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Abstract

Biological membranes play key roles in cellular compartmentalization, structure, and its sig-

naling pathways. At varying temperatures, individual membrane lipids sample from different

configurations, a process that frequently leads to higher-order phase behavior and phenom-

ena. Here we present a persistent homology-based method for quantifying the structural

features of individual and bulk lipids, providing local and contextual information on lipid

tail organization. Our method leverages the mathematical machinery of algebraic topology

and machine learning to infer temperature-dependent structural information of lipids from

static coordinates. To train our model, we generated multiple molecular dynamics trajec-

tories of DPPC membranes at varying temperatures. A fingerprint was then constructed

for each set of lipid coordinates by a persistent homology filtration, in which interactions

spheres were grown around the lipid atoms while tracking their intersections. The sphere

filtration formed a simplicial complex that captures enduring key topological features of the

configuration landscape, using homology, yielding persistence data. Following fingerprint

extraction for physiologically relevant temperatures, the persistence data were used to train

an attention-based neural network for assignment of effective temperature values to selected

membrane regions. Our persistence homology-based method captures the local structural

effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g.

sterols and proteins. This topological learning approach can predict lipid effective tempera-

tures from static coordinates across multiple spatial resolutions. The tool, called MembTDA,

can be accessed at https://github.com/hyunp2/Memb-TDA.
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1 Introduction

Biological membranes are crucial for cellular compartmentalization and structural integrity,

as well as act a major platform for signaling pathways that govern environmental response.1

Membranes also serve as the primary boundary between pathogens and internal cellular

compartments, thus being essential in both physiological and pathophysiological cellular re-

sponse.2,3 Lipid membranes provide a structural context for functional protein conformations,

for both peripheral and transmembrane proteins.4–6 Membrane composition is ubiquitously

heterogeneous, consisting of variable lipids, sterols, and proteins.7 Individual lipids can sam-

ple from multiple acyl tail configurations, depending on local environment, pressure, and

temperature, leading to distinct membrane properties.8–10

In the case of homogeneous lipid compositions, membranes experience temperature-

dependent, higher order phase phenomena, for example, transformation between the gel

and liquid phases, as a result of shifting lipid acyl tail configurational energy basins. Lipid

order parameters (SCH/SCD) serve as a way to capture configurational properties of lipids.11

The order parameter for an acyl lipid tail is calculated using the angle, θ, formed between

the bilayer normal and the carbon-hydrogen, or carbon-deuterium, bond vector:

SCH = ⟨3 cos2θ − 1⟩/2,

where the angular brackets, ⟨...⟩, represent temporal/molecular ensemble averages.11 Through

molecular dynamics (MD) simulations, one can capture atomic representations of individ-

ual lipid configurations. When used in conjunction, order parameter calculations from MD

trajectories can help refine force fields and provide bulk information on phase behavior.12

Here we present a novel method for characterizing lipid order using a topological learning

approach with MD, as an alternative to SCD calculations. Our approach learns the underlying

temperature-dependent, potential energy surface from a wide range of lipid configurations,

obeying a Boltzmann distribution sampled from equilibrium MD simulations, providing an

effective temperature estimate for individual lipids (Figure 1).

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569053
http://creativecommons.org/licenses/by-nc-nd/4.0/


T

X

Figure 1: Schematic view of the configurational manifold mapped by MembTDA. Here we show configuration
space X versus MD input temperatures T. The height represents a configuration probability density, with
the phase transition temperature shown as a black line where two prominent configurations are of equal
probability. MembTDA maps out this surface and infers a distribution of likely configurational temperatures,
based on potential energy features derived from static coordinates, for which an expectation value yields an
effective temperature.

Our method, named MembTDA, leverages topology, a branch of mathematics concerning

sets that contain an inherent structure that is preserved under continuous deformations.

Topological data analysis (TDA)13 has rapidly become one of the main tools used by arti-

ficial intelligence researchers to agnostically extract feature information from various data

sets. TDA focuses on the inherent topological features of the data, to create a topological

fingerprint represented as bar codes, diagrams, or images (Figure 2). One clear benefit of

TDA is the ability to cluster data consistently over other convergence-based methods, as

well as being resilient to perturbations, specifically with the use of TDA techniques like

persistent homology (PH).14,15 PH is a method of extracting both geometric and topological

information from a point cloud, like atomic coordinates. Major benefits of the PH method-
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ology include robustness under perturbations, characterization of points clouds of varying

densities, and the potential for abstract feature comparison via the Wasserstein distance.14–16

The robustness of PH lends itself nicely to the complex nature of biological data analysis.

In the case of biological membranes, lipids can have variable acyl tails as well as variable

headgroups;17 these variable factors and underlying constant features can be captured using

PH even under perturbative effects, like dynamics. Capturing conserved topological fea-

tures of membrane data using persistence homology, allows us to train neural networks for

biophysical and thermodynamic feature prediction, like temperature.

Machine learning (ML) or deep neural network can be used to extract hidden patterns

that are usually hard to detect using conventional techniques. These include, but not limited

to, predicting protein structures to predicting qualitative or quantitative molecular proper-

ties.18–23 In this work we train a deep neural network model specialized in processing images,

such as Visual Transformer (ViT)24 25 or ConvNeXt,26 with persistent data information of

lipid coordinates at varying temperatures. By marrying ML with TDA, we demonstrate our

model’s capability in predicting individual lipid’s effective temperatures. MembTDA maps out

the configurational manifold of lipids and allows for inferring an effective temperature from

a distribution of likely configurational temperatures Figure 1.

2 Methods

Our approach is comprised of three major elements. First, we create a molecular data

set for lipids at varying temperatures using molecular dynamics (MD) simulations. Then

we featurize the MD data using PH (specifically, persistence images). Lastly, we train an

attention based transformer using the data from PH and MD.

2.1 Molecular Dynamics Simulations

A major part of model development is data accumulation. Our data set consisted of trajec-

tories from MD simulations of membranes in 51 different temperatures ranging 280–330 K,

spaced apart by 1 K. The model lipid bilayer consisted of 117 dipalmitoyl-phosphatidylcholine
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(DPPC) lipids per leaflet and was constructed using the CHARMM-GUI webserver.27 The

system was solvated and ionized with 150 mM NaCl to mimic cellular conditions. The

CHARMM36m28 force field parameters and the TIP3P water model29 were used for all the

simulations. The equilibration of the systems was performed using the NAMD.30,31 A 100-ns

production run was then performed for each temperature replica with GPU-resident NAMD

to ensure optimal GPU scaling.31 Observed gel and liquid phase transitions in the simulated

bilayers were captured within the first 20 ns of each simulation replica. Only the last 200

frames (2 ns) were used for model training to minimize the effects of the degenerate starting

conditions. In total, the simulation sampling amounted to 100 ns per replica, approximately

an aggregate of 5µs sampling.

As in the equilibration runs, the production simulations were performed as an NPT

ensemble at varying temperatures from 280 K to 330 K with a pressure of 1.0 atm. An inte-

gration time step of 2 fs was used throughout. The Nosé-Hoover Langevin piston method32–34

was used to maintain a constant pressure, with temperature maintained constant via Langevin

dynamics with a 0.5 ps−1 damping coefficient.35,36 A 12-Å cutoff was used for nonbonded

interactions with a smoothing function implemented after 10 Å. The bond distances of the

hydrogen atoms were constrained using the SHAKE algorithm.37 For long-range electrostatic

calculations, the particle mesh Ewald (PME) method38 was used, with a grid density of more

than 1 Å−3. Visualization and analyses of the simulations were done using Visual Molecular

Dynamics (VMD)39 and MDAnalysis.40

2.2 Persistent Homology

Persistent homology (PH) is a method of extracting both geometric and topological infor-

mation from a simplicial complex constructed from a point cloud, like atomic coordinates.

A simplicial complex K is a collection of simplices in Rn. Simplices are topological descrip-

tions of connected points, where a single point is a 0-simplex, two connected points form a

1-simplex, three points a 2-simplex, and so on (Figure 2). In the case of a point cloud, like
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the coordinates of a phospholipid bilayer or a protein, we have a collection of 0-simplices,

i.e., isolated points.

Figure 2: Overview of persistent homology (PH) calculations. a) To extract topological features via PH, we
first construct a simplicial complex on the point clouds obtained from lipid atomic coordinates. A filtration
value, α, is increased, which increases the radii of spheres surrounding every point in the point cloud. An
example simplicial complex at varying filtration values is shown. b) The topological features in the simplicial
complex can be represented as a persistence diagram depicting birth versus death of features. c) Plotting
persistence (death minus birth) versus birth, and performing a Gaussian kernel approximation on the diagram
yield an image that is amenable to visual transformers, called a persistence image.

In PH, we measure the unique fingerprint of a point cloud (atomic coordinates in the

case of lipids) by tracking the topology of its simplicial complex at a varying filtration

parameter α. To vary the filter parameter, we grow n-dimensional spheres around each

vertex (individual point) of the point cloud. In our work, n = 3, because the points represent

the atomic Cartesian coordinates of lipids. As the radius, the filtration parameter α, of the

spheres increases, the ratios of n-simplices vary depending on the intrinsic structure of the

data. We perform a filtration of the 0-simplicial complex by growing n-dimensional spheres

around each point, starting with a radius of α = 0 and fully disconnected 0-simplices. As we

increase α, we keep track of overlaps between neighboring spheres such that two overlapping
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spheres form a 1-simplex (i.e., an edge), trisecting spheres form a 2-simplex (i.e., a triangle

face), and so on.

More symbolically, starting from a point cloud {x1, x2, ..., xn}, as in the case of the Carte-

sian coordinates, we can construct a simplicial complex by growing n-dimensional spheres

around each point and tracking sphere intersections. In the case of an α-complex construc-

tion,41 we begin by creating a Voronoi partition, Vxi
, of our point cloud:

Vxi
= {x : |xi − x| ≤ |xj − x| for i ̸= j}

Using the condition that our α-complex can only reside within our Voronoi partition, we

then grow spheres, Bα, around each point:

Bα(xi) = {x : |xi − x| ≤ α and x ∈ Vxi
}

The process of growing spheres around each vertex is referred to as a filtration. Taken

together, the intersection of our simplices at every radius α forms a simplicial complex, in

this case an α-complex:

Xk
α = {(xi1 , xi2 , ..., xik) :

⋂k
j=1Bα(xij) ̸= 0}

Our α-complex, Xk
α, contains information of the connectivity of our system at varying

radii, α. We then identify holes in our data by applying homology to the α-complex.42

Ultimately, the homology of the varying filtration value α yields information on topolog-

ical and geometric features. We can visualize the birth and death of the captured features

obtained from PH from the varying filtration value using persistence barcodes, persistence

diagrams, and persistence images, all of which are examples of persistence data Figure 2-a.

Applying homology to the simplicial/α-complex, comprised of the simplices at all varying

radii, yields topological features such as birth and death information of 0-, 1-, 2- homology

groups (i.e., connected components, holes, and voids); we denote these homology groups

H0, H1 and H2, respectively. The topological features attained from PH are primarily repre-

sented visually as persistence diagrams and persistence images (Figure 2-b, c). In our work,
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we interchangeably use terms PH, persistence data, topological fingerprints, or topological

features, to refer to extracted topological data obtained from the TDA approach.

Although persistence barcodes and persistence diagrams are readily interpretable for

humans, their sparse nature is less amenable to learn patterns for deep learning-based models

such as visual transformers (ViT)24 using the attention mechanism43 or convolutional neural

networks. To address the sparse nature of persistence diagrams, we transform them into

persistence images,42 a process called PH vectorization, which leverages Gaussian kernel

approximations to create topological fingerprints that can be readily fed through a computer

vision based deep neural network to learn complex patterns and predict properties. The

reasons for choosing vision based deep neural network architectures are further elaborated

in subsection 2.3.

Instead of birth versus death information, persistence images have persistence versus

birth; where persistence is characterized by death minus birth.42 Using every 10 ps of the

last 2 ns of the membrane simulations at variable temperatures, coordinate data of individual

lipids were used to form the persistence images Figure 3.

2.3 Deep Learning Model for Processing Persistence Images

In our work, we used ViT architecture for prediction of effective temperatures. The ViT

architecture we used was based on window attention of Swin Transformer version 225.44

The objective function is the temperature class prediction, LCE(pθ(Ti), Ttrue), and expected

temperature prediction, LMSE(Ei, Ttrue). By training MembTDA with bi-objective functions,

we can optimize our neural network model for a more robust representation learning of our

input. Our overall workflow is described in Figure 3 and elaborated further in Figure 5.

3 Results

Lipid bilayer phase transitions are readily characterized experimentally by metrics such as

heat capacity and acyl tail order parameters. Our topological deep learning approach for

characterizing lipids allows us to probe lipid phases for individual lipid molecules. We demon-
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Figure 3: MembTDA overall workflow. First MD data are fed as an input to the workflow as coordinate
patches, either as individual lipids or as patches. The atomic coordinates then undergo PH vectorization
(diagram to image transformation), in which topological features are characterized and represented as persis-
tence images. Each persistence image undergoes a flattening and linear embedding step, including patching
and positional embedding. The embedded data are then fed through a transformer (ViT), with a temperature
class label from the MD input temperature. The model ultimately acts as a classifier with a distribution of
probability values for possible temperature classes, for which an expected value yields an effective tempera-
ture TE.

strate the utility of MembTDA on homogeneous and heterogeneous membranes, including, lipid

bilayers simulated at variable temperatures, and bilayers with transmembrane or peripheral

protein systems.

3.1 Homogeneous Membranes at Variable Temperatures

To assess the ability of MembTDA to identify and classify lipid phases, we performed infer-

ence on the lipid training set and report the effective temperature distribution in Figure 4-b.

Inference on the initial training set’s effective temperatures, the distribution obtained by cal-

culating expected values of MembTDA output classes, reveal a seemingly bimodal distribution

with internal effective temperature minima at 297.29 K and 306.44 K.

According to Khakbaz et. al.,45 308.15 K is where Lα (crystalline liquid) to Lβ/Pβ
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Figure 4: Inference of entire MD data set. a) A small subset of DPPC lipids from membrane simulations
across 51 temperatures (280-330K) was used to train the ViT-based MembTDA. b) Applying the trained
MembTDA back on the training set to capture temperature class expectation values yielded a bimodal effective
temperature distribution. MembTDA effectively classifies lipids as either gel or liquid phase. MembTDA also
captures a Lα/Lβ phase transition at 306.44K, and acyl tail tilting at 297.29K.

(gel/ripple, respectively) transition occurs, suggesting a sharp decrease in surface area at

this temperature. In addition, according to the authors,45 at 298.15 K, the Lβ phase oc-

curs with predominantly tilted acyl chains with respect to the membrane normal. Our MD

simulation environment closely matched that used in Khakbaz et. al.45 (i.e., NAMD,30,31

Charmm3646 parameters, DPPC lipids), from which MembTDA predicted two biophysically

significant temperatures, purely from persistence data followed by neural network opera-

tion. The results demonstrate that MembTDA is robust at capturing this aspect of the lipid

membranes, in this case phase transitions. The absolute errors between temperatures from

Khakbaz et. al.45 and MembTDA predictions of melting and chain tilting temperature is 1.7 K

and 0.86 K, respectively.

3.2 Transmembrane protein in POPC – AQP5

Aquaporin 5 (AQP5), a protein involved in water homeostasis, was previously simulated

in our lab in a 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) bilayer with a

thermostat input temperature of 310 K. Unlike DPPC, POPC contains asymmetrical acyl tail
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lengths, altering its melting temperature and membrane dynamics.47 Inference on this system

revealed an effective temperature distribution above the melting temperature of DPPC and

POPC, indicative of highly disordered lipids, potentially due to protein-lipid interactions.
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Figure 5: Inference on out of training data distribution. Effective temperature estimates for heterogeneous
membranes containing varying proteins.
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3.3 Transmembrane protein in POPE – LaINDY

LaINDY, a transmembrane bacterial transporter, was simulated previously in our lab in

a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) membrane. Like POPC,

POPE contains asymmetrical acyl tails, but also has a different head group (ethanolamine)

than both DPPC and POPC. Inference on this system revealed two distinct peaks, potentially

indicative of variable protein-lipid interactions between LaINDY and POPE. This analysis

demonstrates the ability of MembTDA to perform inference on lipid head groups outside the

training data.

3.4 Peripheral Membrane protein in POPC/POPS - β2GP1

β2GP1 a peripheral membrane protein known to bind 1-palmitoyl-2-oleoyl-sn-glycero-3-

phospho-L-serine (POPS) lipids, was simulated previously in our lab in an equal ratio of

POPC:POPS membrane at 310 K. Effective temperature inference on this heterogeneous

membrane revealed two distinct distributions across the membrane. Upon decomposition of

POPS and POPC effective temperatures, we identified that MembTDA is able to distinguish

between POPC and POPS lipids. We find this remarkable since our model was trained

purely on DPPC persistence data, and the input point cloud contained no information on

charge, atom types, or connectivity. Furthermore, the low effective temperature distribution

captured for POPS is interesting in the context of β2GP1 binding specificity, since β2GP1 is

known to selectively bind POPS-rich membranes. Furthermore, we observe that the distri-

bution of effective temperatures for POPC from the decomposed heterogeneous membranes,

closely resembles the distribution observed for AQP5-embedded POPC.

In the Supplemental Figure S11 and Figure S12, we show the overall H1 Wasserstein

matching diagram and close-up view of the same diagram in the 0.2-0.4 birth-death range

for a better demonstration. We chose 100 random lipids, each from three temperature

categories, i.e. low, melting, and high temperatures, resulting in a total of 300 samples,

calculated persistence diagrams and overlaid them with colors labeled in the legend (e.g.,
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labeled “all lower temps” with an “o” marker). Then we calculate barycenters of each

temperature categories 100 sample persistence diagram birth-death points (e.g. labeled

”lower temp”, with an ”X” marker). Barycenters are centroids of non-linear systems such as

birth-death points of persistence diagrams.48 The Wasserstein distance is a metric to compare

the similarity between two persistence diagrams. The calculation of the Wasserstein distance

discerns which points of one diagram are similar to those of another diagram, hence matching

birth-death points between two diagrams. These matching points are represented as an edge

connecting two barycenter points in supplemental Figure S12 (i.e. blue ”X” to yellow ”X”

and to red ”X”).

From the Wasserstein diagrams, we can conclude that there are prominent H1 features

(holes) appearing and persisting about 0.2 α radius. When observed closer (supplemental

Figure S12), we can see that barycenters of three different temperature categories persistence

diagrams show movements, indicated by edge connections. This shows that there distinct

persistence data encoded across three lipid temperature categories, indicating a temperature

dependent flow of topological features. This is consistent with the idea that MembTDA maps

out the underlying configurational landscape as seen in Figure 1.

4 Discussion

We present a novel lipid characterization method, termed MembTDA, that estimates effective

temperature of lipids from static coordinates, as a topological alternative to the commonly

used SCH/SCD order parameter calculations. We demonstrate MembTDA’s effectiveness as a

functional classifier by performing inference on homogeneous and heterogeneous membranes,

with variable tails (e.g., DPPC, POPC), head groups (e.g., POPC, POPE, and POPS), and

in the presence of proteins (e.g., AQP5, LaINDY, and β2GP1). Although our methodology

functionally acts as a classifier, the reliance on coordinate data, i.e., point cloud information,

necessarily implies that the method is inherently based on potential energy features, which

are functions of xyz-coordinates. Furthermore, since temperature is predominately calcu-
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lated as a kinetic energy parameter from the equipartition theorem,49(ΣN
i

1
2
miv

2
i = 3

2
NkBT ),

the effective temperatures of static snapshots we report are not exactly representative of

traditional bulk temperature, an ensemble property. The effective temperature we report

is a quantity obtained by taking the expected value of the MembTDA output distribution,

which is based on a mapping of the configurational landscape with an associated input MD

temperature (Figure 4).

More accurate predictions of the local temperature may be possible by taking velocity in-

formation from simulation, and using the equipartition theorem, ⟨EK⟩N = 3
2
kBT , to estimate

individual lipid temperatures. Typically the average kinetic energy of the entire simulation

system, including all non-lipid constituents, is used to calculate the system’s temperature:

T = 2⟨EK⟩N
kB

,

accounting for degrees of freedom N as 3N-3 (Supplemental Figure S2, Supplemental Fig-

ure S3, Supplemental Figure S4). Due to the variable molecular degrees of freedom arising

from differing intra-molecular (including the number of atoms, bonds, angles, and dihedrals)

and inter-molecular interactions between lipids (contextual information such as lipid-lipid or

lipid-protein association), the use of the equipartition theorem to estimate individual lipid

temperatures based on their kinetic energy is non-trivial.50 Estimates of individual lipid

temperatures using kinetic energy formulations of temperature yield individual lipid temper-

atures, sometimes over 50 K below the global system temperature (Supplemental Figure S5,

Supplemental Figure S6, Supplemental Figure S7). Alternatively to a kinetic energy-based

estimate for temperature, a configurational temperature may be also calculated using the

Jepps formulation:

kBTconfig = ⟨∇U ·∇U⟩
⟨∇·∇U⟩ ,

where U is the system’s potential energy and ⟨...⟩ denotes an ensemble average.51 Although

based on the potential energy, calculation of the configurational temperature from the Jepps

formulation ultimately requires computationally expensive Hessian calculations. The term
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⟨∇ · ∇U⟩ necessitates calculating the divergence of the gradient of the potential energy,

which requires a Hessian and degrees of freedom information, making accurate configura-

tional estimates prohibitive.51,52 Furthermore, in practice, MD users primarily only store

atomic coordinates to save on storage and computation costs; only writing out velocity in-

formation for restart purposes.53 MembTDA provides a pragmatic way to estimate effective

temperatures from data typically saved by MD practitioners, allowing post-processing of

extant simulation trajectories. In addition, the ability to analyze static coordinates lends to

potential applications in analyzing effective temperatures in novel structural data.

MembTDA was originally trained on DPPC membrane structures across different tempera-

tures. We demonstrate that the so trained MembTDA can capture two important temperatures

of DPPC membranes, namely chain tilting and melting temperatures as mentioned in sub-

section 3.1. This result is particularly interesting since MembTDA was only given persistence

data to classify into one of the 51 temperature classes, and was trained only on a partial

subset. However, once trained, when given all the lipid tail dataset, MembTDA predicts critical

unique temperatures that were never explicitly set as a training objective or part of the neu-

ral network architecture. The information captured in the persistence data and learned by

the neural network has shown that the two local minima of the DPPC effective temperature

distribution curve are indeed biophysically relevant temperatures as reported in Khakbaz et

al.45

The effective temperatures predicted by MembTDA are dynamics of lipids, since temper-

ature prediction inherently takes velocity information49 into account. Also, for the config-

urational temperature, as in Jepps et al.,51 force information is taken into account. Both

force and velocity are vectors projected on the atomic position, responsible for propagating

the MD integration. However, since there are no direct atom velocity nor complete force

information (due to individual lipid force being considered without environment) in static

lipid coordinates, we can speculate that persistence data carry mixed information of both

velocity (a proxy for entropic information)54 and force information for which the neural net-
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work is effectively able to learn. Such hidden information comes in the form of persistence

data, implying that effective temperature information can be retrieved by accounting for

connected components and holes present in the lipid configurations. To us, this implies that

MembTDA maps the underlying configurational manifold and its topology, which is necessary

for its physical dynamics (Figure 1).

Moreover, we have shown that MembTDA can capture effective temperatures of lipids in

membranes with different lipid compositions other than what was used in its training, and for

lipids in the presence of proteins. The dynamics of lipids are shown in Figure 5 where higher

effective temperature lipids, colored in red, can be observed near the periphery of proteins.

Also, different lipid types (i.e., POPC, POPE, and POPS) experience different effective

temperatures because different head groups have different favorability to the protein residues

they are interacting with, due to polarity and charges based interactions (an enthalpic effect),

altering allowed configurational states.

As for why MembTDA has accurate effective temperature predictability, we ascribe this

to attention maps presented in Supplemental Figure S8, Figure S9, and Figure S10. For

low-temperature lipids, we chose 16 random (hence 4 x 4 panels) lipids and extracted the

attention maps MembTDA focuses on. An attention map (in our case, GradCAM 55) is an

explainable AI (XAI) technique to highlight which features of the input an ML model focuses

on to make a prediction. We can see that there is a semi-circle on the top left part of

the persistence image data, which MembTDA identifies as important features (Supplemental

Figure S8). The semi-circle indicates prominent H1 features (i.e., holes) in the persistence

data which may be born at relatively earlier α-filtration values. Since lower temperatures

render accessible lipid configurations to more rigid states, the attention map (GradCAM)

can capture hole patterns more readily. On the other hand, for high-temperature lipids, the

attention map (GradCAM) does not have a distinct pattern captured by our neural network

(Supplemental Figure S9). This implies that a high variability of lipid configurations exists at

high temperatures, and thus no consolidated patterns like those observed for low-temperature

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569053
http://creativecommons.org/licenses/by-nc-nd/4.0/


lipids. As for the melting temperature (Supplemental Figure S10), we see mixed patterns

where nearly half the attention maps (GradCAM) resemble those of low-temperature lipids

(i.e., prominent attention patterns), and the rest resemble those of high-temperature lipids

(i.e., no particular attention patterns). We postulate that this is due to expected equal

fractions of Lβ and Lα phases at the melting temperature.

At all scales, entropic contributions create system heterogeneity that result in local or-

der.56 In the context of biological membranes, we have shown that local order plays a role

in lipid dynamics, by capturing local effective temperatures of individual lipids. The ability

to recapitulate DPPC melting temperatures, demonstrated by MembTDA, reveals that PH is

likely correlated to physical phenomena, potentially via a mapping of a manifold embedding

representative of a potential energy surface with an inherent characteristic topology. We

speculate that the effectiveness of our topological learning approach implies the possibil-

ity of an underlying analytical framework suitable for estimating physical properties such

as melting temperatures or heat capacity, like a hybrid of the equipartition theorem and

the Jepps formulation. More precisely, we posit that the use of PH on atomic data cap-

tures inherent topological features of the potential energy surface as shown in Figure 1 and

Figure 4.
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