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Purpose: To develop a new intelligent system based on deep learning for
automatically optical coherence tomography (OCT) images categorization.

Methods: A total of 60,407 OCT images were labeled by 17 licensed retinal experts
and 25,134 images were included. One hundred one-layer convolutional neural
networks (ResNet) were trained for the categorization. We applied 10-fold cross-
validation method to train and optimize our algorithms. The area under the receiver
operating characteristic curve (AUC), accuracy and kappa value were calculated to
evaluate the performance of the intelligent system in categorizing OCT images. We
also compared the performance of the system with results obtained by two experts.

Results: The intelligent system achieved an AUC of 0.984 with an accuracy of 0.959 in
detecting macular hole, cystoid macular edema, epiretinal membrane, and serous
macular detachment. Specifically, the accuracies in discriminating normal images,
cystoid macular edema, serous macular detachment, epiretinal membrane, and
macular hole were 0.973, 0.848, 0.947, 0.957, and 0.978, respectively. The system had a
kappa value of 0.929, while the two physicians’ kappa values were 0.882 and 0.889
independently.

Conclusions: This deep learning-based system is able to automatically detect and
differentiate various OCT images with excellent accuracy. Moreover, the performance
of the system is at a level comparable to or better than that of human experts. This
study is a promising step in revolutionizing current disease diagnostic pattern and has
the potential to generate a significant clinical impact.

Translational Relevance: This intelligent system has great value in increasing retinal
diseases’ diagnostic efficiency in clinical circumstances.

Introduction

Deep learning, a burgeoning technology of Artifi-
cial Intelligence (AI), has significantly improved the
state-of-the-art in image recognition, speech recogni-
tion, and navigation.1,2 The astounding methodology
has also been applied into a variety of medical fields in
an attempt to enhance management of various health-
care problems. Multiple studies have shown that deep
learning algorithms performed at a high level when
applied to breast histopathology analysis,3 skin cancer
classification,4 cardiovascular diseases risk prediction,5

lung cancer detection,6 and diabetic retinopathy

diagnosis.7 Gulshan et al.7 was the first to report the

application of deep learning in diagnosing eye diseases.

In the last 2 years, a number of deep learning models

have been developed for the automated detection of

retinal diseases. Diabetic retinopathy, age-related

macular degeneration, and glaucoma were the most

intensively studied diseases.8 More strikingly, the first

medical device to detect mild or worse diabetic

retinopathy by AI (IDx-DR; Technologies Inc., Coral-

ville, IA)9 has been authorized to market by the US

Food and Drug Administration recently. However, the

majority of these studies focused mainly on the analysis

of fundus photographs. The implementation of auto-
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mated diagnosis based on other imaging techniques,
such as optical coherence tomography (OCT), remains
insufficient.

OCT, a noninvasive, noncontact imaging tech-
nique, has become an indispensable tool for the
diagnosis of retinal diseases based on its high
resolution and convenience in clinical practice.10–12

OCT is considered the best diagnostic approach to
diagnose macular diseases when compared to other
imaging techniques, such as ultrasound, fundus
photography, and fluorescein angiography. OCT
images are useful in facilitating decision-making
regarding medical interventions, such as anti-vascular
endothelial growth factor (anti-VEGF) injection and
vitrectomy surgery. The development of automatic
and reproducible OCT classifications should be
helpful in supporting clinical work by promoting
diagnosis efficiency and improving access to care and
professional knowledge, especially in situations where
qualified readers are scarce.

Few prior studies have applied deep learning
methods to diagnose eye diseases by OCT images.13–16

ElTanboly et al.13 developed a deep learning-based
computer-aided system to detect diabetic retinopathy
from a small sample of data (52 OCT scans), achieving
an AUC of 0.98. Kermany et al.14 reported an accuracy
of 96.6%, with a sensitivity of 97.8%, and a specificity of
97.4% in classifying age-related macular degeneration
and diabetic macular edema. Schlegl et al.15 and Lee et
al.16 also proposed deep learning method in detecting
cystoid macular edema and achieved an AUC of 0.94
and a cross-validated dice coefficient of 0.911, respec-
tively.

However, the abovementioned studies focused
only on a binary classification method to address a
‘‘one disease versus normal’’ task. It is difficult to
extend simple binary classifiers into a real clinical
setting where visiting patients suffer from various
retinal diseases. Multiclass classifiers, which can
differentiate a specific abnormality among multi-
categorical abnormalities, is more conformed to the
clinical circumstances. Nevertheless, the implementa-
tion of multiclass classification aimed at identifying
diverse retinal diseases through AI still faces chal-
lenges.

With the aging of the population, patients suffer
from vision-threatening macular diseases continue to
increase. Serous macular detachment, cystoid macular
edema, macular hole, and epiretinal membrane are
treatable macular diseases primarily affecting elderly
patients and can lead to a severe visual loss.
Treatment of anti-VEGF injection or vitrectomy

surgery is generally most effective if carried out
earlier. In the present, OCT is the best modality for
the detection and treatment decision-making of these
four abnormalities in clinical practice.

In order to provide earlier detection as well as
earlier intervention of multiple treatable macular
diseases, we establish an intelligent system based on
deep learning to implement multiclass classification
for OCT images. The system has the potential to
increase diagnostic efficiency, enable easier access to
expert knowledge, facilitate therapeutic decision-
making, and decrease overall healthcare costs. This
study is the first one to design a multiclass classifier
through deep learning to categorize four macular
abnormalities.

Methods

Data Set

This study followed the tenets set forth in the
Declaration of Helsinki, and approval from the
institutional review board of Eye Center, Renmin
Hospital of Wuhan University was obtained. A total
of 60,407 completely anonymized OCT scans (imaged
by Cirrus HD-OCT 4000, Carl Zeiss Meditec, Inc.,
Dublin, CA, with Macular Cube 512 3 128 protocol
and Optic Disc Cube 200 3 200 protocol from
February 1, 2012, to October 1, 2014) were exported
from the Wuhan University Eye Center. All images
were deidentified and encrypted to protect the privacy
and security of patients’ health information. The data
set contains a great diversity of OCT images from all
kinds of patients, including males, females, adults,
and children. In addition, the data set contains scans
from the same patients who underwent the OCT
examination in their follow-up study at different time.

Image Labeling and Training Process

The current study invited 17 licensed ophthalmol-
ogists, who are specialized in retinal diseases diagno-
sis, to screen and label 60,407 OCT scans. Images
were assigned randomly to 1 of 14 junior retinal
experts for the first-round screening and labeling.
Each of them reviewed 4314 OCT images. In the
second round, three senior retinal experts were invited
to confirm (or correct) the labeling results and each of
them reviewed 20,135 OCT images. The criterion for
inclusion is that the image only contained ONE of the
four abnormalities (serous macular detachment,
cystoid macular edema, macular hole, and epiretinal
membrane), also we include the normal images. The

2 TVST j 2018 j Vol. 7 j No. 6 j Article 41

Lu et al.



exclusive criteria are (1) poor image quality; (2)
coexistence of two or more abnormalities; (3)
existence of abnormalities other than the four
abnormalities. There were no images excluded based
on age, gender, or race. The blind expert panel had no
access to deep-learning predictions.

According to the selection criteria, eventually,
25,134 OCT images (including a full range of macular
holes, serous macular detachment, cystoid macular
edema, and epiretinal membrane) were included in the

current study to build intelligent system. Representa-
tive OCT images are shown in Figure 2. Image
numbers of each category in training set and test set
are summarized in Table 1. We selected 3317 images
randomly using a simple random sampling method
and treated them as a test set. The remaining 22,017
images were used as the training set (Fig. 1). The
training set is used to fit the parameters of a model.
The test set is used to evaluate the final performance
of the trained model. During the training process, we

Figure 1. Overall experimental design.
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used 10-fold cross-validation method. Cross-valida-
tion methods have been widely used to estimate and
optimize algorithms.17 The training data set is
randomly and equally divided into 10 subsets. Nine
subsets were used to train the model, and the
remaining one subset was used to estimate how well
the model had been trained and optimized the
parameters. This process was repeated 10 times before
the algorithms were ready to be tested.

Development of the Intelligent System

In this study, we used the 101-layer deep convo-
lutional neural network (CNN)-ResNet. It was the
championship model from the ImageNet Large Scale
Visual Recognition Challenge of 2015.18 The CNN
consists of multiple convolutional layers that extract
features and transform input images into hierarchical
feature maps: from simple features, such as edges and
lines, to complicated features, like shapes and colors.
It also includes pooling layers (including average pool
and max pool) that merge semantically similar

features into one to reduce the dimensionality of the
extracted features and fully connected layers to
combine these features and output a final probability
value for the class. The more network layers we use,
the more features that algorithm can learn. Recent
studies indicate that network depth is beneficial for
classification accuracy.19 However, with the network
depth increasing, accuracy gets saturated and then
degrades rapidly.20 The ResNet framework can tackle
this problem. In the network, shortcut connections
are added for every three convolutional layers along
the whole deep network (Fig. 3). The shortcut
connections simply perform identity mapping, which
does not add any extra parameter or computational
complexity. These connections make the deep net-
work easier to optimize, and easier to tackle the
problem of gradient vanishing (or gradient explode)
during the training process. Hence, ResNet makes it
possible to gain higher accuracy from a considerably
deeper network than obtained from shallower net-
works when performing image classification tasks.18

An algorithm can apply cumulative knowledge
learned from other data sets to a new task by using
transfer learning.21 A large data set is required to
train a completely blank deep CNN, which has
millions of weights to adjust. Transfer learning is a
highly effective technique that has been used increas-
ingly in the application of deep learning. The
methodology is to retrain an algorithm that has

Figure 2. Representative OCT images. The arrows and the
asterisks in A–D indicate the lesion sites. (A) Cystoid macular
edema. (B) Epiretinal membrane. (C) Macular hole. (D) Serous
macular detachment.

Table 1. Numbers of Images in the Training Set and
Test Set

Categories Training Set Test Set

Normal 15,485 2580
Cystoid macular edema 1220 105
Serous macular detachment 2377 246
Epiretinal membrane 2252 141
Macular hole 683 45
Total 22,017 3117

Figure 3. A diagram showing a 101-layer ResNet. Conv, convolutional layer; AvgPool, average pool; FC, fully connected layer.

4 TVST j 2018 j Vol. 7 j No. 6 j Article 41

Lu et al.



already been pretrained on millions of general images
by a specific data set. Therefore, transfer learning
makes it possible to obtain a highly accurate model
with a relatively small training data set. The ResNet
used in our study was pretrained on ImageNet.22

Universal features learned from the pretraining were
reused for the OCT classification tasks in this study.

We independently trained four binary classifiers to
discriminate abnormalities from normal OCT images
and combined the four classifiers as a system. When
testing the system, each OCT image will go through
four rounds of category and then the system will
output a final categorization (Fig. 4).

Statistical Evaluation

To evaluate the performance of the intelligent
system, accuracy, sensitivity, specificity, and the area
under the receiver operating characteristic curve
(AUC) with 95% confidence intervals (95% CIs) were
used (Fig. 1). A receiver operating characteristic
(ROC) curve was created by plotting the detection
probability for each algorithm across a continuum of
the threshold. For each threshold, the sensitivity and
the false positive rate (1-specificity) were plotted
against each other. The AUC can be very useful for
the quantitative assessment of a model. The AUCs of
effective models range from 0.5 to 1.0; the higher the
value of AUC, the better the performance of the
model.

A kappa value was also calculated to examine the
agreement between the system with the ground truth

on the assignment of categories of a categorical
variable. Kappa generally ranges from 0 to 1, where
larger numbers mean better reliability.23

The performance of the system was further
assessed by comparing to results obtained by two
experts with rich clinical experience (Fig. 1). The data
set used for comparison consisted of 300 normal
images (randomly selected from normal images in the
test set) and 537 abnormal images (the same as those
in the test set). The statistical analyses were performed
using GraphPad Prism software version 7.0 (La Jolla,
CA) and IBM SPSS Statistics 19 (Armonk, NY).

Results

This intelligent system was evaluated in diagnosing
cystoid macular edema, epiretinal membrane, serous
macular detachment, and macular hole from OCT
images. An accuracy of 0.959 with a sensitivity of
0.942 and a specificity of 0.964 was obtained in the
multiclass classification (Table 2). A ROC curve was
generated to evaluate the system’s performance on

Figure 4. The workflow of our intelligent system.

Table 2. Performance of the Proposed System and
Human Clinicians for Classification of the Four
Abnormalities

Accuracy Sensitivity Specificity Kappa

System 0.952 0.940 0.973 0.929
Expert 1 0.959 0.970 0.940 0.882
Expert 2 0.904 0.931 0.950 0.891
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discriminating diseases from normal control (Fig.
5A). The AUC was 0.984 (95% CI, 0.976–0.991).

We further compared the performance of the system
with the results obtained by two experts. Expert 1 got a
sensitivity of 0.97, an accuracy of 0.959, and a
specificity of 0.94, while expert 2 got a sensitivity of
0.931, an accuracy of 0.904, and a specificity of 0.95
(Table 2). The sensitivities and specificities of the two
experts were plotted on the ROC curve in Figure 5A
for comparison. The operating point of expert 1 fell on
the ROC curve, while the operating point of expert 2
fell beneath the curve.

Table 3 shows the specific accuracy of each category
obtained from the proposed system and the two
experts. The results showed that the system can
correctly identify the healthy control and the four
abnormalities with accuracies of 0.973, 0.848, 0.947,
0.957, and 0.978, respectively (Table 3). The AI system
outperformed the human experts in diagnosing nor-
mal, epiretinal membrane, and macular hole while the
physicians did slightly better for cystoid macular
edema. In the categorization of serous retinal detach-
ment, the system’s accuracy was 0.032 better than
expert 2, with 0.041 poorer than expert 1 (Fig. 5B).

Figure 5. (A) ROC curve for diseases detected by the system, with the operating points of the two experts shown for comparison. (B) A
histogram comparing the specific accuracy of each category between the two experts and the system. (C) Three confusion matrixes for
the intelligent system and the two experts’ predictions, respectively.
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Three confusion matrixes shown in Figure 5C
reveal the specific assignment of each image of
different predictions. The rows represent the samples’
true label, and the columns provide the predicted
label. Each diagonal element of the heatmap repre-
sents the percentage of images classified correctly for
the corresponding class. Off diagonal elements show
the percentage of misclassified images and how they
are misclassified. Misclassification cases and types in
the intelligent system were significantly fewer than
those from ophthalmologists. The kappa values in
Table 2 also described the statistics results, with 0.929
for the system, 0.882 and 0.889 for the two experts,
respectively.

The ROC curves of the four-constituent binary
classifiers in identifying the corresponding OCT
images are shown in Figure 6. The AUC of the four
binary classifiers were 0.996 (95% CI, 0.993–0.999),
0.997 (95% CI, 0.994–0.999), 0.998 (95% CI, 0.997–
0.999), and 0.999 (95% CI, 0.998–1.000), respectively.

Discussion

In this study, a deep learning-based system was
built to automatically classify four category OCT
images. The proposed system yielded a robust
accuracy at a level equivalent to or better than that
of human experts in identifying the four abnormal-
ities. Furthermore, the predictions of the system had
better consistency and higher reliability than experts.

Serous macular detachment, cystoid macular
edema, macular hole, and epiretinal membrane have
been chosen in this initial study. They were selected
based on (1) easy detectable OCT characteristics; (2)
large sets of data; (3) common in clinical practice.
Automatic detection of these abnormalities would
enable early detection as well as early intervention
and can effectively reduce the burden on patients and
promote their quality of life. We trained four binary
classifiers independently, with the images of the

specific category as positive samples, and normal
macular images as negatives. The four binary
classifiers showed excellent performance in identifying
corresponding abnormalities from normal images. We
then integrated four binary classifiers to build the
intelligent system and evaluated its performance in
categorization. The robust performance shown in the
results demonstrated that our methods were plausible
and effective to implement automated categorization
of the four abnormalities from OCT images. Further-
more, our system has the ability to recognize multiple
abnormalities from complex OCT scans according to
the algorithms we trained. We tried a small number of
complicated images, including epiretinal membrane
with macular edema, macular hole with macular
edema, and macular edema with serous retinal
detachment. The accuracy was much lower (data
not shown), demonstrating the need for further work
to improve accuracy in recognizing complicated
images.

The most prominent advantage of our study is
probably the attempt to address the multiclass OCT
image classification. Although many other deep
learning approaches involved multiple classes, they
mainly focused on the staging of diseases.21,24–26 Few
studies have focused on the automated classification
of diseases/abnormalities in ophthalmology. Choi et
al.27 carried out a study on fundus images, applying
deep learning to automatically detect multiple retinal
diseases with accuracy that ranged from 30.5% to
87.4%. Kermany et al.14 established a system based on
OCT images to automatically detect age-related
macular degeneration and diabetic macular edema,
achieving an accuracy of 96.6%.

In our study, we developed a multiclass diagnostic
system for the automated diagnosis of macular hole,

Table 3. The Specific Accuracy of Each Category of
the Proposed System

Category System Expert 1 Expert 2

Normal 0.973 0.940 0.950
Cystoid macular edema 0.848 0.881 0.876
Serous macular

detachment
0.947 0.988 0.915

Epiretinal membrane 0.957 0.794 0.908
Macular hole 0.978 0.867 0.889

Figure 6. ROC curves for binary classifiers to discriminate cystoid
macular edema, macular hole, epiretinal membrane, and serous
macular detachment from normal ones.
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epiretinal membrane, serous macular detachment,
and cystoid macular edema from OCT images. Such
a system enables a timely and accurate diagnosis of
severe conditions on a tissue map and can discrimi-
nate the four abnormalities from each other with
accuracy comparable to human experts. It can also
facilitate therapeutic decision-making (e.g., close
follow-ups, repeated anti-VEGF injection, or prompt
surgery) and help to prevent diseases from getting
worse. Prospectively, this system has the potential to
enhance diagnostic efficiency and improve patient
outcomes with better applicability to the clinical
circumstances than simplified binary classification
models.

Most AI studies based on OCT focused on the
image segmentation, which involved complicated
feature selection and extraction.13,16,28–31 Moreover,
a minor error in segmentation would lead to
misclassification. But for the deep learning technolo-
gies used in this study, no OCT segmentation was
needed. These substantially deeper networks (101
layers) can acquire richer and more discriminative
image characteristics for more accurate recognition
than either low-level, hand-crafted features or CNN
with shallower architectures.1,18 In addition, the data
set used to train, validate, and test the deep learning
algorithms was larger than those of previous studies.
Sufficient data is the premise for good performance in
deep learning; otherwise, the algorithm may fail to
learn the accurate features of each abnormality and
therefore compromise accuracy.

Limitations of this study must be considered. First,
the OCT images in this study were collected from only
one image center. Device settings, camera systems,
and population characteristics may affect the OCT
images, and so does the system’s performance.
Additionally, our data set contained scans from the
same patients who underwent the OCT examination
in their follow-up study at a different time, which
might reduce data diversity and affect algorithms’
generalization ability. To further validate this intelli-
gent system, data sets from different eye centers and
larger patient cohorts will be required in subsequent
studies.

Second, to identify complex OCT images is of
great importance toward clinical translation. Due to
the limit number of images, we only tried a small
number of complicated images to test the system’s
performance in recognizing OCT scans with multiple
abnormalities. Lager data sets of complex OCT
images are needed to validate and optimize our

system and make it an efficient intelligent tool for
the clinical circumstances.

Third, deep learning’s nature of ‘‘black box’’
makes it unclear how the algorithms analyze patterns
and make decisions at the image level. A visualization
of the pixels contributing the most to the algorithm’s
classification is needed in subsequent studies. This
could potentially assist real-time clinical validation
and future reviews or analysis for both patients and
physicians.14,32,33

Overall, this study proposed a novel deep learning-
based system that can implement automated catego-
rization of four abnormalities from OCT images with
robust performance. This is an initial step toward
clinical translation. More data sets and abnormalities
should be involved to further optimize the system and
make it a practical intelligent tool in clinical
circumstances. Moreover, while this study offers a
promising framework for an automated identification
of abnormalities, single OCT images cannot always
guarantee the correct diagnosis of a specific retinal
disease (e.g., diabetic retinopathy or glaucoma) in
clinical practice. To this end, multimodal clinical
images, such as images of OCT angiography, visual
field testing, and fundus photography, should be
included in the AI diagnosis of retinal diseases. This
generalized AI system based on multimodal data has
the potential to revolutionize current disease diag-
nostic pattern and generate a significant clinical
impact.
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