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Abstract: Whether as a cause or a symptom, RNA transcription is recurrently altered in pathologic
conditions. This is also true for non-coding RNAs, with regulatory functions in a variety of processes
such as differentiation, cell identity and metabolism. In line with their increasingly recognized roles
in cellular pathways, RNAs are also currently evaluated as possible disease biomarkers. They could
be informative not only to follow disease progression and assess treatment efficacy in clinics, but
also to aid in the development of new therapeutic approaches. This is especially important for
neurological and genetic disorders, where the administration of appropriate treatment during the
disease prodromal stage could significantly delay, if not halt, disease progression. In this review
we focus on the current status of biomarkers in Huntington’s Disease (HD), a fatal hereditary and
degenerative disease condition. First, we revise the sources and type of wet biomarkers currently in
use. Then, we explore the feasibility of different RNA types (miRNA, ncRNA, circRNA) as possible
biomarker candidates, discussing potential advantages, disadvantages, sources of origin and the
ongoing investigations on this topic.

Keywords: Huntington’s disease; neurodegeneration; biomarkers; biofluids; non-coding RNA;
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1. Biomarkers: A General Introduction

The emerging challenge that current clinical trials face is how a response to an experi-
mental treatment should be assessed early in the trial, especially considering that the main
affected tissue responsible for the pathology might be the brain. In therapeutic clinical trials
that aim to evaluate the efficacy of potential disease-modifying treatments, biomarkers
serve as valuable outcome measures [1]. Biomarkers are defined as “almost any measure-
ment reflecting an interaction between a biological system and a potential hazard, which
may be chemical, physical, or biological”, and they refer to a “measured response that may
be functional and physiological, biochemical at the cellular level, or a molecular interaction”
(defined by WHO [2,3]). Predictive biomarkers, reliably and objectively responding to
treatment in a predictable manner, can be used to determine the effectiveness of a therapy
and how a patient will respond to it. On the other hand, prognostic biomarkers, instead, are
used as indicators of disease severity, ideally reflecting the underlying disease pathogenesis
and linearly tracking clinical progression of the disease throughout its duration (including
during the premanifest stage).

In principle, all biomarkers should be affordable and easily accessible, meaning it
should be possible to repeat their measurement multiple times without having to subject
the patient to particularly invasive procedures. Biomarkers should also be as specific
as possible, i.e., unaffected by comorbidities and with limited variability in the general
population. Finally, biomarker sampling and testing should be standardized to minimize
variation between facilities.
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2. Huntington Disease: An Opportunity to Seek Early Predictive Biomarkers of
Neuro-Dysfunction and Degeneration

Huntington’s Disease (HD) is a fatal, monogenic, autosomal dominant, neurodegener-
ative disease, which is caused by the expansion of the CAG trinucleotide repeat within exon
1 of the HD gene (HTT) gene. Different individuals may display variable expansion length,
with a repeat number of 35 or more considered pathogenic [4,5]. However, the range of
36–39 repeats confers reduced penetrance, where the disease might manifest later in life [6].
Longer repeats cause earlier onset, and above 60 are highly penetrant and associated with
pediatric age of onset [7]. HD is endemic to all populations, but its prevalence is higher
among individuals of European ancestry, where it affects about 12 per 100,000 individ-
uals [8]. Nowadays, HD patients can unequivocally be identified via genetic testing for
this dominant trait [9–11]. Thus, individuals with a known family history and individuals
carrying the mutation while still asymptomatic, can be easily identified before developing
overt clinical features of the disease [12]. These are the ‘premanifest’ individuals, those
who would potentially benefit more from neuroprotective therapies, which possibly would
delay the development of the neurological disease manifestations and related functional
disabilities [13].

Although the causative mutation to HD was discovered almost 30 years ago, no defini-
tive therapy to halt or delay the disease is currently available. Current pharmacological
therapies are limited to the treatment of disease symptoms [14], but death will inevitably
occur in 15/18 years after manifestation of the symptoms. Current investigations are ex-
ploring new therapies aimed at reducing the expression of the mutant gene and/or protein.
The initial clinical trials, exploiting antisense oligonucleotides (ASOs), short, single-strand
DNA/RNA sequences that cause the decay of a specific, target mRNA [15], were recently
stopped because of lack of effectiveness (phase 3 trial, patient follow up for 69 weeks [16]).
Nonetheless, other promising HTT-targeting molecular tools are emerging. For example,
branaplam, originally developed as spinal muscular atrophy therapy, was recently discov-
ered to induce the splice-in of a pseudoexon in Htt mRNA, destabilizing the transcript,
inducing its degradation, and improving the motor performance in Htt mouse models [17].

Currently, the most commonly employed method to assess treatment response and
monitor disease progression in therapeutic trials in HD is the United Huntington’s Disease
Rating Scale (UHDRS). The UHDRS is a collection of scales that were designed to detect
clinical changes in the manifestation of HD by assessing the clinical performance of HD
patients in four different areas: motor and cognitive function, behavioral abnormalities
and functional capacity. Therefore, until now, HD patients have been categorized primarily
based on their clinical symptoms. As such, the UHDRS may not be sensitive enough to
detect the subtle features seen in some premanifest individuals, particularly those who
are several years away from developing the disease [18]. The main issue of this scale is its
reliance on subjectiveness: in HD patients, motor function cannot be always consistently
measured, as patients and operators can be influenced by external factors, such as stress,
that might affect their performance. The designation of disease onset can also be arbitrary,
given that the lengthy prodrome is characterized by various subtle motor and cognitive
abnormalities, developing insidiously over several years. The use of disease onset as an
endpoint in clinical trials would therefore require a large premanifest study population.
However, an updated system, i.e., the Integrated Staging System (HD-ISS), has recently
been introduced, which combines information from imaging with clinical signs and decline
in daily function and better tracks disease progression, including pre-symptomatic and
premanifest stages [19].

Thus, there is an increasing need in clinical research to develop and validate biomark-
ers able not only to assess target engagement in patients but also to track disease progression
during all the disease stages, enabling better patient stratification for clinical trials.
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3. Current Biomarkers in Huntington’s Disease
3.1. Dry Markers: Clinical and Imaging

In recent years, many alternative molecules and behavioral measurements have been
taken into consideration as potential biomarkers for HD. Some researchers have proposed
the use of clinical markers, continuous measures of motor abnormalities that can be objec-
tively quantified, thereby improving accuracy and reducing variability. One example would
be digitomotography, where a modular force transducer arrangement is used to quantify
finger tapping precision, which will worsen as the disease progresses [20–24]. Cognitive
impairment can also be assessed from premanifest stages. In this instance, the Symbol Digit
Modalities test is able to assess visual attention and psychomotor speed [21,22]. However,
such clinical markers did not demonstrate sufficient sensitivity to subtle changes over time
during the premanifest period. On the contrary, the use of brain structural imaging has
proven to be a more robust marker during the premanifest stage of the disease and in HD
trials [22–25]. However, the use of structural brain atrophy as an efficacy measure can be
limited because it typically occurs at a slow rate, making it rather impractical for most
clinical trials. More interesting forms of visualization are functional and metabolic imaging.
Thanks to these techniques, Squitieri and colleagues, observed a reduced metabolic F-18-
Deoxyglucose or Fluorodeoxyglucose (FDG) uptake in the parietal lobe of riluzole-treated
HD subjects compared to those exposed to placebo [26]. The metabolic measure linearly
correlated with worsening of motor scores and behavioral measures.

3.2. Wet Biomarkers: Mutant Huntingtin and Neurofilament Light Protein

In the context of neurodegenerative diseases, such as HD, the identification of wet
biomarkers is particularly important, since the affected regions (CNS and PNS) are difficult
to monitor without using invasive or expensive procedures. Indeed, accessible and reliable
biomarkers allow the fine tracking of the disease progression and drug benefits, without
directly accessing in the brain or in the spinal cord.

3.2.1. Mutant Huntingtin

The most prominent source of wet biomarkers is the Cerebrospinal Fluid (CSF)
(Figure 1). In fact, one of the key functions of the CSF is the collection of waste mate-
rial and metabolites coming from the CNS, thus, its composition and content can reflect the
status of the brain parenchyma, especially in pathologic conditions. In HD, the CSF has been
used for the quantification of the mutant huntingtin protein, currently the most commonly
used biomarker for the disease [27,28], especially in huntingtin lowering therapies [29].
Differences in the mean mutant huntingtin levels were detected between premanifest and
early-stage HD, but not between early-stage and moderate-stage subjects [28,30]. Impor-
tantly, mutant huntingtin levels in the CSF correlate with motor and cognitive features in
premanifest and early-mid HD, but not in late HD [28,31]. Overall, mutant huntingtin has
proven to be a valid prognostic biomarker, as well as a predictive biomarker for measuring
treatment efficacy [32,33]. However, mutant huntingtin has a critical limitation, related
to its accessibility: in fact, while this mutant protein from a ubiquitously expressed gene
can be found in the peripheral blood from patients, its presence in accessible biofluids
cannot be uniquely attributed to the brain, the affected area in this pathology. Thus, the
CSF represents the only option that allows for the reliable measurement of brain-derived
mutant huntingtin. Unfortunately, however, the CSF collection requires patients to undergo
the rather invasive procedure of lumbar punctures (LP) which might cause some, rarely
severe, side-effects (infections, spinal and subdural cerebral hematoma and cerebral venous
thrombosis) [34,35].
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Figure 1. Biomarkers sources in HD patients.

A schematic representation of the various body derivatives to be evaluated as possible
biomarkers is presented. While CSF is the most prominent source of biomarkers, like
mutant huntingtin [27,32,36], its collection requires quite invasive procedures. Conversely,
other more accessible body products have been used as source of possible biomarkers.
Among them, because of the leakage of CNS molecules through the BBB, blood represents
a reliable source of several biomarkers, such as NfL [27]. Other biofluids have been tested,
such as urine, from which Simmons et al., 2021 [37] could detect higher p75NTR in HD
mice compared to controls. Saliva was demonstrated to contain detectable levels of tHTT,
correlating with some HD clinical measures [38] and feces was used to detect bacterial
alterations related to clinical features [39]. Finally, hair cortisol content and hair morphology
were also hypothesized to be potential prognostic and predictive biomarkers [39,40]. Figure
created in BioRender.com.

Thus, taking this into account, many studies are aiming to find biomarkers in more
easily accessible biofluids, such as blood, urine or saliva (Figure 1).

3.2.2. Neurofilament Light Protein

One common feature of several neurodegenerative diseases is the impairment of the
Blood Brain Barrier (BBB). The compromised BBB, as the disease progresses, leads to the
leakage of molecules from the CNS into the blood circulation, which could provide a valid
source of biomarker candidates. Indeed, their presence in the bloodstream eases accessi-
bility and collection (compared to CSF), while maintaining high specificity since directly
originating from the CNS. One of the recently identified biomarkers that follows this logic
is the Neurofilament light protein (NfL, also known as NF-L). The NfL is the smallest of
three subunits composing neurofilaments, major components of the neuronal cytoskeleton.
NfL is released from damaged neurons and can be detected in blood plasma or serum. Its
potential as a prognostic biomarker was first revealed in a retrospective study, conducted

BioRender.com
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by L. M. Byrne and colleagues in 2017 [27]. The study involved the 366 participants of
the TRACK-HD cohort, who had been assessed by standardized blood sampling, clinical
testing and MRI annually over 3 years. It was observed that NfL concentrations in plasma
were significantly higher in all disease stage subgroups among HTT mutation carriers
compared to the control group. Importantly, the correlation between plasma and CSF NfL
concentrations was strong, implying that plasma NfL was indeed CNS-derived and did
not originate from other tissues. A correlation was also found between plasma NfL and
age in controls and all HD subgroups. In HD patients, NfL concentrations in plasma were
positively correlated with cognitive dysfunctions and negatively with the MRI measure-
ments of brain volume (higher NfL values were associated with smaller caudate/putamen
volumes) [27,41]. However, whether plasma NfL is able to rapidly change in response
to treatment is still not known. For instance, three months were required for serum NfL
concentration to normalize after a boxing bout [42]. NfL has undoubtedly proven to be a
valuable prognostic biomarker, but the fact that it is released, and subsequently detected,
upon neuronal death, classifies NfL as a biomarker for neuronal degeneration, rather than
a specific biomarker to track HD progression since prodromal phases.

3.3. Other Biomarkers from Accessible Biofluids

In search of other sources of accessible biofluids, several studies started to explore the
presence of possible biomarkers in the urine of R6/2 HD mouse models. Indeed, the levels
of p75NTR were increased in R6/2 mice compared to WT mice urinary levels [37]. p75NTR

was already shown to play a role in memory dysfunction in HD patients [43] and to be
altered in HD patients’ striatum [44]. Since urinary p75NTR was shown to be a promising
biomarker also for Amyotrophic Lateral Sclerosis [45], this molecule might again represent
a more general neurodegenerative biomarker rather than an HD specific one.

The very easily accessible biofluid, saliva (Figure 1) from HD patients, was also tested
as a potential source of biomarkers. Here, total huntingtin levels (tHTT) were significantly
increased in HD patients compared to healthy controls, correlating with age and several
clinical measures [38], supporting the conclusion that salivary tHTT could be a promising
non-invasive HD biomarker. HD patients’ saliva, as well as patients’ hair (Figure 1),
were also used to detect cortisol levels, with hair cortisol being significantly associated
with HD mutation in premanifest individuals [46]. Accordingly, hypocortisolism was
already associated with early stages HD patients, possibly due to Hypothalamic–Pituitary–
Adrenal (HPA) axis dysfunction [47]. In support of hair as a possible non-invasive source of
biomarkers, studies on R6/1 and R6/2 HD mouse models revealed significantly different
hair morphology compared to WT mice [40]. This might be of particular interest since,
in other metabolic disorders such as Mucopolysaccharidoses (MPS), hair dysmorphology
could be identified and then recovered after enzyme-based therapy [48], possibly revealing
an easily-available predictive biomarker.

Also, feces might reveal a reliable and non-invasive source of biomarkers (Figure 1).
Indeed, 16s RNA sequencing demonstrated that HD patients present an altered gut micro-
biota, and bacteria diversity correlates with cognitive and clinical measures [39].

Finally, because of its close proximity to the brain, studies testing ocular fluids (e.g.,
tear fluid) to search for non-invasive biomarkers have been recently carried out for other
neurodegenerative disorders such as Alzheimer’s disease [49] and Parkinson’s disease [50],
and this might also provide important insights for HD.

4. RNA: A New Potential Class of Biomarkers

RNA metabolism dysregulation is a common feature of most neurodegenerative
diseases [51]. Accordingly, dysregulated gene expression in HD patients’ brain samples
or in in vivo and in in vitro models, has been described, exploiting different genome-wide
techniques [52–57]. Alteration in RNA expression and processing might be identifiable
from the very early stages of the disease, when neurons might be still viable, although not
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properly functional. For this reason, the interest in RNA biomarkers for diagnostic and
prognostic purposes is becoming prevalent.

Several high-throughput studies have highlighted dramatic mRNA changes in the blood of
HD individuals [58–61], leading to the identification of several potential mRNA biomarkers, that
not only correlate with the disease stage, distinguishing pre-symptomatic from symptomatic
patients [58], but also show association with motor score performances [60]. Importantly, global
blood gene expression mirrored the transcriptional dysregulation distinctive of the affected
brain areas [61], supporting the correlation between brain and blood transcriptome and the
feasibility of using RNA blood biomarkers for brain disorders. Moreover, other low throughput
techniques, such as RT-qPCR, were successfully employed to validate some of the potential
blood biomarkers, such as the sarco-endoplasmic reticulum-associated ATP2A2 calcium pump
(SERCA2) and vascular endothelial growth factor transcripts (VEGF) [62].

Many RNA species can be found circulating in human biofluids (e.g., blood, urine, saliva,
cerebrospinal fluid, breast milk, follicular fluid [63]): these nucleic acids can be broadly cate-
gorized as extracellular RNAs (exRNAs), a heterogeneous group of RNAs that includes small
microRNAs (miRNAs), long non-coding RNA (lncRNAs), protein-coding RNAs and ribosomal
RNAs (rRNAs) (Figure 2). These RNAs can be secreted from cells either in a free form or bound
to proteins, as well as in association with extracellular vesicles (EVs) [64]. EVs comprise a variety
of membrane-limited vesicles (apoptotic bodies, microvesicles and exosomes) released from
cells. Their content, or cargo, consists of lipids, proteins (those associated with the plasma
membrane or in the cytosol) and the aforementioned nucleic acids. Indeed, the involvement
of EVs in neurodegenerative disorders has been investigated in several studies, showing that
EVs have the ability to carry misfolded proteins (e.g., Aβ, α-synuclein, tau) associated with the
disease [65,66]. Exosomes, the best characterized subtype of EVs, have crucial roles in normal
and pathologic processes and also as possible carriers of biomarkers for diagnostic purposes in
clinical settings [67,68]. Several protocols have been already established to execute this from
blood serum or urine [69], and even from plasma of HD patients [70].
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The cartoon on the left schematically describes the currently used wet (mutant HTT
and NfL) protein biomarkers and imaging analysis in HD. The cartoon on the right proposes,
instead, focus on different types of RNA biomarkers currently under evaluation in HD
clinical research. Differentially expressed genes (DEGs) analysis through high throughput
techniques is the most prominent source of mRNA biomarkers, providing hundreds of
dysregulated genes as possible HD biomarkers. LncRNAs have been observed to be
dysregulated in HD patients. Among them, DGCR5 was detected, a known interactor of
transcriptional repressor REST [71]. Several miRNAs are dysregulated in HD as well (see
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also Table 1), with some of them, such as miR-10b-5p and miR486-5p representing potential
new biomarkers correlating with the CAG tract expansion [72,73]. Finally, circRNAs
also represent a new category of promising RNA biomarkers. A recent study detected
23 dysregulated circRNAs in a murine cell line, having functions associated with the
dopaminergic synapse [74], while our work, shows dysregulation of circRNAs in neuronal
progenitors expressing aberrantly long Htt CAG repeat [75]. CircRNA detection and
dysregulation in the human blood samples from HD patients remains a still unexplored
research area. Figure created in BioRender.com.

If only the 2% of the human transcriptome effectively synthesizes for proteins, the
vast majority of the remaining RNAs are indeed ‘non-coding’ (ncRNAs) [76]. ncRNAs,
usually shorter and less complex compared to their protein coding counterparts, show a
tissue-specific expression pattern and are involved in several crucial cellular processes,
such as regulation of transcription, translation and chromatin modulation [77], and have
been associated with many neurodegenerative diseases, including HD [78,79]. Then, can
ncRNAs function as effective disease biomarkers?

4.1. Micro RNA

miRNAs, small ncRNAs responsible for the negative regulation of the expression of
genes in a sequence-specific manner by binding to the 3′UTR, promote either the cleavage
or translational repression of their target [80,81]. They are involved in a wide range of cellu-
lar processes including cell differentiation, metabolism and transcriptional regulation [82],
and consequently, alterations in their expression may lead to or influence disease-related
pathological phenotypes. In the CNS, miRNAs are abundant, as brain-specific miRNAs
contribute to various neuronal processes such as synaptic development, maturation and
plasticity [83,84]. In HD, the dysregulation of miRNAs has been extensively reported in
in vitro models, transgenic animals and human post mortem brains [72], and thus miR-
NAs could be included in the list of potential HD biomarker candidates, prompting more
detailed investigations. Initial studies by Gaughwin et al. (2011) [85], where mHtt-Exon-1-
overexpressing human teratocarcinoma cell lines were profiled by microarray, suggested
that two miRNAs, miR-34b and miR-1285, were upregulated by mutant huntingtin expres-
sion. Subsequent analyses on plasma of HD patients indeed confirmed that miR-34b levels
were significantly upregulated in pre-symptomatic HD subjects when compared to controls.
Later investigations by Andrew G. Hoss and colleagues in 2015 [73] revealed a group of
75 miRNA, previously identified in post mortem brains as significantly altered in HD, also
coherently discernible in peripheral blood. As a result, two candidate miRNAs, miR-10b-5p
and miR-486-5p, with increasing expression in both HD brain and blood, presented a
strong correlation with CAG repeat expansion. In another work, six miRNAs (miR-135b-3p,
miR-140-5p, miR-520f-3p, miR-3928-5p, miR-4317, miR-8082) were detected in the CSF as
being significantly more expressed in prodromal HD gene carriers than in control, and
further increased in patients manifesting the disease [86]. In 2016, Diez-Planelles et al.
suggested that the profile of circulating miRNAs might be altered with the progression of
the disease [87]. This study, conducted on a group 15 patients (40–45 CAG repeats) and
7 controls, highlighted an inverse correlation between UHDRS total motor score (TMS)
and significantly altered levels of miR-122-5p, as such, the lower the TMS, the higher the
miR-122-5p expression would be. Coherently, the total functional capacity of HD patients
was also associated with reduced levels of miR-330-3p and miR-641. See also Table 1 for
general summary.

BioRender.com
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Table 1. Several dysregulated RNAs in Huntington’s Disease.

RNA Type Expression Levels in HD Model System Reference

miR-34b miRNA Up-regulated mHtt-Exon-1-overexpressing
human teratocarcinoma cell lines [85]

miR-10b-5p, miR-486-5p miRNA Up-regulated Post mortem human brains [73]

miR-135b-3p, miR-140-5p,
miR-520f-3p, miR-3928-5p,

miR-4317, miR-8082
miRNA Up-regulated Human CSF [86]

miR-122-5p, miR-330-3p,
miR-641 miRNA Up-regulated Human blood [87]

DGCR5 lncRNA Down-regulated Human brain [71]

HAR1F, HAR1R lncRNA Down-regulated Human brain cortex/striatum [71]

HttAS_v lncRNA Down-regulated HEK293, SH-SY5Y [88]

NEAT1 lncRNA Up-regulated R6/2 mouse [89]

Abhd11os lncRNA Down-regulated BACHD mouse [90]

Meg3, Neat1, Xist lncRNA Up-regulated R6/2 mouse [91]

23 circRNAs circRNA dysregulated PC12 cell line expressing
Htt exon 1 [74]

>500 cirRNAs circRNA dysregulated mESCs and mNPCs derived
from Htt mouse models [75]

4.2. Long Non-Coding RNA

LncRNAs are abundant RNAs longer than 200 nucleotides, found to be particularly
expressed during embryonic stem cell development and in the brain, involved in several
cellular functions, such as transcriptional and chromatin regulation [92]. Several lncRNAs
have been found to be dysregulated in HD [71]. Among them, DGCR5 interacts with
transcriptional repressor REST [93], which has been extensively associated with molecular
progression of HD [94]. Similarly, two lncRNAs called HAR1F and HAR1R were detected to
be significantly decreased in HD striatum. These lncRNAs are antisense transcripts of the
HAR1 gene, with promoter binding sites for REST [95]. At the Htt locus, HttAS_v, a lncRNA
transcribed as antisense from exons 1 and 3 of the Htt gene, was identified [88]. Interestingly,
the CAG-expansion mutation causes a downregulation of this lncRNA in the cortex of HD
patients, which in turn determines an upregulation of mutant Htt expression. Additionally,
NEAT1, another lncRNA involved in the assembly of nuclear paraspeckles, was observed
to be increased in the brain of R6/2 mouse models and HD patients. According to the
study, NEAT1 up-regulation contributes to neuroprotective processes in the presence of the
CAG expansion mutation [89]. In the work of Francelle et al., 2015 [90], Abhd11os lncRNA
was observed to be particularly enriched in the mouse striatum, but downregulated in
different HD mouse models. Overexpressing such lncRNA leads to neuroprotective effects,
supporting the role of this molecule in the HD striatal vulnerability. Finally, Chanda and
colleagues [91], through small RNA-seq performed on R6/2 mouse model brain, detected
several dysregulated lncRNAs: among them Meg3, Neat1 and Xist showed significant
upregulation. Moreover, the knock-down of Meg3 and Neat1 reduced the formation of
mutant huntingtin aggregates in cell lines over-expressing N-terminal HTT. Although still
somewhat not always consistent across different model systems and HD patient cohorts,
these considerations suggest that monitoring lncRNA levels might represent a new valuable
tool to monitor/follow disease progression. See also Table 1 for general summary.
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4.3. Circular RNA

Circular RNAs (circRNAs) are a subclass of lncRNAs, whose main distinguishing
characteristic is their covalently bound 3′ and 5′ extremities, producing their typical single-
stranded, closed, circular structure. This implies the lack of any type of terminal mod-
ifications, such as the 5′ cap and poly-A tail at the 3′ end [96–100]. Like other RNAs,
circRNAs show tissue-specific and/or developmental stage-specific expression patterns,
with a peculiar, significant enrichment for the brain districts and higher expression in
aging [101]. CircRNAs are generated through the process of backsplicing, where a down-
stream exon loops back to join a more upstream exon, producing a circularized RNA
molecules [99,101,102]. Usually, circularized exons do not retain introns, although this
might happen in some cases [103]. Depending on their sequence characteristics and cellu-
lar localization, circRNAs have a variety of functions: nuclear circRNAs’ main activities
include the modulation of alternative splicing or transcription, regulating the expression
of parental genes, interacting with RNA-binding proteins (RBPs) and modulating their
activity; in the cytoplasm, instead, they are mainly engaged in sponging miRNAs, thus
inhibiting their ability to repress the translation of mRNA [97–100]. Finally, since a subset of
circRNAs possess the translational start codon or an internal ribosome entry site (IRES), it
has been observed that they can function as templates for protein synthesis [104]. CircRNAs
also exhibit good accessibility, since they have been detected in many types of extracellular
body fluids, such as saliva, blood and urine [101,105]. As more of their functions are being
elucidated, their underlying relationship with various diseases is being rapidly discovered.
Their high stability, specificity and conservation in different tissues add a further dimension
to the discovery of these molecules as possible disease biomarkers. Currently available
reports clearly show that alterations in the expression of circRNAs play important roles
in the development of various pathological conditions, and their potential as biomarkers
in neural pathologies is even greater, since their expression is relatively more abundant in
the CNS when compared to other tissues [105]. Recently, 23 circRNAs were found to be
dysregulated in an HD murine model, overexpressing mutant huntingtin fragment. Their
function was associated with dopaminergic synapses, MAPK and long-term depression, all
of which were previously related to HD pathogenesis [74]. On the other hand, our genome-
wide analyses using mouse knock-in neuronal progenitors series clearly demonstrated
a reduction in more than 500 circRNAs following the expression of the expanded CAG
alleles [75]. See also Table 1 for general summary. For these reasons, combined with their
stability and expression in the blood, circRNAs are emerging as a novel type of disease
biomarker that warrants further investigation.

5. Conclusions

When dealing with neuro-pathologies such as Huntington’s Disease, it is of utmost
importance to be able to enact treatments as soon as possible, optimistically, already during
the prodromal stage of the disease. This is not only important to delay the onset of the
disease, but also to have the time to personalize treatments to the features and needs of the
patients. In order to verify the efficacy of such treatments and to identify the most suitable
timeframe for administration, there is a need to develop biomarkers with availability,
accessibility, and specificity. The RNA molecules that we have described in this review
are one side of the totality of molecules currently being investigated for this purpose,
and while some of them are promising, more in-depth investigation, characterization and
validation are needed. Finally, once the biomarkers have been chosen, a standardized and
reproducible assay for testing needs to be set up, so that all patients may receive their
treatment in the appropriate timeframe. Importantly, accessible biomarkers will reduce
the suffering to which patients are subjected for their periodic check-ups in the following
progression of the disease. Given the severity of HD, it will be important for them to
develop less invasive approaches to classify their disease stage or to monitor their response
to therapeutic treatments.
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