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Neural systems are characterized by their complex dynamics, reflected on signals

produced by neurons and neuronal ensembles. This complexity exhibits specific features

in health, disease and in different states of consciousness, and can be considered a

hallmark of certain neurologic and neuropsychiatric conditions. To measure complexity

from neurophysiologic signals, a number of different nonlinear tools of analysis are

available. However, not all of these tools are easy to implement, or able to handle

clinical data, often obtained in less than ideal conditions in comparison to laboratory

or simulated data. Recently, the temporal structure function emerged as a powerful tool

for the analysis of complex properties of neuronal activity. The temporal structure function

is efficient computationally and it can be robustly estimated from short signals. However,

the application of this tool to neuronal data is relatively new, making the interpretation

of results difficult. In this methods paper we describe a step by step algorithm for the

calculation and characterization of the structure function. We apply this algorithm to

oscillatory, random and complex toy signals, and test the effect of added noise. We

show that: (1) the mean slope of the structure function is zero in the case of random

signals; (2) oscillations are reflected on the shape of the structure function, but they don’t

modify the mean slope if complex correlations are absent; (3) nonlinear systems produce

structure functions with nonzero slope up to a critical point, where the function turns

into a plateau. Two characteristic numbers can be extracted to quantify the behavior of

the structure function in the case of nonlinear systems: (1). the point where the plateau

starts (the inflection point, where the slope change occurs), and (2). the height of the

plateau. While the inflection point is related to the scale where correlations weaken,

the height of the plateau is related to the noise present in the signal. To exemplify our

method we calculate structure functions of neuronal recordings from the basal ganglia of

parkinsonian and healthy rats, and draw guidelines for their interpretation in light of the

results obtained from our toy signals.

Keywords: Parkinson’s disease, neuronal activity, interspike intervals, 6-hydroxydopamine, alertness, basal

ganglia, complexity, temporal structure

INTRODUCTION

The nervous system is complex at many levels. It is built as a network of nonlinear elements with
complex dynamics themselves: the neurons (Rulkov, 2002; Korn and Faure, 2003). As a result, the
output of the nervous system exhibits complex dynamics at multiple scales, which is reflected in
neural signals from the level of single neurons, to microcircuits and larger neuronal networks.

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
https://doi.org/10.3389/fnhum.2017.00409
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2017.00409&domain=pdf&date_stamp=2017-08-14
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:dandres@unsam.edu.ar
https://doi.org/10.3389/fnhum.2017.00409
http://journal.frontiersin.org/article/10.3389/fnhum.2017.00409/abstract
http://loop.frontiersin.org/people/447168/overview
http://loop.frontiersin.org/people/100355/overview


Nanni and Andres Structure Function Revisited

This complexity can be measured from different kinds
of data, for instance microelectrode recordings (MER),
electroencephalograms (EEG) and functional magnetic
resonance imaging (fMRI) (Mpitsos et al., 1988; Elger et al.,
2000; Yang et al., 2013a,b). Although the theoretical concepts
used to characterize these different signals are not scale specific
(chaoticity, entropy, nonlinearity, fractality), the tools of analysis
required to calculate complexity measures from different signals
do differ, and need to be tuned for each particular case.

Our motivation comes from the observation of complex
properties in the neuronal activity of the basal ganglia
(Darbin et al., 2006; Lim et al., 2010; Andres et al., 2011).
Different complexity measures of basal ganglia activity show a
correlation to different physiologic/pathologic conditions, like
arousal level or the presence of specific pathologies (dystonia,
parkinsonism) (Sanghera et al., 2012; Andres et al., 2014a;
Alam et al., 2015). Even more, some of these measures can be
modified with therapeutic interventions, suggesting that a correct
characterization of basal ganglia complexity has potentially high
clinical impact (Dorval et al., 2008; Lafreniere-Roula et al., 2010).
However, complexity measures are not always easily transferred
to the clinic. Nonlinear tools are sensitive not only to parameters’
settings, but also to the number of data analyzed (length of the
recordings), noise and linear correlations present in the signals.
Because of that, the correct implementation of nonlinear tools
depends critically on the behavior of the tool at hand for the
particular system under study (Schreiber, 1999).

In this context, the temporal structure function emerged as a
powerful tool for the analysis of basal ganglia activity. In previous
work we tested this tool on human, animal and simulated
neuronal data, and observed a correlation of abnormalities
of the temporal structure of basal ganglia spike trains with
parkinsonism (Andres et al., 2014b, 2015, 2016). Importantly,
the calculation of temporal structure functions of spike trains is
robust and efficient computationally. However, the interpretation
of results remains difficult, partly because the use of temporal
structure functions for the characterization of spike trains is
relatively new. Here, we perform an analysis of the temporal
structure of toy signals, i.e., signals with known properties, as a
means to characterize the behavior of the tool. This task has been
partly attempted before, but the analysis did not include a study
of any complex system or a comparison with neuronal data, and
is therefore incomplete to our purpose (Yu et al., 2003). Our goal
is to draw general guidelines for the interpretation of structure
functions of neuronal data. To illustrate the method, we calculate
the structure function of spike trains obtained from the basal
ganglia of healthy and parkinsonian rats during the transition
from deep anesthesia to alertness.

THE TEMPORAL STRUCTURE FUNCTION

Definition
Consider the following time series:

I(t) = {It1, It2, . . . , Itn} (1)

where Itn are successive recordings of the variable I at the times
t1, t2 to tn. The length of the time series is n. For this time series,
the temporal structure function is a function of the scale τ and
of order q, defined as the average of the absolute value of the
differences between elements of the time series separated by time
lags corresponding to the scale τ , elevated to the power of q (Lin
and Hughson, 2001):

Sq (τ ) = 〈
∣

∣1I(τ )
∣

∣

q
〉 (2)

Here, 1 denotes the difference, |·| denotes the absolute value and
〈·〉 denotes the average.

It is often the case for complex systems that structure
functions of increasing order follow a relation like (Lin and
Hughson, 2001):

Sq (τ ) ∝ τ ζ (q). (3)

This justifies the plotting of structure functions with double
logarithmic axes, since the exponent ζ can be recovered from this
plot as the slope of the linear regression, because:

log
(

Sq (τ )
)

= ζq · log (τ ) . (4)

Therefore, when discussing the slope of Sq (τ ) plotted in log-log,
we are in fact making reference to the exponent ζ . In addition, the
double logarithmic plotting enhances the visualization of small
scales.

An analogous definition applies to spatial series of data,
where I (x) are recordings obtained simultaneously in a spatial
arrangement, instead of at successive times (Stotskii et al., 1998).
In that case, the structure function is called spatial structure
function, in opposition to the temporal structure function, in
which we are interested here. In the case of a velocity field, a
linear transformation (i.e., the velocity) relates the spatial and the
temporal structure functions.

Step by Step Algorithm for the Calculation
of the Temporal Structure Function
In this section, we introduce briefly a step by step algorithm for
the calculation of the temporal structure function from a given
signal. The procedure is illustrated in Figure 1. To calculate the
temporal structure function of a signal I (t), proceed as follows.

Step 1: Define the range of scales of interest, going from the
minimum scale τmin to the maximum scale τmax.

Step 2: Define the range of orders of interest, going from the
minimum order qmin to the maximum order qmax.

Step 3: Calculate the difference between each element of the
time series It and the element separated from it by a number of
elements equal to τmin:

It − It + τ_min. (5)

The number of values obtained is equal to the length of the time
series minus the scale (n− τmin).

Step 4: Calculate the absolute value of the differences obtained
from step 3.
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FIGURE 1 | How to apply the algorithm for the calculation of the temporal structure function to a sample time series. In this example, we calculate the structure

function of order 1, therefore the power step is not needed. The number of differences computed for each scale (used as the denominator to calculate the average) is

equal to the length of the time series minus the scale. We show how to calculate three points of a temporal structure function (S(τ1,2,3)), corresponding to scales 1–3.

Typically, large scale ranges are of interest to characterize short and long term dynamics (for instance S(τ1−1000)).

Step 5: Elevate the values obtained from step 4 to the power of
qmin.

Step 6: Calculate the average of all the values obtained from
step 5.

Step 7: Increase τ and repeat steps 3–6 until τmax is reached.
In this way, one obtains Sq_min (τ ) .

Step 8: To calculate structure functions of higher order, repeat
steps 3–7 until qmax is reached.

In this paper we focus on temporal structure functions
of order 1, in which case steps 5 and 8 are needless. The
behavior of the slope of the structure function at increasing q
indicates the kind of fractal structure present in the signal: mono-
vs. multifractal properties (Lin and Hughson, 2001). These
properties might indeed be useful for a better characterization of
neuronal signals. However, in previous work we found that the
structure function of pallidal neurons of the rat shows no great

Frontiers in Human Neuroscience | www.frontiersin.org 3 August 2017 | Volume 11 | Article 409

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Nanni and Andres Structure Function Revisited

differences for orders up to q= 6 (Andres et al., 2014b). Therefore
in this paper we chose to stay at order one, for simplicity. As
is good practice, we normalized S (τ ) by dividing by the initial
value, and therefore all the structure functions shown in this
paper start at S (1) = 1.

If the signal of interest is a neuronal recording of spiking
activity, some previous conditioning is needed before applying
the algorithm described. Previous steps include: (1) isolate single
neuronal activity employing some spike sorting algorithm (see
for example Quiroga et al., 2004), (2) detect the times of
occurrence of spikes, and (3) build a time series of interspike
intervals (ISI) to obtain the time series I (t). Figure 2 illustrates
the whole transformation process from the raw neuronal
recording to the structure function.

TEMPORAL STRUCTURE OF TOY
SYSTEMS

Random Time Series
Theoretical work demonstrates that the structure function of
random signals has mean slope equal zero (Lin and Hughson,
2001). To test the practical implementation of this statement, we
generated 30 random signals that followed a normal distribution
(mean= 1, SD= 0.1) with a length of 104 numbers. We obtained
S (τ ) of these random signals and calculated the slope of S (τ )

with a linear regression (Figure 3, upper panel). The slope had a
value close to zero for all cases (8.07·10−8 ± 2.31·10−7: mean ±

standard deviation; SD).
A well-known measure in time series analysis is the

autocorrelation function. In the case of random series, the
autocorrelation falls rapidly to zero indicating independent
behavior of the elements of a signal. This behavior is hardly
differentiated from the rapid loss of autocorrelation of complex
nonlinear systems with highly variable output, like the Lorenz
system. On the contrary, the zero-slope behavior of the structure
function of random signals is clearly different from the temporal
structure of complex systems.

Oscillatory Signals
We calculated S(τ ) from sin(x) (Figure 3, middle panel).
Structure functions of oscillatory signals oscillate steadily
between a lower and an upper bound. In general, the frequency of
oscillation is translated into the structure function following the
rule

ω (τ) = ω(I(t))/samp, (6)

where I(t) is the original signal and samp is the sampling rate.
As is the case with random signals, the mean slope of S(τ ) of
perfectly oscillatory signals is close to zero (linear regression,
slope=−1.18 x 10−4).

To test the effect of adding increasing noise levels to an
oscillatory signal, we multiplied a time series of random numbers
with normal distribution (0 ± 1, mean ± SD) by a factor of 1.0,
1.5 and 2.0 successively, and added it to sin(x). We calculated
S (τ ) from the three resulting time series. The results of adding
increasing noise levels are plotted in blue, red and black in the

middle panel of Figure 3. The slope of the temporal structure
function S(τ ) remains around zero as the noise level is increased,
while its amplitude diminishes, due to the effect of the random
variable on the average term of the structure function. It needs to
be noted that the slope of S(τ ) of periodic signals is not zero, if
scales smaller than the period are considered. However, the mean
slope of S(τ ) of periodic oscillatory signals is close to zero, if a
time sufficiently longer than the period itself is measured, which
is observed in our results.

Nonlinear Systems
To analyze the structure function of nonlinear systems with
complex properties we obtained a signal representative of the
time evolution of the well-known, chaotic Lorenz attractor
(Strogatz, 1994).We integrated numerically the Lorenz equations
with the Euler method, then extracted the temporal variable x(t)
and finally calculated the structure function of x(t) (Figure 3,
lower panel). The results show a structure function with a
positive slope at small scales and a clear breaking point. At
this breaking or inflection point, which we have called τ1 in
previous work, the function turns into a plateau, turning more
or less abruptly into a zero-sloped function (Andres et al., 2015).
This behavior is related to the loss of autocorrelation of the
system, associated to its chaoticity. However, the autocorrelation
function C(τ ) is very similar for random and complex systems.
On the contrary, complex systems with long range, nonlinear
correlations (like the Lorenz system) exhibit structure functions
S(τ ) dramatically different from random and oscillatory signals.
The main difference is observed in the mean slope of S(τ ), which
is no longer zero at every scale.

To test the effect of added noise on this nonlinear system,
we followed a similar procedure as with the oscillatory signals.
We multiplied a time series of random numbers with normal
distribution (0 ± 1, mean ± SD) by a factor of 1.0 and 2.0
successively, and added it to the nonlinear time series. The
position of the breaking point in the function does not change
as noise is added to the signal (Figure 3, lower panel, blue line:
no noise, red and black lines: increasing noise levels). However,
the height of the plateau of the structure function is sensitive to
the noise level, and as a consequence the slope of the function
tends to zero as noise is added.

NEURONAL RECORDINGS

To exemplify the implementation of the method, we analyzed
neuronal recordings of the entopeduncular nucleus of the
rat (analogous to the internal segment of the globus pallidus
in the primate/human: GPi). The experimental protocol was
revised and approved by FLENI Ethics Committee, Buenos
Aires, Argentina. Recordings belonged to two groups of
animals: healthy and parkinsonian rats. Detailed methodological
information can be found in Andres et al. (2014a). Briefly,
in adult Sprague-Dawley rats we induced Parkinsonism
implementing the 6-hydroxydopamine (6-OHDA) partial
retrograde lesion of the nigrostriatal pathway. We recorded
spontaneous neuronal activity of the GPi under intraperitoneal
anesthesia with chloral-hydrate and at increasing levels of
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FIGURE 2 | Transformation from a raw neuronal recording into a temporal structure function. (Upper) Sample raw extracellular microelectrode recording of neuronal

activity. This recording was obtained from the entopeduncular nucleus of a healthy rat (technical details can be found in Andres et al., 2014a). The vertical axis

indicates electric potential (mV) and the horizontal axis indicates time (s). The inlet at the lower right shows the whole recording, from which a zoom is shown in the

bigger window. Individual spikes are marked with a red arrow. Once spikes are classified as belonging to a single neuron’s activity, interspike intervals (ISI) are

(Continued)
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FIGURE 2 | Continued

calculated as shown (ISI=time elapsed between the occurrence of a spike and the next). (Middle) Sample time series of interspike intervals, obtained from a neuronal

recording like the one shown in the upper panel. The vertical axis indicates ISI duration (ms) and the horizontal axis indicates ISI number (position in the time series).

Notice the high variability of the ISI, typical of complex systems. (Lower) Temporal structure function obtained from a time series of ISI like the one shown in the middle

panel. The vertical axis is the value of the function S (τ ) and the horizontal axis is the scale τ . In pallidal neurons it is common to observe a positive slope of the function

at lower scales, followed by a breakpoint and a plateau at higher scales, also typical of complex systems. The double logarithmic scale helps visualization of smaller τ .

alertness. Alertness levels are as described in Andres et al.
(2014a): level (1) deep anesthesia; level (2) mild alertness; level
(3) full alertness. We analyzed a total of 45 neuronal recordings,
belonging to the following groups: from 11 healthy animals, 22
neuronal recordings (level 1: n = 5; level 2: n = 11; level 3: n
= 6) and from 9 parkinsonian animals, 23 neuronal recordings
(level 1: n = 7; level 2: n = 9; level 3: n = 7). In Figure 4 we
show sample structure functions of neuronal recordings, to
illustrate the occurrence in neuronal activity of features such as
those of toy systems (randomness, oscillations and nonlinear
properties). A majority of the recordings (64%) showed marked
nonlinear behavior (corresponding to type A neurons of Andres
et al., 2015). Additionally, 13% of the recordings presented
clear oscillations. A minority of neurons (33%) presented a
zero-slope of the structure function at all scales, indicating
random behavior. These percentages did not vary significantly
between the control and the parkinsonian group or at different
levels of alertness, but these results need to be further tested with
greater numbers of recordings.

Two characteristic numbers can be extracted from S(τ ) to
quantify its behavior, when a change of slope typical of nonlinear
systems is observed: the inflection point τ1, where the slope
of the function changes, and the height of the plateau, which
we call Sp. In previous work we developed an algorithm for
the calculation of τ1, and observed a higher τ1 in GPi neurons
with nigrostriatal lesion (Andres et al., 2015). This observation
was done under conditions of full alertness, i.e., animals were
under local anesthesia plus analgesia, alert and head restrained
at the moment of the surgery. Now we calculated τ1 applying
the same algorithm from neuronal recordings obtained during
the whole arousal process, going from deep anesthesia, to mild
and full alertness. All statistical comparisons were calculated
applying the Kolmogorov-Smirnov test; results were considered
statistically significant when p < 0.05. Results show that τ1 is
higher in the parkinsonian group at all alertness levels, with a
more pronounced effect as alertness increases (i.e., as the animal
awakens from anesthesia; Figure 5, right panel). These results
were not statistically significant (p > 0.05) and need to be tested
on more experimental data.

We calculated the plateau height Sp as the mean value of S(τ )
for 100 < τ < 200, a range where all the neurons analyzed
had reached a plateau, if this was present. We have shown in the
previous section that the plateau height is sensitive to the amount
of noise added to a signal. In this sense Sp might not be reliable
as a raw measure to compare neuronal data corresponding
to different experimental groups. This disadvantage can be
overcome by studying variations of Sp instead of raw values, i.e.,
subtracting a given Sp from a previous value of itself obtained
under the same recording conditions. In our study case we

recorded activity from single neurons during long periods of time
(1–3 h), and we can safely assume that environmental conditions
(electrical noise and any other source of interference) did not
vary during the whole recording. We calculated Sp from isolated
segments of activity obtained at the beginning, middle and end of
the recording, corresponding to deep anesthesia, mild alertness
and full alertness, respectively. Thus, we obtained the following
values of Sp: Sp1−2, as the difference between the plateau height
at mild alertness minus the plateau height at deep anesthesia, and
Sp2−3, as the difference between the plateau height at full alertness
minus the plateau height at mild alertness. In the control group
we did not observe any difference between Sp1−2 and Sp2−3,
whereas under parkinsonian conditions Sp1−2 was significantly
higher than Sp2−3 (p < 0.01; Figure 5, left panel).

SUMMARY AND CONCLUSION:
GUIDELINES FOR THE INTERPRETATION
OF THE TEMPORAL STRUCTURE S(τ ) OF
NEURONAL SIGNALS

Nonlinear properties of neuronal activity are critical for normal
basal ganglia functioning and deteriorate in specific ways in
disease, in particular inmovement disorders (Parkinson’s disease,
dystonia, and others) (Montgomery, 2007; Darbin et al., 2013;
Alam et al., 2015). Even more, therapeutic interventions are
able to restitute such properties to normal, suggesting the
clinical importance of quantifying nonlinear features of neuronal
activity (Rubin and Terman, 2004; Lafreniere-Roula et al., 2010).
However, up to now the community has not agreed on any
method as a gold standard to quantify nonlinear properties
of the basal ganglia. This is partly due to difficulties in the
implementation of nonlinear methods of analysis, which are
typically sensitive to a wide range of parameters. Opposed to
that, the temporal structure function S(τ ) is a nonlinear tool
of analysis easy to implement, and robust to short recordings,
but it is not well known and therefore difficult to interpret. We
analyzed the behavior of S(τ ) from signals with known properties
(toy systems), and observed that: (1) S(τ ) has zero-slope at every
scale for random systems; (2) S (τ ) is oscillatory and bounded
for oscillatory systems, and the frequency of oscillations can be
recovered from S(τ ) if the sampling rate is known; and (3) S(τ )
has a positive slope at small scales for nonlinear systems, which
changes to a plateau with zero-slope at large scales.

In the light of our observations for toy systems we analyzed
a number of neuronal recordings of healthy and parkinsonian
basal ganglia at different levels of alertness (from deep anesthesia
to full alertness). In a majority of the neurons studied, nonlinear
behavior was clearly present. In these cases we extracted two
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FIGURE 3 | Structure function of toy signals, with and without added noise.

(Upper) Random signal, before (black) and after (red) applying a low-pass filter.

The slope calculated with a linear regression lies around zero for both cases.

(Middle) Oscillatory signal (sin(x)), with increasing levels of added noise, (blue:

x1.0, red: x1.5, black: x2.0; see the text). The slope is zero on average, but the

oscillations of the signal are clearly translated into the structure function. As

added noise increases, the amplitude of the oscillations diminishes. (Lower)

Lorenz system (x variable; parameters: σ = 10, ρ = 28, β = 8/3), with

increasing levels of added noise, (blue: no noise, red: x1.0, black: x2.0; see the

text). The breaking point lies around 40 < τ1 < 110 for this example. Observe

(Continued)

FIGURE 3 | Continued

that the position of the breaking point in the structure function does not change

as added noise increases, but the height of the plateau diminishes. In the limit,

the initial ascending phase disappears and the slope of the structure function

is zero at all scales, as random dynamics prevail over the nonlinear system.

FIGURE 4 | Different types of structure functions from neuronal recordings

show features of random, oscillatory, and nonlinear systems. (Upper) Sample

neuron with a structure function showing zero-slope at all scales, indicating

random behavior. (Middle) Sample neuron with a structure function showing

oscillations. (Lower) This case is the most representative of all the neurons

analyzed (64%). The structure function has clear, nonlinear behavior.
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FIGURE 5 | The plateau height (Sp) and the inflection point (τ1) characterize the structure function if nonlinearity is present. (Left) The plateau height Sp can be used

to compare the activity of the same neuron at different time points, assuming that recording conditions do not change. In the parkinsonian group, Sp varies

significantly more between anesthesia and mild alertness than between mild and full alertness (*p < 0.01). This is new evidence showing that in Parkinson’s disease

(PD) basal ganglia neurons are unable to handle the awakening process well. This effect is not observed in the control group of animals (Co). (Right) The inflection

point τ1 is higher in the parkinsonian group for all alertness levels, with a more pronounced effect as alertness increases. These results are not statistically significant (p

> 0.05), and need to be confirmed with larger experimental data.

characteristic numbers from S(τ ) to quantify its behavior: (1)
the height of the plateau (Sp), and (2) the scale of the inflection
point or slope change (τ1). Since the plateau height is sensitive
to the noise added to the signal, we used it in a relative way,
measuring the changes of Sp for alertness transitions within
single neuronal recordings, when we can assume that recording
conditions were stationary. For parkinsonian neurons the change
of plateau height from deep anesthesia to mild alertness was
significantly higher than from mild to full alertness (Sp1−2 >

Sp2−3, p < 0.01). This difference in the variation of Sp was
not observed in the control group. The fact that Sp1−2 is
significantly higher than Sp2−3 in parkinsonian animals is in
agreement with previous observations indicating that the basal
ganglia of animals with dopamine depletion do not handle well
the awakening process (Andres et al., 2014a). Importantly, as a
consequence of the averaging process Sp is independent from
the frequency of discharge of the neurons by definition, solving
a previous controversy about the structure function method
(Darbin et al., 2016). Regarding the inflection point τ1, it was
higher in Parkinson’s disease than in control neurons with
a more pronounced effect at higher alertness levels, but this
effect was not statistically significant (p > 0.05) and needs to
be further tested in larger studies. Although preliminary, our
findings are relevant for understanding results obtained from
human surgery on Parkinson’s disease, usually performed with
the patient awake, under local anesthesia only. We report on the
inability of pallidal neurons with Parkinson’s disease to handle
normally the transition from anesthesia to alertness, which might
be a key finding to better understand the pathophysiology of the
basal ganglia.

In previous work, we determined that the positive slope
at small scales of the log-log temporal structure function is
associated with particular properties of neuronal dynamics.
Specifically, in a neuronal network with nonlinear properties we
showed that the slope depends on the coupling strength (Andres
et al., 2014b). This indicates that the temporal structure function

captures critical properties of the underlying dynamics of the
system. Importantly, in our previousmodeling study we observed
that a smaller percentage of neurons behave in random fashion,
which seems to be related to the stability of the system (Andres
et al., 2014b). This finding is now reproduced in our experimental
results.

Finally, we would like to draw some attention to other
nonlinear tools that are available for the characterization of
neurophysiologic signals (Amigó et al., 2004; Pereda et al.,
2005; Song et al., 2007). Every tool shows advantages and
shortcomings, making them more or less suitable for the study
of specific neurologic systems. Recently Zunino et al. introduced
two methods that seem to be particularly powerful for the
analysis of physiologic time series (Zunino et al., 2015, 2017).
A detailed review and comparison of the performance of the
temporal structure function with these other tools is beyond
the scope of this paper. Nevertheless, we are still interested in
a detailed analysis of the temporal structure function, because
it has previously shown to be useful for the characterization
of neuronal spike trains obtained from human patients with
Parkinson’s disease, which tend to be short (around 5,000 data per
time series) (Andres et al., 2016). Another limitation of our work
is that we have studied the temporal structure function of only
one nonlinear system (i.e., the Lorenz attractor). However, our
results are supported by results from other well-known nonlinear
systems, which exhibit similar behavior (Lin andHughson, 2001).

To conclude, we would like to draw some brief guidelines
for the interpretation of the temporal structure function of
neuronal activity. Themost important feature distinguishing S(τ )
of random vs. complex signals is its slope. If S(τ ) has zero slope
for every τ , randomness can be assumed at the scales analyzed,
meaning that the order of the events in the time series (in this
case interspike intervals) is not different from what would be
observed for an independent variable. On the other hand, if S(τ )
has a first segment with positive slope then turning into a plateau,
the behavior falls in the category of complex systems. In this case,
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one can look at τ1 and Sp. The breaking point τ1 is related to
the memory limit of the system, and therefore to its chaoticity.
For scales below τ1 the order of events (ISI) is not random,
and therefore memory or temporal organization is present. In
other words, at scales smaller than τ1 the times of occurrence of
single spikes are not independent from each other, but nonlinear
organization plays a role in the signal. At scales larger than τ1 the
system behaves in random fashion. Regarding the neural code, it
can be assured that at scales larger than τ1 only a rate code or
other averaged coding scheme can be used, since complex time
patterns cannot be transmitted from neuron to neuron beyond
the memory limit of the system (Bialek et al., 1991; Ferster and
Spruston, 1995). The second quantitative measure that can be
obtained from the temporal structure function is Sp. While τ1 is
related to the memory limit and is robust to noisy signals, Sp is
sensitive to added noise. Therefore it is necessary to be cautious
when comparing Sp between experimental data, if it cannot be
assured that the data were obtained under similar conditions, in
particular regarding external noise and interference. If recording
conditions can be safely assumed to be stationary, then variations
of Sp indicate a change in the power of the random components
of the system. Finally, oscillations of the original signal are
translated into the structure function, and the original frequency
can be recovered from S(τ ) if the sampling rate is known.
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