these variables are fixed constants. Fig 5 shows

phase planes for different values of these constants. In particular, it illustrates how the V-null-

clines change as b, sE, sI and the parameter gA changes. In each case, the V-nullcline has left,

middle and right branches, while the n-nullcline is a monotone increasing function. Note that

values of n along the V-nullcline are increasing functions of sE and decreasing functions of b, sI
and gA.

Fig 4. Boundary between subtractive and divisive inhibition in (gSyn,E, gA) parameter space. A, B: For each

parameter set, we fit threshold-linear functions to characterize the relationship between output firing rates in the

presence and absence of inhibition. Dots in each panel identify the smallest value of gA (for a given parameter set) at

which inhibition is subtractive. In A: We vary inhibition strength (gSyn,I = 0.5, 1, 2) and keep inhibition rate fixed at 50

Hz. In B: We vary inhibition rate (rI = 30, 50, 70 Hz) and keep inhibition strength fixed at gSyn,I = 1. The values of gA
that define the boundary between subtractive and divisive inhibition decrease with increases in either inhibition

parameter (gSyn,I or rI).

https://doi.org/10.1371/journal.pcbi.1006292.g004
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We consider V to be a fast variable and n and b to be slow variables. During silent or active

phases, solutions lie on, respectively, the left or right branch of the V-nullcline corresponding

to values of b, sE and sI. The jumps up and down of action potentials correspond to horizontal

transitions between left and right branches in the phase plane.

Now suppose that the solution initially lies in the silent phase along the left branch of some

V-nullcline and there is an excitatory synaptic input. Then sE will immediately jump from sE =

0 to sE = 1, resulting in an immediate change in the V-nullcline, as shown in Fig 5D. If (V(0),

n(0)) lies below the left knee of this new sE = 1, V-nullcline, then the solution will jump to the

right branch of the new V-nullcline, resulting in an action potential. However, if (V(0), n(0))

lies above this left knee, then the solution will jump to the left branch of the new V-nullcline;

that is, the solution will not respond to the excitatory input with an action potential.

This discussion helps to explain when the neuron will or will not fire an action potential in

response to an excitatory input. In particular, there are two reasons why the neuron may not

respond and these are illustrated in Fig 6. The first reason is that the neuron may be in a refrac-

tory period. That is, if the excitatory input arrives shortly after the neuron has previously fired,

Fig 5. Dependence of the V-nullcline on A: gA, B: b, C: sI and D: sE. Default values of the parameters are gA = 20, b =

.5, sI = .5 and sE = 1. Moreover, gSyn,E = 3 and gSyn,I = 5. Thin blue line is n1(V), the n-nullcline.

https://doi.org/10.1371/journal.pcbi.1006292.g005

Fig 6. Response to an excitatory input. A. The neuron will or will not fire an action potential if, at the time of the

excitatory input, it lies below or above the left knee of the sE = 1 cubic, respectively. B. The neuron cannot respond with

an action potential if the left knee of the sE = 1 cubic lies below the n = 0 axis.

https://doi.org/10.1371/journal.pcbi.1006292.g006
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then the K+ activation variable, n, may not have had enough time to recover and evolve below

the left knee of the sE = 1 cubic nullcline. The second reason is that the inhibitory input, sI,
may be too strong and the left knee of the sE = 1 cubic may lie below the n = 0 axis. In this case,

the neuron will not respond even though there has been a long time since the preceding excit-

atory input.

Estimate of b. One difficulty is that the cubic nullclines depend on the time-dependent vari-

able b. For the analysis, we replace b by its average value along solutions, which we estimate as

follows. A key observation is that the average value of b can be well approximated by consider-

ing a model consisting only of synaptic inputs and the leak current. In particular, to compute

the average value of b we may ignore the voltage dependent Na+, K+ and A-currents.

To justify this claim, we first simulate the full model for different values of gA and rE, and

then compute the average value of b along solutions, which we denote as bav(rE, gA). Fig 7A

shows plots of bav versus rE for different values of gA. Note that bav depends only weakly on gA
and is a decreasing function of rE.

We next repeat these simulations with gA = gK = gNa = 0. Actually, we perform the simula-

tions twice: once with purely excitatory inputs (rI = 0) and then with purely inhibitory inputs

(rE = 0). This gives rise to a curve b̂EðrEÞ and a constant b̂I . We then let

b̂avðrEÞ ¼ b̂I þ b̂EðrEÞ � b̂Eð0Þ:

Fig 7B shows that b̂avðrEÞ gives an excellent approximation of bav(rE, gA).

We can simplify the anaysis further by considering a fast/slow reduction with V as the fast

variable. If gA = gK = gNa = 0, then V satisfies the linear equation:

V 0 ¼ � gLðV � VLÞ � gSyn;E sE ðV � VSyn;EÞ � gSyn;I sI ðV � VSyn;IÞ:

Treating V as a fast variable, we set the right hand side of this equation equal to 0 and solve for

V to obtain

V ¼
gL VL þ gSyn;E sE VSyn;E þ gSyn;I sI VSyn;I

gL þ gSyn;E sE þ gSyn;I sI
: ð9Þ

Fig 7. Approximation of b (a slow variable) by its average value. A: Plots of bav vs. rE for different values of gA. B:

Plots of b̂avðrEÞ, b�avðrEÞ and bav(rE, gA) with gA = 40. In both panels, gSyn,E = 3, gSyn,I = 5 and rI = 50 Hz.

https://doi.org/10.1371/journal.pcbi.1006292.g007
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As before, we treat excitatory inputs and inhibitory inputs separately. Let

VE ¼
gL VL þ gSyn;E sE VSyn;E

gL þ gSyn;E sE
and VI ¼

gL VL þ gSyn;I sI Vsyn;I

gL þ gSyn;I sI
:

Then let b�EðrE; tÞ and b�I ðtÞ be solutions to Eq 3 with X = b, and V = VE and V = VI, respectively.

Finally, let b�EðrEÞ and b�I be the average values of b�E and b�I along solutions and set

b�avðrEÞ ¼ b�I þ b�EðrEÞ � b�Eð0Þ:

Fig 7B shows that b�avðrEÞ gives an excellent approximation of b̂avðrEÞ. In the analysis that fol-

lows, we replace the dependent variable b by constants b�avðrEÞ.
The left knee. Our previous discussion emphasized the importance of the left knees of the

cubic-shaped V-nullclines when sE = 1. If this left knee lies below the n = 0 axis, then the neu-

ron cannot spike in response to an excitatory input. For the reduced model, with a = a1(V),

this left knee depends on the values of sI, b and gA. Here, we replace b by b�avðrEÞ and denote

the value of n at the left knee as Nlk(sI, rE, gA). We compute the positions of the left knees using

XPPAUT.

Identification of inhibition as divisive or subtractive. By computing the position of the left

knee, we can determine for which parameter values inhibition will have a divisive effect and

for which values it will have a subtractive effect. Let PI be the period of inhibitory inputs. Since

s0I ¼ � bI sI between inhibitory inputs, it follows that

sIðtÞ � e� bI PI � s� ð10Þ

for all t.
Fig 8A shows plots of Nlk versus gA when rE = 0 and sI = σ�. Note that Nlk is a decreasing

function of gA and there exists g0
A such that Nlkðs�; 0; g0

AÞ ¼ 0. Since Nlk is an increasing func-

tion of rE, it follows that if gA < g0
A, then Nlk(σ�, rE, gA)> 0 for all rE> 0. Since Nlk is a continu-

ous function of sI, it follows that if gA < g0
A and sI> σ� with sI − σ� sufficiently small, then Nlk(sI,

rE, gA)> 0 for all rE. In this case, the neuron is able to respond to arbitrarily low firing rates and

we expect the response to inhibition to be divisive.

Fig 8B shows plots of Nlk versus rE for different values of gA when sI = σ� Note that if gA > g0
A,

then there exists a critical value of rE, which we denote by Γ(gA), such that if rE< Γ(gA), then

Nlk(σ�, rE, gA)<0; if rE> Γ(gA), then Nlk(σ�, rE, gA)>0. Recall that Nlk(sI, rE, gA) is a decreasing

function of sI. Hence, if gA > g0
A and rE< Γ(gA), then Nrk(sI, rE, gA)< 0 for all sI> σ�. Moreover,

Fig 8. Identifying gA value at the point of transition between divisive and subtractive inhibition. Dependence of

the left knee, Nlk(sI, rE, gA), on A: gA with sI = σ� and rE = 0; and B: rE with sI = σ� and different values of gA. Here,

g0
A ¼ 28:85. C: Theoretical calculation of Γ(gA) (solid lines) and measured values of the minimum input rate at which

solutions of the reduced model exhibits non-zero output firing rates (small triangles) for different values of the

inhibitory input rate, rI.

https://doi.org/10.1371/journal.pcbi.1006292.g008
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if gA > g0
A and rE> Γ(gA) then Nrk(sI, rE, gA)> 0 for sI> σ� with sI − σ� sufficiently small.

Hence, if gA > g0
A, the neuron is not able to respond to arbitrarily low firing rates and we expect

the response to inhibition to be subtractive. Given gA > g0
A, the minimum input rate at which

the neuron can respond is Γ(gA). Fig 8C compares our theoretical calculation of Γ(gA) to mea-

sured values of the minimum input rate at which the reduced model exhibits non-zero output

firing rates (theoretical approximation shown with solid line, simulation results shown with

symbols). We report this comparison between theory and computation for values of inhibitory

input rate (rI) that vary from 30 Hz to 70 Hz in increments of 10 Hz.

Output rate approximation using dead-time modified Poisson process. The previous

analysis was concerned with small output firing rates. Here we consider output rates bounded

away from zero. For this analysis, we first consider the model without inhibition and discuss

the impact of the refractory period on the neuron’s output rate. We then discuss the impact of

inhibitory inputs.

Formulation of output rate as dead-time modified Poisson process. In our simulations, we

typically use excitatory inputs that are sufficiently strong so that, in the absence of refractory

effects and inhibition, a single excitatory input event triggers an output spike. In response to

weak excitatory inputs, the model produces low spike rates that are abolished by modest

amounts of A-current, so we do not analyze the weak-input regime. At low input rates in the

strong-input regime and with gSyn,I = 0, we expect generation of output spikes to replicate the

sequence of input excitatory events. Specifically, the output spike train will follow a homoge-

neous Poisson process with the same rate as excitatory events: rout = rE.

For high input rates, a refractory effect prevents the neuron from firing on a one-to-one

basis with each input event. A simple approximation of the input/output relationship in this

“high input rate” regime is to assume there is a fixed period of duration R ms during which the

neuron cannot fire, and therefore we say

Input event at time t!
Output spike if previous spike occurred > R in the past

No output spike otherwise:

(

ð11Þ

Since input events are drawn from a homogeneous Poisson process, the output events under

this approximation follow a dead time modified Poisson process with dead time (i.e. refractory

period) R. The input/output firing rate relationship is then given by

rout ¼
rE

1þ rER
ð12Þ

where rate is defined as the expected number of events a time interval, divided by the duration

of that interval [26].

Definition of the firing threshold. The approximation of rout introduced in Eq 12 does not

incorporate any effect of inhibition. To incorporate the effects of inhibition into the formula-

tion, we presume that excitatory input events will produce output spikes (following the dead-

time modified Poisson process, as described above) unless the excitatory event occurs at a time

when synaptic inhibition is sufficiently strong to prevent spiking. In other words, we define a

firing threshold θ = θ(rE, gA) to be the value of the inhibitory conductance sI for which an excit-

atory input will evoke a spike only if sI< θ. For now, we assume that θ is known. Later, we

describe how θ can be computed.

Suppose that inhibitory events occur periodically with period PI. At the onset of each inhib-

itory event, the inhibition conductance sI increases to 1 and then exponentially decays with
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time constant 1/βI. It follows that the fraction of time that that sI< θ is given by

r ¼ 1þ
log y

PIbI
: ð13Þ

By the definition of the firing threshold, this is the fraction of time that the neuron responds to

excitatory input. Hence, we modify the Poisson approximation of output firing rate to be

rout ¼
rE r

1þ RrE
: ð14Þ

To complete the analysis, it still remains to compute the firing threshold, θ, which depends on

the parameters rE and gA.

Computing the firing threshold. Our derivation of the firing threshold procedes as follows.

Let nav be the average value of {nk: k = 1, 2,. . ..} such that for each k: i) there is an excitatory

input at some time, t0, with n(t0) = nk; and ii) the neuron responds to this excitatory input with

a spike. We show below that if nav is known, then we can compute the firing threshold, θ,

while if θ is known, then we can compute nav. This gives rise to two maps: θ = Θ(nav) and nav =

N(θ). If (θ�, n�) is a fixed point of these two maps, then the firing threshold is given by θ = θ�.
In what follows, we make several simplifying assumptions. We compare predictions of the

analysis with simulations of the reduced model later.

Suppose that nav is given. Here we assume that if an excitatory input arrives at time t0 and

the neuron responds to this input with a spike, then n(t0) = nav. Recall that the neuron will

spike in response to an excitatory input at time t0 if (V(t0), n(t0)) lies below the left knee of sE =

1 nullcline, which depends on the other variables, b and sI. As before, let b ¼ b�avðrEÞ. The firing

threshold can then be defined as the value of sI so that Nlk(sI, rE, gA) = nav. This defines the map

θ = Θ(nav).

Now suppose we are somehow given the firing threshold θ and wish to estimate nav. The

first step is to determine the position of the right knee of the sE = 1 cubic, which we denote as

Nrk. This depends on sI, b and gA; however, as the dependence of Nrk on each of these variables

is weak, we will assume that Nrk is a constant. We determine its value using XPPAUT.

We next consider the evolution of n in the silent phase. Here, we assume that n1(V) = 0

and τn(V) = τ0, a constant. Then, while in the silent phase, n(t) satisfies n0 ¼ � �n
t0

n, so that

nðtÞ ¼ Nrk e
�
�n t
t0 : If the firing threshold θ is known, then the output firing rate, rout, is given by

Eq 14. The average interspike interval is, therefore, 1000/rout ms, which we assume is the aver-

age time the neuron spends in the silent phase. In this case, the average value of n is given by

nav ¼ Nrk e
�

1000 �n
t0 rout :

This defines the map nav = N(θ).

We have now defined the two maps, θ = Θ(nav) and nav = N(θ). By taking the composition

of these maps, we obtain the fixed point problem: n = N � Θ(n). This map is continuous in n,

and n takes values in the closed interval [0, 1], so there exists a fixed-point of this map [27].

We use successive iterations of the bisection method to numerically compute nav as the solu-

tion of the fixed point fixed point problem n = N � Θ(n), and then set θ = Θ(nav).

Slope of output rates at onset of firing in the divisive case. By computing the firing threshold

at rE = 0, we can study the behavior of the model near the onset of firing. In particular, if gA is

sufficiently small or gSyn,E is sufficiently large, then inhibition is divisive and the neuron is able

to fire in response to arbitrarily low firing rates (recall Fig 2). Our goal here is to compute the

slopes of the input/output firing rate curves at rE = 0 in the case of divisive inhibition.
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This is done by simply differentiating the firing rate approximation in Eq 14 with respect to

rE and setting rE = 0. This yields

r0outð0Þ ¼ 1þ
log y0

PIbI
ð15Þ

where θ0 is the firing threshold when rE = 0. This can be easily computed using XPPAUT as

follows. Since we are considering arbitrarily low firing rates, it follows that the average value of

n at times of output spikes is nav� 0, where nav was defined in the preceding section. The anal-

ysis in that section demonstrates that θ0 = Θ(0), i.e. it is the value of sI so that Nlk(sI, 0, gA) = 0.

In Fig 9, we plot the slope of the input/output firing rate curves at rE = 0 computed from

both the theoretical prediction (Eq 15) and simulations of the full model. There is a tendency

for the approximated value of the slope at firing onset to overestimate the slope computed in

simulations of the full model. Nonetheless, the theory captures qualitative features of the rela-

tionship between slope at firing rate onset and A-channel conductance. In particular, the slope

at firing rate onset decreases as gA increases, indicating gain control by inhibition is “stronger”

with higher values of gA. The value of gA at which the slope reaches zero (gA between 25 and

30) was denoted as g0
A previously; it is the critical value of gA at which the effect of inhibition

switches from divisive to subtractive.

Approximation of output rates at arbitrary input rates. To more completely characterize out-

put firing rates, we seek to extend our approximations to cases of higher output rates. In other

words, we consider the firing rate equation (Eq 14) for rE> 0. We previously described how

to compute θ. With θ known, the only undetermined parameter in the firing rate equation is

R. We interpret this parameter as the duration of the refractory period in the model. The value

Fig 9. The slope of the input/output firing rate curves at rE = 0 computed from both the theoretical prediction Eq

15 and simulations of the full model.

https://doi.org/10.1371/journal.pcbi.1006292.g009
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of R depends on the internal dynamics of the model, strength of excitatory inputs, and other

factors. To obtain approximations for R, we simulated firing rate input/output curves (without

inhibition) and performed a nonlinear curve-fit using Eq 12 to estimate its value. We find that

R� 10 ms (with some dependence on ga) provides accurate approximations to the firing rate

functions in the absence of inhibition.

We compare our theoretical approximation to the firing rate of the model neuron to simu-

lated firing rates in Fig 10. The dead-time modified Poisson process provides a satisfactory

description of firing rate responses without inhibition (black, top row), for various values of gA
(values of gA increase from 15 to 35, in increments of 10, from left-to-right in this figure).

When we include inhibition in these simulations, we find that the approximated firing rate

(using the firing rate threshold computation outlined above) tends to overestimate simulated

firing rates (colors). Nevertheless, approximations do capture the qualitative differences in fir-

ing rate curves for divisive inhibition (smaller values of gA) and subtractive inhibition (larger

values of gA).

The firing threshold calculation defines θ, the theoretical value of sI for which the neuron

cannot produce a spike if an incoming excitatory event arrives at a time when sI� θ. We plot

values of θ as colored lines in the lower row of Fig 10. To compare θ to simulations, we

recorded the values of sI at the time of every excitatory event that triggered a spike. Then, for

each input rate (x-axis), we found the maximum value of sI for these spike-triggering excitatory

events. These maximum sI values qualitatively align with our approximations of θ, further sup-

porting the heuristic concept of a firing threshold.

We point out that, following from Eqs 12 and 14 that a “purely divisive” response would be

one for which the firing threshold is constant with respect the input rate. This can (nearly)

occur for specific parameter sets; see for instance the nearly constant threshold in Fig 10A2.

However, firing threshold depends in general on input rate. Furthermore, a “purely subtrac-

tive” response would be one for which the firing threshold is piecewise constant (a step

Fig 10. Output firing rates approximated as dead-time modified Poisson process with firing threshold. Top row:

Firing rate as a function of input rate obtained from simulations (circles) and theoretical approximation (lines); for

gA = 15 (A1), gA = 25 (B1), and gA = 35 (C1). Simulations and theory show transition from divisive to subtractive

inhibition as gA increases. Bottom row: Theoretical approximation of firing threshold θ (lines), and the largest

observed values of sI for which excitatory inputs elicited spikes in simulations (circles), plotted as functions of input

rate; for gA = 15 (A2), gA = 25 (B2), and gA = 35 (C2).

https://doi.org/10.1371/journal.pcbi.1006292.g010
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function). The firing threshold in Fig 10C2 increases with input rate in a non-monotonic fash-

ion, so inhibition in this case, in fact, has both divisive and subtractive characteristics. This is

true in general and we reiterate that our use of the term “subtractive” encompasses cases for

which inhibition has both divisive and subtractive effects.

Results for non-instantaneous A-current activation

A key assumption in the formulation and analysis of the reduced model is that the A-current

activates sufficiently fast so that the dynamical variable a can be set to its voltage-dependent

steady state value; that is, we set a = a1(V). One effect of this change from a evolving dynami-

cally with τa = 2 ms (the full model), to a evolving instantaneously as a1(V) (the reduced

model), is that excitation must be much stronger in the reduced model to observe subtractive

inhibition. Typical values of gSyn,E in the full model are around 0.5 (see Fig 4), and typical val-

ues of gSyn,E in the reduced model are around 3. This suggests that the speed of A-current acti-

vation (not just the strength of the A-current) plays a role in switching the effect of inhibition

from divisive to subtractive.

For inhibition to have a subtractive effect, responses to infrequent excitatory inputs must be

suppressed. In the reduced model, this occurs when gA is sufficiently strong because the A-

type channel activates “instantaneously” and can prevent spike initiation. In the one-compart-

ment model with “non-instantaneous” a variable, large gA could switch the effect of inhibition

to subtractive, but only if excitatory input strength was also sufficiently small (recall Fig 4).

The importance of small gSyn,E is demonstrated in Fig 11. We show time-courses of voltage in

the one-compartment model for gSyn,E = 0.2, 0.5, and 1, and with gA = 0 and gI = 0. In all cases,

the input evokes an output spike. Notice, however, that as input strength weakens, there is a

marked delay in the time before spike initiation. For the weakest input used (gsyn,E = 0.2), there

is a delay of roughly 2 ms before the rapid upstroke of V at the onset of the action potential.

During this “pause”, voltage is slowly ramping up and, simultaneously, recruiting additional

A-current as the a variable activates. The amount of IA available to suppress spike initiation

depends, therefore, on A-channel maximal conductance (gA) and also the time-constant of IA
activation (τA).

Fig 11. Role of τA in determining switch between divisive and subtractive inhibition. A: Voltage traces in response

to excitatory inputs of varying strengths (gA = 0, and gSyn,I = 0). B: Threshold-linear relation between output firing rates

in simulations of one-compartment model with and without inhibition for varying A-channel activation time constant

(τA = 0.5, 1, 2) and gA = 20. Synaptic parameter values are gSyn,E = 0.5, and (for simulations with inhibition) gSyn,I = 1

and rI = 50. C: Critical values of gA that define boundary between subtractive and divisive inhibition in (gSyn,E, gA)

parameter space. The boundary shifts downward as τA decreases, indicating that faster activating A-current enables

inhibition to have a subtractive effect for lower values of gA.

https://doi.org/10.1371/journal.pcbi.1006292.g011
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From this observation, we draw the following conclusion: “non-instantaneous” IA can act

to switch the effect of inhibition from divisive to subtractive, but only if it activates rapidly

enough relative to the dynamics of spike initiation. To illustrate our point, we simulated the

model with three values of A-channel activation time constant (τA = 0.5, 1, 2), using gSyn,E =

0.5, gSyn,I = 1, and rI = 50 Hz. As shown in Fig 11B, inhibition is divisive for slower activation

kinetics (τA = 1, 2) and subtractive for faster activation kinetics (τA = 0.5). In Fig 11C, we map

the boundary between divisive and subtractive inhibition in the (gSyn,E, gA) parameter plane.

There is a strong effect of τA. Faster activation kinetics (smaller τA values) shift the critical

point at which inhibition switches from divisive to subtractive to lower values values of gA.

Results for multi-compartment model

Our prior observation, that delaying spike initiation allows inhibition to have a subtractive

effect for “non-instantaneous” A-channel activation, led us to investigate other cellular mecha-

nisms that could have a similar effect. To this end, we considered a multi-compartment neu-

ron model that describes a soma and passive dendrite. Inhibition and voltage-gated currents

are restricted to the soma compartment, and excitation targets a location somewhere on the

dendrite. Passive cable theory tells us that the amplitudes of excitatory post-synaptic potentials

attenuate and their rising slopes become less steep as signals spread along the cable [28]. By

varying the location of excitatory synaptic inputs to the dendrite in the multi-compartment

model, we can, therefore, adjust the shape of excitatory post-synaptic potentials as they arrive

in the soma.

Examples of action potentials, recorded in the soma compartment, in response to inputs at

different locations along the dendrite are shown in Fig 12A. Synaptic conductance strength is

constant (gSyn,E = 2 in these simulations). Inputs that arrive proximal to the soma are large and

fast-rising relative to responses to more distal inputs, and thus evoke action potentials with

shorter latencies. The parameter cptin identifies the compartment that receives synaptic excita-

tion. It takes values from 1 (proximal) to 9 (distal).

Fig 12. Divisive and subtractive inhibition in a multi-compartment neuron model. A: Voltage traces in response to

excitatory inputs at varying input locations along the dendrite. Parameter values in these simulations: gSyn,E = 3, gSyn,I =

0, and gA = 0. Inputs distant from the soma lead to spike initiation with millisecond-scale delay between excitatory

input and spike onset. B: Threshold-linear relation between output firing rates in simulations of the multi-

compartment model with and without inhibition for varying input location and gA = 20. For simulations with

inhibition: gSyn,I = 1 and rI = 50. Inhibition is subtractive for distal excitatory input (cptin = 6). C: Critical values of gA
that define boundary between subtractive and divisive inhibition in (gSyn,E, gA) parameter space. The boundary shifts

downward as excitatory inputs are moved to more distal locations, indicating that inhibition has a subtractive effect for

lower values of gA for more distal inputs.

https://doi.org/10.1371/journal.pcbi.1006292.g012
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We included synaptic inhibition in the model targeting the soma, and used simulations to

characterize the effect of inhibition as either subtractive or divisive. In Fig 12B we observe a

transition from divisive to subtractive inhibition as we move the location on the dendrite at

which synaptic excitation targets the cell. This matches our expectation: synaptic excitation

placed at more distant locations will generate weaker and slower rising inputs in the soma.

This will, in turn, lead to spikes that initiate slowly and that give time for A-channel conduc-

tance to activate and prevent spike generation. In additional simulations included as S4 Fig we

targeted inhibitory inputs to the dendrite and did not observe substantially different results.

We explored the (gA, gSyn,E) parameter plane and identified the boundary separating regions

in which inhibition has a divisive effect on firing rates and regions in which inhibition has a

subtractive effect (following the procedure used previously for Fig 4). We find that there is a

dramatic effect of input location, as shown in Fig 12C. The region of the (gA, gSyn,E) parameter

plane over which inhibition has a divisive effect is smaller when inputs are more distant from

the soma.

Discussion

Neurons process and convey information in the brain by converting barrages of synaptic

inputs into spiking outputs. This transfer from inputs to outputs is a highly complex process

due to the inherently noisy and nonlinear nature of synaptic and neural processes. Using a

combination of computer simulation and mathematical analysis of biophysically-based neuron

models, we have probed the relation between synaptic inputs and spiking outputs. We found

that the A-type potassium current (a fast-activating, negative feedback current) can act to

switch the effect of inhibition on output firing from divisive to subtractive. This provides a

clear demonstration of how the internal dynamics of a neuron can control the functional

impact of inhibition.

Analysis identifies when IA promotes divisive or subtractive inhibition

Using simulations and phase plane analysis, we systematically investigated conditions under

which inhibition acts on firing rate outputs in a divisive or subtractive manner. We first identi-

fied critical values of IA conductance (gA) at which the effect of inhibition switched from divi-

sive (for lower gA values) to subtractive (for higher gA values) (Fig 4). In the reduced model, we

approximated this critical value of gA using bifurcation analysis. By tracking the left-knee of

the V-nullcline (Fig 5), we identified this critical value of gA as a bifurcation point at which the

neuron model ceased to be excitable in response to synaptic inputs (Fig 8). Key in this analysis

was the separation of time scales between fast variables (V) and slow variables (n, b). In fact,

the inactivation variable b was sufficiently slow that it could be treated as a constant with a

value that depended on the input rate (Fig 7). This simplification enabled further analysis. By

viewing the spiking output of the model as a Poisson process modified by a refractory period

and inhibition-dependent firing threshold, we approximated firing rates at the point of spiking

onset (Fig 9) as well as for arbitrary input rates (Fig 10).

A-type potassium current is a source of dynamic, voltage-gated negative feedback that is

fast activating. We leveraged this property to obtain analytical results by assuming that the gat-

ing variable for IA activation, a, evolved instantaneously to its voltage-dependent equilibrium

value (see also [23]). We also performed simulations without this assumption and discovered a

delicate interaction between the speeds of IA activation and spike initiation. In particular, sub-

tractive inhibition required that IA is sufficiently strong and that it activates sufficiently rapidly

to prevent spike initiation (Fig 11). For our standard value of IA activation (τA = 2 ms), we

found that, in conditions of slow spike initiation, IA could “ramp up” during slowly-developing
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spikes and suppress spike initiation. Weak excitatory inputs, or excitatory inputs targeting

more distal regions in a model that included a spatially-extended dendritic process (Fig 12)

produced spikes that were slow to initiate, and were therefore scenarios in which inhibition

was subtractive for low to modest levels of gA.

Relation to previous works

Divisive inhibition is a mechanism of neural gain control and has been the subject of numer-

ous studies; see [1] for review. We found that, at lower levels of gA, inhibition can have a divi-

sive effect on the input/ouput properties of a spiking neuron responding to a mixture of

random excitatory inputs and periodic inhibitory inputs. The amount of gA altered the slope

(gain) of the output firing rate, and thereby tunes the gain control in this system. This result is

consistent with the results of a recent in vitro study of neurons in the rostral nucleus of the soli-

tary tract [24]. In that experiment, Chen and colleagues controlled inhibition using optoge-

netic techniques and constructed threshold linear functions to express the relation between

firing responses with and without inhibition (analogous to our Fig 2C, and similar figures).

They observed that slopes of threshold-linear function were more shallow for neurons with IA,

as compared to neurons in the same nucleus that did not have IA. Thus, the presence of IA
enhanced the divisive effect of inhibition. Previous modeling work has identified similar gain

control effects by IA [29].

We observed, additionally, that at higher levels of gA, the A-type current can switch the

effect of inhibition from divisive to subtractive. This demonstrates a novel example of how the

internal dynamics of a neuron interact with synaptic inhibition to change the neuron’s compu-

tational properties (input/output relation). Previous studies have explored the multi-faceted

ways in which IA current can alter neural dynamics. Connor and Stevens established IA current

as a mechanism to prolong interspike intervals of repetitively-firing neurons to arbitrary

lengths (“type I” firing dynamics) [11]. Other identified functions of IA include prolonging

first spike latency [30], producing burst firing patterns and preventing anodal break (rebound)

firing [23], filtering synaptic inputs in favor of slow time-scale NMDA receptor-mediated

inputs [31], and affecting the correlation in spiking among neurons responding to common

inputs [32]. Our contribution adds to the rich repertoire of IA function.

Implications for modulation of inhibitory effects

We have identified routes to subtractive inhibition that depends only on mechanisms that

could be readily adjusted by processes of plasticity and neuromodulation. In particular, we

have shown that strong and fast IA can lead to subtractive inhibition. The strength and kinetics

of the A-type Potassium channels can be modulated in a variety of ways [33–36]. For example,

in neurons involved in gastro-intestinal function, A-type potassium channels were modified

both by diet [37–39] and gastric disorders [40].

We also found that weak excitatory inputs or more distally-located excitatory inputs led to

subtractive inhibition by slowing the onset of action potentials. Synaptic plasticity and modu-

lation of the electrical properties of dendrites can adjust the strength and propagation of excit-

atory inputs [41], and plasticity of spike initiation zones could change the dynamics of spike

initiation [42, 43]. These changes happen at the level of the output neuron. They do not require

“global” modulatory effects to change background network activity, circuit structure, or the

balance of excitation and inhibition. We conclude, then, that IA can add flexibility to neural

systems by allowing neurons to “self-regulate” whether inhibition acts in a subtractive or divi-

sive manner.
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Supporting information

S1 Fig. Examples of divisive and subtractive effects of inhibition in the one-compartment

model with randomly-timed inhibitory inputs (homogeneous Poisson process). A, B: Out-

put firing rates as a function of excitatory input rate, computed from simulations without inhi-

bition (empty circles, gSyn,I = 0) and with inhibition (filled circles, gSyn,I = 1 and rI = 50 Hz).

Excitatory synaptic strength is gSyn,E = 0.5. In A: Divisive rescaling of the input/output relation

with gA = 20. In B: Subtractive shifting of the input/output relation with gA = 40. C: Data from

A and B are replotted with output firing rates in the absence of inhibition on the ordinate and

output firing rates in the presence of inhibition on the abscissa. Threshold-linear functions are

fit to simulation data (black lines). Rightward shift of threshold-linear function for gA = 40 is

characteristic of subtractive inhibition.

(TIF)

S2 Fig. Boundary between subtractive and divisive inhibition in (gSyn,E, gA) parameter

space using randomly-timed inhibition (Poisson process with rate rI). A, B: For each

parameter set, we fit threshold-linear functions to characterize the relationship between output

firing rates in the presence and absence of inhibition. Dots in each panel identify the smallest

value of gA (for a given parameter set) at which inhibition is subtractive. In A: We vary inhibi-

tion strength (gSyn,I = 0.5, 1, 2) and keep inhibition rate fixed at 50 Hz. In B: We vary inhibition

rate (rI = 30, 50, 70 Hz) and keep inhibition strength fixed at gSyn,I = 1. The values of gA that

define the boundary between subtractive and divisive inhibition decrease with increases in

either inhibition parameter (gSyn,I or rI).
(TIF)

S3 Fig. Examples of “mixed” divisive and subtractive effects of inhibition in the one-com-

partment model with periodic inhibitory inputs. Inpout/output firing rate relations for vary-

ing A-channel conductance. Inhibition is divisive for lower gA (compare slopes for gA = 0 and

gA = 20), and shows both divisive and subtractive features for higher values of gA (notice right-

ward-shift of input/output curves, but also changes in slopes indicated in legend). We classify

as subtractive any response for which the input/output curve is shifted rightward. Thus, sub-

tractive responses (in our classification) also include “mixed” responses such as those shown

here.

(TIF)

S4 Fig. Divisive and subtractive inhibition in a multi-compartment neuron model with

inhibition that targets sites on the dendrite of the multi-compartment model. A: Thresh-

old-linear relations between output firing rates in simulations of the multi-compartment

model with and without inhibition for varying inhibition input location and gA = 20. For simu-

lations with inhibition: gSyn,I = 1 and rI = 50. Inhibition is divisive for inhibitory inputs that tar-

get the soma (cptinhib = 0), an intermediate position on the dendrite (cptinhib = 4, same as

locatioin of excitatory input), and a distal location on the dendrite (cptinhib = 8). B: Threshold-

linear relations for varying inhibition input location and gA = 30. For simulations with inhibi-

tion: gSyn,I = 1 and rI = 50. Inhibition is subtractive for inhibitory inputs that target the soma or

positions on the dendrite.

(TIF)

S1 Dataset. Dataset for figures. Excel data set containing data used to produce figures.

(XLSX)
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