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Testing the equality of two proportions is a common procedure in science, espe-
cially in medicine and public health. In these domains, it is crucial to be able
to quantify evidence for the absence of a treatment effect. Bayesian hypothesis
testing by means of the Bayes factor provides one avenue to do so, requiring the
specification of prior distributions for parameters. The most popular analysis
approach views the comparison of proportions from a contingency table per-
spective, assigning prior distributions directly to the two proportions. Another,
less popular approach views the problem from a logistic regression perspective,
assigning prior distributions to logit-transformed parameters. Reanalyzing 39
null results from the New England Journal of Medicine with both approaches,
we find that they can lead to markedly different conclusions, especially when
the observed proportions are at the extremes (ie, very low or very high). We
explain these stark differences and provide recommendations for researchers
interested in testing the equality of two proportions and users of Bayes factors
more generally. The test that assigns prior distributions to logit-transformed
parameters creates prior dependence between the two proportions and yields
weaker evidence when the observations are at the extremes. When comparing
two proportions, we argue that this test should become the new default.
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1 INTRODUCTION

Researchers frequently wish to test whether two populations differ. In medicine and public health, for example, the
resulting statistical analysis frequently concerns testing whether or not two proportions differ. Examples include testing
whether a vaccine decreases the number of infections compared to a control,1 whether sexual minorities are more prone
to suicide compared to their heterosexual counterparts,2 or whether tightly or less-tightly controlling hypertension leads
to fewer miscarriages in pregnant women.3

In these applications, it is crucial to be able to discriminate between evidence of absence and absence of evidence.
For example, Magee et al conducted a trial to investigate the effect of a tight (target diastolic blood pressure, 85 mm Hg)
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or a less-tight (target diastolic blood pressure, 100 mm Hg) control of hypertension in pregnant woman on, among other
outcomes, pregnancy loss.3 They found no significant difference between the two conditions, with 15 out of 493 women
in the less-tight control condition and 13 out of 488 in the tight control condition having lost their child, yielding an
estimated odds ratio of 1.14 (95% CI: [0.53, 2.45]). How confident are we that there is indeed no difference between the two
conditions rather than the data being inconclusive? Bayesian statistics provides a principled way of quantifying evidence
via the Bayes factor,4-6 thus providing one avenue to discriminate between evidence of absence and absence of evidence.7

The Bayes factor quantifies how well one hypothesis predicts the data compared to another. Using the test of equality
between two proportions as an example, let  = (y1, y2,n1,n2) denote the combined data from the two groups. We have:

Y1 ∼ Binomial(n1, 𝜃1),
Y2 ∼ Binomial(n2, 𝜃2),

where the sample sizes (n1,n2) are assumed fixed and under 0 we have that 𝜃 ≡ 𝜃1 = 𝜃2 while under 1 we have that
𝜃1 ≠ 𝜃2. By quantifying relative predictive performance, the Bayes factor tells us how we should update our prior beliefs
about 0 relative to 1 after observing the data:8

p(0|)
p(1|)
⏟⏞⏟⏞⏟

Posterior odds

=
p(|0)
p(|1)
⏟⏞⏟⏞⏟
Bayes factor

×
p(0)
p(1)
⏟⏟⏟
Prior odds

.

A Bayes factor of, say, 15 means that the data are 15 times more likely under one hypothesis compared to the other. While
there exist verbal guidelines that may aid in the interpretation of the Bayes factor (eg, Bayes factors in the range from 1
to 3 constitute weak evidence, those in the range from 3 to 10 constitute moderate evidence, and values larger than 10
constitute strong evidence)9-11 the Bayes factor should be understood as a continuous measure of evidence.6

While the Bayes factor does not depend on the prior probability of hypotheses, it does depend crucially on the prior
over parameters in the models instantiating 0 and 1, which becomes apparent when expanding:

p(|0)
p(|1)

=
∫
𝜃

p(|𝜃,0)𝜋0(𝜃|0) d𝜃
∫
𝜃1
∫
𝜃2

p(|𝜃1, 𝜃2,1)𝜋1(𝜃1, 𝜃2|1) d𝜃1 d𝜃2
,

where 𝜋0 and 𝜋1 indicate the respective prior distributions.
There exist two main Bayes factor approaches for testing the equality of two proportions. The more popular one comes

from the analysis of contingency tables, and assigns independent beta distributions directly to (𝜃1, 𝜃2).12,13 We call this
approach the “Independent Beta” (IB) approach. The second approach is less widely used, and assigns a prior to the aver-
age log odds 𝛽 and the log odds ratio 𝜓 .14,15 We call this approach the “logit transformation” (LT) approach. In this paper,
we show that these two approaches can yield markedly different results. This is especially the case when the observed
proportions are at the extremes (ie, very low or very high), as is the case for a large number of applications including the
three examples mentioned above. Consider the study by Magee et al again.3 The IB approach yields a Bayes factor of 12.30
in favor of 0, while the LT approach yields a mere 1.17. In other words, under the IB approach the data are about 12
times more likely under the hypothesis that tightly or less-tightly controlling hypertension have the same effect on mis-
carriages compared to a hypothesis assuming a difference. Under the LT approach, however, the data are about equally
likely under both hypotheses, which constitutes equivocal evidence. The answer to the question “is observing two equally
small proportions strong or weak evidence for the null hypothesis?” depends, therefore, crucially—and nontrivially—on
the prior setup.

This article is structured as follows. In Section 2, we outline these two ways of testing the equality of two proportions
in more detail. In Section 3, we highlight the occasionally stark differences of the two approaches by reanalyzing 39
statistical tests reported in the New England Journal of Medicine and explain why these differences occur. In Section 4,
we end by reviewing the implications of the prior setup and what users of Bayes factors should be mindful of when
testing the equality of two population parameters. We argue that the LT approach should become the default when testing
the equality of two proportions because it (a) induces prior dependence between proportions which almost always are,
in fact, dependent, and (b) yields a sensibly milder assessment of the evidence compared to the IB approach when the
observations are at the extremes.
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2 TWO WAYS OF TESTING THE EQUALITY OF TWO PROPORTIONS

In this section, we outline two ways of testing the equality of two proportions. In Section 2.1 we describe the Independent
Beta approach, and in Section 2.2 we describe the logit transformation approach.

2.1 The independent beta (IB) approach

In order to nest the null hypothesis under the alternative hypothesis, we introduce the difference parameter 𝜂 = 𝜃2 − 𝜃1
and the grand mean 𝜁 = 1

2
(𝜃1 + 𝜃2). Using this parameterization, we have that:

𝜃1 = 𝜁 − 𝜂

2
,

𝜃2 = 𝜁 + 𝜂

2
.

The hypotheses are then specified as:
0 ∶ 𝜂 = 0,
1 ∶ 𝜂 ≠ 0.

Under this approach, we assign independent Beta(a, a) priors to 𝜃1 and 𝜃2. Figure 1 visualizes the joint prior distri-
bution (top) under 1 for a = 1 (left) and a = 2 (right). Increasing values of a implies that the joint prior mass is more

θ1,θ2 ~  Beta(1, 1)
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F I G U R E 1 Top: Joint prior distribution assigned to (𝜃1, 𝜃2) under a = 1 (left) and a = 2 (right). Bottom: Conditional prior distribution
of 𝜃2 given that 𝜃1 = 0.10
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concentrated around (𝜃1, 𝜃2) = ( 1
2
,

1
2
). The bottom panels visualize the conditional prior distribution of 𝜃2 given that we

know that 𝜃1 = 0.10. Knowing the value of 𝜃1 does not change our prior about 𝜃2, which follows from the assumption of
prior independence.

The IB Bayes factor is available in analytic form.9,12,16 In the literature on contingency tables, our setup corresponds
to an independent multinomial sampling scheme where the row (or column) sums of the contingency table (here n1 and
n2) are fixed; for an extension to other sampling schemes and more than two groups, see References 12 and 13. Gunel and
Dickey suggest a = 1 as a default value.12 Note that values a < 1 lead to an undefined prior density for 𝜃 = 0 and 𝜃 = 1,
which implies model selection inconsistency in case 𝜃 is indeed 1 or 0. Hence these values should be avoided on principle
grounds. Because the beta prior is conjugate for the binomial likelihood, the posterior distributions of 𝜃1 and 𝜃2 are again
(independent) beta distributions.

2.2 The logit transformation (LT) approach

The test proposed by Kass and Vaidyanathan14 and implemented by Gronau et al15 does not assign a prior directly
to (𝜃1, 𝜃2), but applies a logit transformation and assigns priors to the transformed parameters (𝛽, 𝜓). Specifically,
we write:

log
(

𝜃1

1 − 𝜃1

)
= 𝛽 − 𝜓

2
,

log
(

𝜃2

1 − 𝜃2

)
= 𝛽 + 𝜓

2
,

where 𝛽 is a grand mean and 𝜓 is the difference in log odds (ie, the log odds ratio):

𝛽 = 1
2

(
log

(
𝜃1

1 − 𝜃1

)
+ log

(
𝜃2

1 − 𝜃2

))
,

𝜓 = log
(

𝜃2

1 − 𝜃2

)
− log

(
𝜃1

1 − 𝜃1

)
.

While this is a more involved reparameterization than in the IB approach above, another way to formulate this setup
is by writing:

𝜃1 = e𝛽−
𝜓

2

1 + e𝛽−
𝜓

2

,

𝜃2 = e𝛽+
𝜓

2

1 + e𝛽+
𝜓

2

,

which readers familiar with logistic regression may recognize. Using this setup, we test the hypotheses:

0 ∶ 𝜓 = 0,
1 ∶ 𝜓 ≠ 0.

In contrast to above, we now assign priors to 𝛽 and 𝜓 rather than to 𝜃1 and 𝜃2 directly. In particular, under both
hypotheses we assume 𝛽 ∼  (0, 𝜎𝛽) with 𝜎𝛽 = 1. Under 1 we assume 𝜓 ∼  (0, 𝜎𝜓 ).* The top left panel in Figure 2
visualizes the implied joint prior distribution on (𝜃1, 𝜃2) under 1 for 𝜎𝜓 = 1. The prior mass is concentrated along the
diagonal, which indicates that 𝜃1 and 𝜃2 are dependent. The bottom left panel illustrates this fact: if we know that 𝜃1 = 0.10,
then the prior on 𝜃2 shifts toward this value. Setting 𝜎𝜓 = 2 removes the prior dependency, as the right column in Figure 2
shows. For values of 𝜎𝜓 > 2, 𝜃1 and 𝜃2 become anti-correlated and hence observing a small value of 𝜃1 results in a prior
that puts more mass on large values for 𝜃2. Such an inverse relation is undesirable in almost all empirical applications,
and so values 𝜎𝜓 > 2 are therefore to be avoided. Gronau et al15 developed software to compute the Bayes factor using
this prior specification, first proposed by Kass and Vaidyanathan,14 suggesting 𝜎𝜓 = 1 as a default value.
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ψ ~  N(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Joint Prior Distribution

θ1

θ2

Conditional Prior Distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

θ2  | θ1  = 0.1

D
e

n
s
it
y

ψ ~  N(0, 2)
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F I G U R E 2 Top: Joint prior assigned to (𝜃1, 𝜃2) for 𝜎𝜓 = 1 (left) and 𝜎𝜓 = 2 (right). Bottom: Conditional prior distribution of 𝜃2 given
that 𝜃1 = 0.10. In both cases we assume 𝜎𝛽 = 1

2.3 Comparison of priors

A direct comparison of the two prior specifications may be helpful to get further intuition for their differences. While the
IB approach does not assign a prior distribution to (𝛽, 𝜓) or (𝜂, 𝜁) explicitly, assigning a prior to 𝜃1 and 𝜃2 induces a prior
distribution on these quantities. Conversely, the LT approach assigns a prior to𝜓 and 𝛽 and this induces a prior on (𝜃1, 𝜃2)
and (𝜂, 𝜁). The induced prior distributions under both approaches are nonstandard (see Appendix A), but their densities
can be calculated numerically.

The top left panel in Figure 3 shows the prior distribution assigned to 𝜂 by the LT approach for 𝜎𝜓 = 1 (shaded blue)
and 𝜎𝜓 = 2 (striped blue) and the IB approach for a = 1 (shaded red) and a = 2 (striped red) under 1. Similarly, the top
right panel shows the prior distribution assigned to 𝜓 for the two approaches and prior parameter values. The (default)
IB approach assigns comparatively more mass to large values of 𝜂 and 𝜓 , which in practice means that it expects larger
differences between the sample proportions. The bottom panel shows the marginal priors for 𝜃1 and 𝜃2, where we find
that the LT approach assigns comparatively less mass to extreme values. The LT approach cannot result in a uniform
distribution on the proportions under0 because of the Gaussian prior on 𝛽. If it instead would assign a (standard) logistic
prior to 𝛽 (which has fatter tails), the prior on the proportions would be uniform; see a related discussion in Appendix B.
In the next section, we discuss a somewhat surprising difference between these two tests.

3 PRACTICAL IMPLICATIONS OF THE PRIOR SETUP

To see the implications of the two different prior specifications in practice, in Section 3.1 we reanalyze 39 null results
published in the New England Journal of Medicine, previously analyzed by Hoekstra et al17 using the IB approach. We
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F I G U R E 3 Top: Prior distributions assigned to 𝜂 (left) and 𝜓 (right) under the LT (blue, vertical lines) and IB approach (red, horizontal
lines), respectively. Bottom: Marginal prior distribution of 𝜃1 and 𝜃2 under the two approaches. The density that is filled and has the highest
peak corresponds to 𝜎𝜓 = 1

then explain why these difference occur in Section 3.2. The data and code to reproduce all analyses and figures is available
from https://github.com/fdabl/Proportion-Puzzle.

3.1 Reanalysis of New England Journal of Medicine studies

Hoekstra et al considered all 207 articles published in the New England Journal of Medicine in 2015.17 The abstract of
45 of these articles contained a claim about the absence or nonsignificance of an effect for a primary outcome measure,
and 37 of those allowed for a comparison of proportions, reporting 43 null results in total. We focus on those results that
can be reanalyzed using a test between two proportions, which results in a total of 39 tests from 32 articles. The top left
panel in Figure 4 contrasts Bayes factors in favor of 0 computed using the IB approach (rectangles) across a ∈ [1, 5] with
Bayes factors computed using the LT approach (circles) across 𝜎𝜓 ∈ [1, 2]. In virtually all cases and across specifications,
the Bayes factor in favor of 0 is higher under the IB approach, and this difference is frequently substantial.† As the
parameter a is increased under the IB approach, the expected difference between the two groups is smaller (see top left
panel in Figure 3). Therefore, the predictions under 1 become more similar to the predictions under 0, and the Bayes
factor decreases. Conversely, as 𝜎𝜓 is increased under the LT approach, the expected difference between the two group
increases, and the Bayes factor in favor of 0 increases.

The top left panel in Figure 4 shows that, for some studies, the IB and LT Bayes factors cannot be brought into the
vicinity of each other by changing the prior parameters in the way specified above, while for other studies the Bayes factors

https://github.com/fdabl/Proportion-Puzzle
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Bayes factors across studies
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F I G U R E 4 Top: Bayes factors using the IB (rectangles) and LT approach (circles) in favor of 0 across studies reported in Hoekstra
et al17 (left) or for simulated equal proportions with n = 100 (right) for values a ∈ [1, 5] and 𝜎𝜓 ∈ [1, 2] with 𝜎𝛽 = 1. Bottom: Joint prior
distribution of (𝜃1, 𝜃2) under the IB approach with a = 1 (left) and under the LT approach with 𝜎𝜓 = 1 and 𝜎𝛽 = 1 (right). Black dots and blue
rectangles indicate the maximum likelihood estimates of the proportions in the studies analyzed by Hoekstra et al.

do overlap substantially. The studies without overlap are those indexed as 1 to 12. They are shown as blue rectangles in
the bottom panels in Figure 4, which shows the joint prior density for the IB (left) and the LT approach (right) with the
symbols indicating the maximum likelihood estimates for the individual studies. Note that the larger the proportions in
the bottom panels, the more likely are the two Bayes factors to overlap in the top left panel.

While Hoekstra et al are reassured by the fact that their Bayesian reanalysis (using the IB approach) yields strong evi-
dence in favor of 0 on average (given that all studies reported a nonsignificant P-value), using the LT approach yields
a more uncertain picture. While the median Bayes factor across the studies under the IB approach is 12.30, the median
Bayes factor under the LT approach is only 4.79. This difference is driven by the extremes, where the two approaches
suggest substantially different conclusions. We have already seen one example in the introduction concerning hyperten-
sion and pregnancy loss (analysis identifier 3). Another example is given by Joura et al,18 which compared the efficacy
of the 9vHPV against the qHPV vaccine for preventing, among others, cervical, vulvar, and varginal disease and persis-
tent human papillomavirus related infections in women. Comparing different outcome measures in women who were
HPV-negative and HPV-positive at baseline, the IB approach yields Bayes factors consistently around 100 while the LT
approach never shows Bayes factors larger than 10 (see analysis identifiers 1, 2, 5, and 6). The IB approach thus strongly
suggests that the two vaccines have a similar efficacy, while the LT approach suggests that more data is needed to reach
a firm conclusion.

The initially diverging and then converging pattern of the Bayes factors can be seen neatly in the top right panel in
Figure 4, which shows the Bayes factors under the null hypothesis for increasing values of y

100
≡ y1

100
= y2

100
. Note that the
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pattern is symmetric, so that for y
100

∈ [ 1
2
, 1] the same holds, just mirrored. At the extremes y

n
∈ {0, 1}, the IB approach

yields a Bayes factor in favor of 0 of 50.75, while the LT Bayes factor gives a mere 1.40. The Bayes factor decreases as
y
n
→ 1

2
under the IB approach, but increases under the LT approach. Consequently, the difference between the Bayes

factors becomes less pronounced as we move to more central proportions, which matches the observation in the empirical
analysis shown in the top left panel in Figure 4. For y

n
= 1

2
, the IB Bayes factor yields 5.70 and the LT Bayes factor yields

3.67.
In summary, we have found that the two approaches give a very different answer to the question “is observing two

equally small proportions strong or weak evidence in favor of the null hypothesis?”. The IB Bayes factor suggests that the
evidence is often orders of magnitude larger than the LT Bayes factor.

3.2 Explaining the difference

Why does the IB Bayes factor yield so much stronger evidence than the LT Bayes factor for 0 when the proportions
are small and of roughly equal size? And why does the IB Bayes factor decrease as the proportions get closer to 1

2
while

the LT Bayes factor increases? To answer these questions, we need to zoom in on the differences in the respective prior
specifications. The two approaches differ in two key ways. First, while the IB approach assigns independent priors to 𝜃1
and 𝜃2, the LT approach assigns dependent priors to them. Second, the LT approach employs a logit transformation while
the IB approach does not. Appendix D shows that it is not the prior dependence that underlies the difference between the
two approaches. Instead, as we will see below, it is the logit transformation.

The fact that the IB Bayes factor is larger than the LT Bayes factor even when the latter approach expects a larger
difference in the proportions (eg, a larger 𝜂 or 𝜓 , compare a = 2 with 𝜎𝜓 = 2 in Figure 3) means that focusing only on the
difference parameter is not sufficient to explain the difference between the Bayes factors. Instead, we turn to a sequential
predictive perspective. From such a perspective, we may first use the prior to predict the data from group one, update
the prior to a posterior, and then predict the data from group two. One can rewrite the marginal likelihoods to make
this sequential perspective apparent, see Appendix E. This perspective shows that there is a crucial difference in the
predictions that the CT and LT approach make under 1. Under both approaches there is a common parameter 𝜃 under
0, and the prior assigned to 𝜃 gets updated by data from the first group, after which predictions about the second group
are made. Under the alternative hypothesis, however, the IB approach implies that observing data from group one does
not update our beliefs about likely values of 𝜃2, and so data from group one cannot inform the subsequent prediction about
group two. Under the LT approach, such information sharing does take place. This difference is shown in the top panels in
Figure 5, which visualizes the joint prior distribution for 𝜃1 and 𝜂 ≡ 𝜃2 − 𝜃1 under the IB (left) and LT (right) approaches.
We see that under the IB approach, learning about 𝜃1 does not influence our predictions about likely differences between
the two groups. In contrast, under the LT approach we find that when we learn that 𝜃1 is either small or large, we expect
small differences between the proportions compared to when we learn that 𝜃1 is about half. This explains why the LT
Bayes factor in favor of 0 increases as we move from extreme values of y

n
toward values around 1

2
, as shown in the top

right panel in Figure 4: at the extremes, 1 expects smaller differences between 𝜃2 and 𝜃1, and hence it more closely
resembles 0, leading to a more equivocal Bayes factor. Moving toward more central values, 1 expects larger differences
and hence 0 outpredicts it by a larger margin.

While prior dependence is necessary to change one’s beliefs about likely differences between the proportions upon
learning 𝜃1, the fact that the expected difference decreases in the LT approach is due to the logit transformation. When the
two rates (𝜃1, 𝜃2) are small, say 𝜃1 = 0.05 and 𝜃2 = 0.10, the log odds difference 𝜓 is large, in this case 𝜓 = 0.75. The prior
on𝜓 in the LT approach renders such large log odds differences to be unlikely, which means that a smaller rate difference
is expected. Conversely, if the rates are somewhere in the center, say 𝜃1 = 0.50 and 𝜃2 = 0.55, then the log odds difference
𝜓 is small, in this case 𝜓 = 0.20. The prior on 𝜓 in the LT approach views such small log odds differences as likely; in
fact, much larger ones are possible. Therefore, the LT approach expects larger rate differences when the rates are in the
center. On the log odds scale, the expected difference does not change markedly as 𝜃1 varies, as the bottom right panel in
Figure 5 shows.‡

In contrast to the LT approach, the IB approach does not automatically reduce the expectations about likely differences
as we learn that 𝜃1 takes on extreme values. Taking slices at particular values for 𝜃 in the top left panel in Figure 5
would show uniform distributions ranging from −𝜃1 to 1 − 𝜃1. Instead of reducing the size of an expected difference at
the extremes, the IB approach actually amplifies it. This occurs because of the boundedness of the rate parameters. In
particular, if 𝜃1 = 0, then the only values for which, say, |𝜂| < 0.10 are 𝜃2 ∈ [0, 0.10]. Differences in absolute magnitude
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θ1,θ2 ~  Beta(1, 1)
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F I G U R E 5 Top: Joint prior distribution for (𝜃1, 𝜂) under the IB approach with a = 1 (left) and under the LT approach with 𝜎𝜓 = 1 and
𝜎𝛽 = 1 (right). Bottom: Joint prior distribution for (𝜃1, 𝜓) under the two approaches

between the two rates of up to 0.10 if 𝜃1 = 0 are therefore assigned a probability of 0.10. If, however, 𝜃1 = 0.50, the values
of 𝜃2 for which |𝜂| < 0.10 are 𝜃2 ∈ [0.40, 0.60]. This means that differences in absolute magnitude between the two rates
of up to 0.10 if 𝜃1 = 0.50 are assigned a probability of 0.20, or twice as much as in the case that 𝜃1 = 0. Another way to
see this is to note that the expected difference in the case that 𝜃1 = 0 is 𝜂 = 0.50, while the expected difference in the case
that 𝜃1 = 0.50 is 𝜂 = 0; more generally, the expected difference increases linearly as we move to the extremes, as can be
seen in the top left panel in Figure 5. The bottom left panel in Figure 5 shows an associated and pronounced increase in
the expected log odds difference as 𝜃1 moves toward extreme values.

4 DISCUSSION

Being able to discriminate between evidence of absence and absence of evidence is key in medicine and public health.
The Bayes factor, which pits the predictive performance of two hypotheses against each other, is a method for doing
so. Reanalyzing 39 null results published in the New England Journal of Medicine, we have found that the strength of
evidence depends crucially on the prior specification. Comparing an approach that assigns independent beta distribu-
tions directly to the rate parameters (IB) to one that employs a logit transformation (LT), we have found that the former
approach suggests evidence that is orders of magnitudes larger than the latter approach when observing small proportions
of roughly equal size. Consider again the effect of tightly or less-tightly controlling hypertension in pregnant women.3 The
IB approach suggests a Bayes factor about ten times larger in favor of the null hypothesis than the LT approach. Similarly,
the Bayes factor in favor of the hypothesis that two vaccines against the human papillomavirus are equally effective18 is
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up to 38 times larger under the IB approach, depending on the outcome measure. While the original statistical analysis
by the authors is more involved (eg, adjusting for various covariates), these differences are striking. As we have seen,
they occur because of the boundedness of the parameter space, which leads to the expectations of large differences at the
extremes under the IB approach. In contrast, the LT approach expects smaller differences at the extremes.

Although the two Bayes factors frequently differed markedly in size, they always both provided evidence in favor of
0 in the cases we studied in this paper. This need not be the case, however. For example, a large-scale investigation into
the effect of aspirin found that 26 out of n1 = 11,034 who received a placebo suffered a fatal heart attack, but only 10
out of n2 = 11,037 who received aspirin did.19 The IB Bayes factor yields strong evidence in favor of 0 (BF01 = 19.78)
while the LT Bayes factor finds moderate evidence in favor of 1 (BF10 = 5.36). This is again owed to the fact that the IB
approach expects larger differences than the LR approach; a small effect size is more likely under 0 than under 1 in
the IB approach simply because under 1 unrealistically large effect sizes are assumed to be plausible.

Our results have a number of implications. First, researchers should think carefully about their prior setup. This not
only implies thinking about the parameter values for the priors, but also the nature of the priors and what they imply
for the data. As we have seen, one may be fooled by assessing how sensitive the Bayes factor is by varying only prior
parameters conditional on the model. For all studies we reanalyzed that had proportions at the extremes, varying the prior
parameters of the IB approach still resulted in substantial evidence in favor of the null hypothesis. However, changing the
prior setup to the LT approach, we found markedly reduced evidence. If there are sensible alternative parameterizations,
it may be prudent to explore how sensitive the results are to these. In particular, our exposition suggests that assessing
the predictions that follow from the model can help get a better intuition of its assumptions. In our case, this made clear
that the IB approach expects larger rate differences at the boundaries of the parameter space compared to the center,
while the LT approach expects the reverse. We were struck by the initially puzzling contrast between these two tests,
given that the task—comparing two proportions—seemed so simple. This suggests that even more caution needs to be
applied when using Bayes factors for comparing models that are invariably more complex. In the same spirit of sensitivity
analysis, it is prudent to compare inferences based on the Bayes factor with inferences based on the posterior distributions
of the parameters. While testing precise hypotheses based on credible intervals is arguably inappropriate since it makes
inference conditional on 1, ignoring 0,20,21 alarm bells should go off when they show stark differences to the Bayes
factor results, as in our case (compare Figure 4 and C1). Researchers who rely only on the posterior distribution for
inference or for trial design are unaffected by our results.

The second implication of our work is that the LT approach appears to be better suited for testing the equality of two
proportions than the currently more popular IB approach. First, assuming prior dependence strikes us as a more sensi-
ble approach especially for medicine and public health. This is because it is generally unlikely that gaining information
about one group does not influence our beliefs about the other group. For example, if a particular treatment for can-
cer yields a 30% success rate, surely this should inform our expectations for the success rate of a comparison treatment.
Incorporating this dependency results in more cautious predictions, which reduces the eagerness with which the stan-
dard IB approach suggests strong evidence in favor of 0 (see also Appendix D). While we have focused on testing the
sharp null hypothesis 𝜃1 = 𝜃2, the difference between dependent and independent priors is important also when testing
other hypotheses. Howard22 discusses the difference between a dependent and independent prior in the context of com-
paring 𝜃1 < 𝜃2 against 𝜃1 > 𝜃2, and similarly recommends dependent priors, as independent priors lead to a test that is
not “sufficiently cautious”.

Most importantly, however, is the fact that the LT approach avoids the issues associated with a bounded parameter
space. In particular, the IB approach is not sensitive to the fact that the implications of a rate difference 𝜃2 − 𝜃1 depends
on the actual values of the rates. For example, 𝜃2 = 0.10 and 𝜃1 = 0.05 and 𝜃2 = 0.55 and 𝜃1 = 0.50 imply the same rate
difference, but while the former represents a 100% increase, the latter represents only a 10% increase. Yet the IB approach
assigns more prior mass to large rate differences at the extremes of the parameter space compared to its center. In contrast,
the reverse holds for the LT approach because of the logit transformation. This strikes us as more sensible. With the
recent development of accessible software that makes the LT approach easily available,15,23 we hope that the use of the
LT approach for testing the equality of two proportions becomes more widespread.

To sum up, we have seen an initially puzzling divergence in evidence when reanalyzing 39 null results from the New
England Journal of New Medicine with two different Bayes factor tests. We have explained this divergence and sided with
the approach that employs a logit transformation and assumes prior dependence between the two proportions. We suggest
that this approach, rather than the one motivated from a contingency table perspective, should be routinely applied when
testing the equality of two proportions. Our journey should also act as a cautionary tale for users of Bayes factors, stressing
the importance of assessing the predictions of one’s models, conducting thorough sensitivity analyses, and never relying
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on just a single quantity. We have demonstrated the usefulness of this in the simple case of testing the equality of two
proportions. Most applications will arguably be more complex, however, increasing the potential for puzzles and stressing
the need for a holistic evidence assessment.
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ENDNOTES
∗While this prior specification assigns the log odds ratio 𝜓 a Gaussian distribution, the IB prior specification results in a nonstandard
distribution on 𝜓 . For more details, see Appendix A.

†In contrast, the conclusions one would draw based on posterior distributions are very similar, see Appendix C.
‡The fact that there is barely any prior mass at extreme values of 𝜃1 under the IB approach is due to the Gaussian prior on 𝛽, as discussed in
Section 2.3.
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APPENDIX A. INDUCED PRIORS

Under the LT approach, the marginal priors for 𝜃1 and 𝜃2 as well as 𝜂 are given in integral representation by Gronau et al.15

Under the IB approach, the density of 𝜂 is given by:

f (𝜂; a) =
⎧⎪⎨⎪⎩

1
B(a,a)

𝜂2a−1(1 − 𝜂)2a−1 F1
(

a, 4a − 2, 1 − a; 2a; 1 − 𝜂, 1 − 𝜂2) 0 < 𝜂 ≤ 1

1
B(a,a)

(−𝜂)2a−1(1 + 𝜂)2a−1 F1
(

a, 1 − a, 4a − 2; 2a; 1 − 𝜂2, 1 + 𝜂
)

−1 ≤ 𝜂 < 0
,

see Pham et al.25 In our case, we always have that 2a > 1 and so f (0) = B(2a−1,2a−1)
B(a,a)2

.25 We can derive the density for𝜓 under
prior independence for the special case of a = 1. Note that, because 𝜃 ∼ Beta(1, 1), it follows that:

log
(

𝜃

1 − 𝜃

)
∼ Logistic(0, 1).

Recall that:

𝜓 = log
(

𝜃2

1 − 𝜃2

)
− log

(
𝜃1

1 − 𝜃1

)
.

Ojo (2003)26 gives the distribution function of the sum of n i.i.d. logistic random variables. Since the logistic distribu-
tion is symmetric, we have that if X ∼ Logistic then −X ∼ Logistic. Hence we can use the results by Ojo (2003) and write
the density function of 𝜓 as:

f (𝜓 ; a = 1) = e𝜓 (e𝜓 (𝜓 − 2) + 𝜓 + 2)
(e𝜓 − 1)3 .

info:doi/10.31234/osf.io/z64th
info:doi/10.31234/osf.io/z64th
info:doi/10.17605/OSF.IO/3VUX5
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APPENDIX B. COMBINING APPROACHES THROUGH MODEL-AVERAGING

If one is uncertain as to which test one should employ, an approach would be to combine both through
model-averaging.27,28 Let IB

0 and LT
0 denote the null models under the IB and the LT approach, respectively, and let

IB
1 and LT

1 denote the respective alternative models. The model-averaged Bayes factor is given by:

BFAVG
01 =

p(|IB
0 )𝜋(IB

0 ) + p(|LT
0 )𝜋(LT

0 )
p(|IB

1 )𝜋(IB
1 ) + p(|LT

1 ), 𝜋(LT
1 )
,

where 𝜋() gives the prior probability of the particular model. One has to be careful when model-averaging. While the
nuisance parameters generally do not matter when testing nested models,5,14 they do here. In particular, the IB approach
assigns 𝛽 a logistic distribution, while the LT approach assigns 𝛽 a Gaussian distribution. The logistic distribution has
fatter tails, and thus puts more mass on extreme values of 𝜃 than the Gaussian distribution. In our case, this can result
in somewhat surprising results. Let 1 = (y1,n1) and 2 = (y2,n2) denote data in the two groups, respectively. For data
1 = (0, 50) and 2 = (0, 50), for example, the IB model that assumes a difference in the population (IB

1 ) outpredicts
the LT null model (LT

0 ) by a factor of seven! Since we want to focus on differences under 1 between the IB and LT
approach, we would need to make the models identical under 0, for example by assigning 𝛽 a logistic prior not only
under the IB approach, but also under the LT approach.

APPENDIX C. INFERENCE BASED ON POSTERIOR DISTRIBUTIONS

The contrasting results discussed in Section 3 do not occur when inferences are based on the posterior distribution of the
log odds difference 𝜓 or the rate difference 𝜂. Figure C1 shows the posterior mean and 95% credible interval of 𝜓 (top)
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F I G U R E C1 Shows the posterior mean and 95% credible interval of the log odds difference 𝜓 (top) and the rate difference 𝜂 (bottom)
under the IB approach (rectangles, a = 1) and the LT approach (circles, 𝜎𝜓 = 1)
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and 𝜂 (bottom) for the IB (rectangles) and the LT approach (circles) with the respective default parameterizations a = 1
and 𝜎𝜓 = 1 across all studies. The conclusions one would draw from these posterior distributions are very similar (and
changing the prior parameters does not affect them). This is as expected, since the effect of the prior generally washes out
as more and more data are observed, which is not the case for Bayes factors.

APPENDIX D. A DEPENDENT IB APPROACH

If prior dependence were responsible for the stark differences between the Bayes factors at the extremes, we would find
that a IB approach which assumes prior dependence shows a pattern similar to the LT approach. Here, we show that this
is not the case. Recall that 𝜂 = 𝜃2 − 𝜃1 and 𝜁 = 1

2
(𝜃1 + 𝜃2). We define:

𝜃1 = min
(

max
(
𝜁 − 𝜂

2
, 0
)
, 1
)
,

𝜃2 = min
(

max
(
𝜁 + 𝜂

2
, 0
)
, 1
)
,

and assign truncated Gaussian priors to (𝜂, 𝜁), that is, 𝜂 ∼  (0, 𝜎𝜂)I(−1,1) and 𝜁 ∼  (0, 𝜎𝜁 )I(0,1). Using 𝜎𝜂 = 1
5

and 𝜎𝜁 = 1
2
,

the left panel in Figure D1 shows the joint prior distribution for (𝜃1, 𝜃2) from which a strong prior dependence between 𝜃1
and 𝜃2 is apparent. The right panel, however, shows the characteristic pattern of the IB approach as discussed in the main
text, rather than the characteristic pattern of the LT approach. Since the rates are dependent a priori, it is not the prior
dependence that is responsible for the pattern. However, employing a prior that has a stronger dependency between the
two rates naturally reduces the size of their expected difference. Increasing 𝜎𝜂 results in a lower correlation (going from
about 0.77 at 𝜎𝜂 = 1

5
to zero at 𝜎𝜂 = 1) and a reduced Bayes factor in favor of 0, as the right panel in Figure D1 shows.

APPENDIX E. SEQUENTIAL PREDICTIVE PERSPECTIVE

Under 0 we have for both the IB (ie, independent) and the LT (ie, dependent) setup that (suppressing conditioning on
0):

p(2,1|0) = ∫𝜃 p(2,1|𝜃)𝜋0(𝜃) d𝜃 (E1)

= ∫𝜃 p(2|1, 𝜃)p(1|𝜃)𝜋0(𝜃) d𝜃 (E2)

= ∫𝜃 p(2|𝜃)p(𝜃|1) d𝜃, (E3)
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where  = ∫
𝜃

p(1|𝜃)𝜋0(𝜃) d𝜃 is the marginal likelihood for 1, p(𝜃|1) is the posterior of 𝜃 after observing 1, and we
can remove the conditioning on 1 in (2) because all relevant information is in 𝜃. Similarly, under 1 for LT setup we
have that:

p(2,1|1) = ∫𝜃2
∫𝜃1

p(2,1|𝜃1, 𝜃2)𝜋1(𝜃1, 𝜃2) d𝜃1 d𝜃2 (E4)

= ∫𝜃2
∫𝜃1

p(2|1, 𝜃1, 𝜃2)p(1|𝜃1, 𝜃2)𝜋1(𝜃1, 𝜃2) d𝜃1 d𝜃2 (E5)

= ∫𝜃2
∫𝜃1

p(2|𝜃1, 𝜃2)p(𝜃1, 𝜃2|1) d𝜃1 d𝜃2, (E6)

where  is the marginal likelihood for 1, p(𝜃1, 𝜃2|1) is the posterior after observing 1, and we can remove the
conditioning on 1 in (2) because all relevant information is in (𝜃1, 𝜃2). This is in contrast to the IB setup, where:

p(2,1|1) = ∫𝜃2
∫𝜃1

p(2,1|𝜃1, 𝜃2)𝜋1(𝜃1, 𝜃2) d𝜃1 d𝜃2 (E7)

= ∫𝜃2

p(2|𝜃2)𝜋1(𝜃2) d𝜃2 ∫𝜃1

p(2|𝜃1)𝜋1(𝜃1) d𝜃1, (E8)

and thus no sharing of information across the two groups takes place.


