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Abstract: The use of an inspiratory oxygen fraction of 0.80 during surgery is a topic of ongoing
debate. Opponents claim that increased oxidative stress, atelectasis, and impaired oxygen delivery
due to hyperoxic vasoconstriction are detrimental. Proponents point to the beneficial effects on the
incidence of surgical site infections and postoperative nausea and vomiting. Also, hyperoxygenation
is thought to extend the safety margin in case of acute intraoperative emergencies. This review
provides a comprehensive risk-benefit analysis for the use of perioperative hyperoxia in noncritically
ill adults based on clinical evidence and supported by physiological deduction where needed. Data
from the field of hyperbaric medicine, as a model of extreme hyperoxygenation, are extrapolated to
the perioperative setting. We ultimately conclude that current evidence is in favour of hyperoxia in
noncritically ill intubated adult surgical patients.

Keywords: hyperbaric oxygenation; hyperoxia; oxygen toxicity; perioperative care; reactive oxygen
species; surgical wound infection

1. Introduction

Perioperative use of an inspiratory oxygen fraction (FiO2) of 0.80 (hyperoxia) is controversial,
and at times, is even emotionally discussed in the fields of anaesthesia and surgery. The 2016 World
Health Organisation guidelines on prevention of surgical site infections (SSI) recommended the use
of a FiO2 of 0.80 in intubated patients undergoing surgery [1]. This guideline, developed without
the involvement of anaesthetists, added to the discussion and elicited several letters from around the
world criticising its conclusions [2–6], especially when some of the trials demonstrating a positive
effect on SSI were retracted or came under scrutiny [7–10]. Recently, the World Health Organisation
updated its guidelines, (now also with the support of anaesthetists), based on a new systematic review
excluding the questionable trials [11], and an independent review specifically focussing on potential
adverse effects of hyperoxia [12]. Although the strength of the recommendation was changed from
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strong to conditional, the general advice to ventilate intubated surgical patients with 0.80 FiO2 was
upheld [13].

In the following article, we give a data-supported risk-benefit analysis for the use of 0.80 FiO2 in
noncritically ill patients in the perioperative setting. Firstly, we will examine the supposed adverse
effects of perioperative hyperoxia, namely increased mortality, increased oxidative stress due to
reactive oxygen species (ROS), hyperoxic vasoconstriction leading to impairment of tissue oxygenation,
and atelectasis. We will start by exploring data available from clinical trials, continuing with a
physiological deduction to elucidate in more detail whether a potential for harm could exist, and
lastly, we address the ultimate form of hyperoxia in clinical practice, namely hyperbaric oxygen
therapy (HBOT). After discussing the possible adverse effects from these three perspectives, we will
explore the suggested positive effects of perioperative hyperoxia: decreased incidence of SSI, decreased
incidence of postoperative nausea and vomiting (PONV), and increased margin of safety in acute
intraoperative emergencies.

2. Adverse Effects

2.1. Data from Clinical Studies

The suggested adverse effects of hyperoxia are increased oxidative stress due to ROS, hyperoxic
vasoconstriction, and resorption atelectasis. Clinically, these may lead to increased mortality, pulmonary
complications, and cardio- and cerebrovascular complications. We will, therefore, analyse data on
adverse event (AE) rates from clinical trials on perioperative hyperoxia, bearing in mind that none of
these trials were designed to detect differences in the incidence of AE.

2.1.1. Mortality

We will first examine mortality, as the ultimate clinical endpoint of any adverse effect. Interestingly,
the point estimates of all but two [14,15] of the clinical trials on perioperative high versus normal
FiO2 indicated lower, rather than higher, short-term mortality in patients given 0.80 FiO2 [16–20].
However, each of these trials had low mortality rates with wide confidence intervals, including unity.
A recent systematic review and meta-analysis indicated that there was no association between high
perioperative FiO2 and short-term mortality (relative risk; RR = 0.49, 95% CI; 0.17–1.37) or long-term
mortality (RR = 0.96, 95% CI; 0.65–1.42) [12].

In contrast to the evidence from randomised trials, a retrospective observational study showed
an increased risk of mortality within 30 days after administration of high versus normal FiO2 (odds
ratio = 1.97, 95% CI; 1.30–2.99) [21]. A nonrandomised prospective study found a comparable relative
risk but a much wider confidence interval (RR = 1.97, 95% CI; 0.71–5.47) [22]. However, outside of
randomised clinical trials, the use of high FiO2 is not random but generally used in sicker patients, and
interpretation of these data is therefore challenging. The first study [21] was limited by indications of
residual confounding, exclusion of more than 35,000 potentially eligible participants, and deviation
from the predefined outcome in the final report. The second study [22] was based on registry and
billing data, lacked blinding and also deviated from the predefined outcome in the final report.

The lack of difference in mortality in trials on perioperative hyperoxia is in contrast to studies
on critically ill patients. Chu and colleagues recently reported higher mortality in critically ill adults
after exposure to liberal oxygen therapy in a meta-analysis of randomised controlled trials [23]. These
findings led to revised guidelines for oxygen therapy for acutely ill medical patients [24] and, indirectly,
also raised concerns on the safety of perioperative hyperoxia. However, the data reported by Chu
and colleagues, although important for the populations studied, are not suited for extrapolation to
perioperative hyperoxia. The population described—consisting of patients in the acute phase after
stroke, myocardial infarction, and other life-threatening events that require acute critical care—is
not comparable to patients deemed fit for elective surgery. Moreover, Chu and colleagues studied a
different intervention. They defined liberal oxygen as any oxygen target higher than that of the control
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group; interventions typically remained between 0.30 and 0.40 FiO2 [23]. In general anaesthesia this is
considered the range required to overcome the pathophysiological respiratory changes of anaesthesia
and maintain adequate oxygen saturation [25]. Therefore, in research on perioperative hyperoxia, it
is considered the conservative control and contrasted to 0.80 FiO2 [11]. In addition, in the studies
included by Chu and colleagues, exposure to hyperoxia was typically more than 12 h and ranged up to
a full week, while perioperative hyperoxia rarely exceeds a few hours. All in all, hyperoxia studies
outside of the operating room were done in a different population and using a different intervention,
and it does not, therefore, seem reasonable to extrapolate these findings to the surgical patient.

2.1.2. Postoperative Pulmonary Complications

The most likely clinical consequence of pulmonary oxygen toxicity due to ROS, as well as
resorption atelectasis, would be an increased incidence of postoperative pulmonary complications.
Multiple studies report on adverse effects such as pneumonia or composite measures of respiratory
complications [14,15,18,26]. A meta-analysis of all but the most recent of these studies demonstrated no
increase in respiratory AE after 30 min to 4 h perioperative administration of 0.80 versus 0.30–0.35 FiO2,
nor was there a difference in the incidence of postoperative atelectasis [12]. A post-hoc analysis [27]
of over 5000 patients enrolled in a cohort study [22] confirmed that perioperative 0.80 FiO2 does not
worsen pulmonary outcome.

2.1.3. Cardiovascular and Cerebrovascular Complications

It has been theorised that hyperoxic vasoconstriction may lead to decreased tissue
oxygenation [28–30], which might culminate in increased rates of myocardial infarction or stroke
in patients treated with high perioperative FiO2. However, when regarding cardiovascular AE, a
meta-analysis of three studies showed no signal of increased ratios of these AE in patients receiving
high FiO2 [12]. Data on the incidence of stroke and transitory cerebral ischemia are available from only
one trial; no increased incidence was found in patients who received high instead of normal FiO2 [31].

2.2. Pathophysiological Effects of Hyperoxia

Clinical data did not show a signal of harm due to perioperative hyperoxia. We will now examine
whether harmful effects of hyperoxia are likely to exist, based on pathophysiological deduction.

2.2.1. Oxidative Stress

Oxygen is a stable molecule that by itself, is not considered toxic [32]. However, it can easily
gain an electron, creating the superoxide radical, a ROS that acts as a precursor to most of the other
ROS. ROS are highly reactive molecules, capable of damaging proteins, lipids, and DNA, which may
ultimately lead to apoptosis [33]. Even when breathing 0.21 FiO2, there is a continuous production of
ROS, against which cells have extensive antioxidative defence mechanisms [34]. Oxidative stress can
be regarded as a misbalance between ROS production and antioxidative mechanisms. Despite the fact
that oxidative stress is thought to be the common denominator in various pathological processes [35],
studies in healthy humans that aimed to quantify oxidative stress and (anti)inflammatory effects of
hyperoxia have yielded conflicting results. In a study in which healthy volunteers breathed 1.0 FiO2 for
3.5 h, no increase in neutrophil intracellular ROS generation and cytokine production was observed [36].
In contrast, systemic oxidative stress, quantified using plasma malondialdehyde concentration, was
demonstrated to increase after exposure to 30 min [37] or 2 h [38] of 1.0 FiO2 in two studies, and after
the administration of 0.80 FiO2 during abdominal surgery [39]. One of these studies also showed a
decrease in plasma nitrite concentration after exposure to 30 min of 1.0 FiO2, demonstrating reduced
bioavailability of nitric oxide caused by increased oxidative stress [37].

When specifically assessing the toxic effects of hyperoxia on lung tissue, some studies have
demonstrated signs of pulmonary lipid peroxidation and inflammation due to normobaric hyperoxia.
For instance, elevations of volatile exhaled markers of lipid peroxidation such as ethane, pentane, and
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methylated alkanes have been found after breathing 1.0 FiO2 for 2 h [38,40,41]. Studies on alveolar
inflammation, quantified using the measurement of exhaled nitric oxide concentration (FeNO), showed
conflicting results. In one study an increase in FeNO was found after breathing 1.0 FiO2 for 10 min [41],
while two other studies measured a decrease in FeNO when breathing 1.0 FiO2 for 90 min [42,43].
These differences in FeNO values are most likely due to technical variations in collection methods of
FeNO between the studies [44].

2.2.2. Vasoconstriction and Cellular Oxygen Delivery

Some authors have hypothesised that arterial hyperoxaemia may lead to paradoxical tissue hypoxia
through hyperoxic vasoconstriction [28–30]. Hyperoxia indeed causes arteriolar vasoconstriction in
many vascular beds, including the coronary and cerebral circulation [45]; this was suggested to be
a normal metabolic autoregulatory phenomenon, protection against oxidative stress by ROS, or a
combination of both [45]. Hyperoxic vasoconstriction increases peripheral vascular resistance [46,47],
increases parasympathetic outflow [48], and modestly decreases sympathetic outflow [49,50]. The
effects of hyperoxia in healthy volunteers have been summarised by Smit and colleagues: systemic
vascular resistance increases 12% (95% CI; 8.6–16), heart rate decreases 6.5% (95% CI; 5.0–8.1), mean
arterial pressure increases 2.0% (95% CI; 0.2–3.9), stroke volume decreases 3.0% (95%CI [0.3–5.7]) and
cardiac output decreases 10% (95% CI; 7.3–13) [28]. Other studies found that cerebral blood flow
decreased by 13% [51], and coronary vascular resistance increased by 30% [52]. Of note, hyperoxia is
not a universal vasoconstrictor; for instance, in the pulmonary vasculature it results in vasodilation.

When FiO2 increases fivefold from 0.21 to 1.0, arterial oxygen content increases only approximately
7%; this is because most oxygen is bound to haemoglobin, which is already almost maximally saturated
at 0.21 FiO2. Since hyperoxia decreases perfusion and only slightly increases oxygen content, some
authors have hypothesised that hyperoxia impairs tissue oxygenation [28–30]. This hypothesis,
however, is not supported by animal and human experiments. In pigs subjected to increasing FiO2,
both cerebral and myocardial tissue oxygen tension (PtO2) increased proportionally with increasing
FiO2 [53,54]. When pigs were subjected to haemodilution until their electrocardiogram showed
ischaemic changes, hyperoxia, although it caused coronary vasoconstriction and reduced coronary
blood flow, preserved myocardial oxygenation and improved electrocardiogram abnormalities [55]. A
randomised controlled trial in colorectal surgery demonstrated a twofold increase in muscular and
subcutaneous PtO2 in patients breathing 0.80 versus 0.30 FiO2 [17].

In conclusion, available evidence suggests that hyperoxia does not impair tissue oxygen
delivery [56], but contrarily (despite vasoconstrictive properties), increases tissue oxygenation.
Additionally, hyperoxia improves the efficiency of the mitochondrial respiratory chain and increases
the respiratory quotient to values near 1.0 (indicating a shift to pure carbohydrate metabolism) [57–59].
This decreases oxygen demand and is responsible for the observed decrease in oxygen uptake during
hyperoxia [60,61].

The aforementioned effects of hyperoxia have mostly been studied in awake patients, and
extrapolation to the anaesthetised patient should be done with caution. The interaction of hemodynamic
compromise induced by anaesthesia and hyperoxic vasoconstriction is hard to predict. It has been
suggested that hyperoxic vasoconstriction may reduce the need for pharmacological vasopression
during anaesthesia [59]. On the other hand, the combination of anaesthetic induced haemodynamic
compromise and hyperoxic vasoconstriction could theoretically increase the risk of stroke or other
perfusion-related complications. Additionally, when it comes to cerebral perfusion, the effect of arterial
carbon dioxide tension (PaCO2), or more precisely, the change in blood pH, has to be taken into account.
Awake subjects increase their minute ventilation by approximately 10% when subjected to hyperoxia,
resulting in a 0.4 kPa decrease in PaCO2 [62]. The ensuing hypocarbic vasoconstriction will add to the
vasoconstriction caused by hyperoxia. In patients under general anaesthesia, minute ventilation and
thereby PaCO2 are controlled by the anaesthetist. Cerebral vessels are much more responsive to pH
changes elicited by PaCO2 changes, than to changes in arterial oxygen tension (PaO2) [63], and it is,
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therefore, reasonable to assume that the impact of minute ventilation as determined by the anaesthetist
is of much greater importance to cerebral blood flow than any changes caused by hyperoxia.

2.2.3. Atelectasis

Data from clinical trials demonstrated no increase in the incidence of postoperative atelectasis or
other pulmonary complications after the use of perioperative high FiO2, but AE, as reported in trials,
may be too crude a method to reliably determine the incidence of atelectasis and its possible negative
consequences. We will, therefore, briefly explore the physiology behind resorption atelectasis and
its prevention.

Hyperoxia can cause absorption atelectasis [64], which may increase pulmonary shunting [65].
In healthy subjects breathing 1.0 FiO2, atelectasis combined with inhibition of hypoxic pulmonary
vasoconstriction doubles intrapulmonary right-to-left shunt, compared to subjects breathing room
air [59]. However, lowering FiO2 to 0.80 reduces atelectasis substantially: in a study where 0.80 FiO2

was used during anaesthesia induction, the atelectatic area in the basal lung fields as measured by
computed tomography was reduced from 9.8 ± 5.2 cm2 (1.0 FiO2) to 1.3 ± 1.2 cm2 (0.8 FiO2) [64].
Moreover, application of a positive end-expiratory pressure of 10 cm H2O in intubated patients
effectively prevents atelectasis [66]. Therefore, during surgery atelectasis due to 0.80 FiO2 combined
with positive end-expiratory pressure is not a great concern.

Irrespective of the FiO2 used during the course of surgery, most anaesthetists routinely apply
high (0.80–1.0) FiO2 towards the end of anaesthesia, to provide a safety margin in case of respiratory
problems after extubation. In contrary to the intubated patient, however, positive pressure ventilation
is less easily applied in extubated patients, and resorption atelectasis is, therefore, most likely to be
clinically relevant in the extubated patient shortly after surgery. Again, applying 0.80 instead of 1.0
FiO2 will greatly diminish atelectatic volume. A balance between providing an optimal margin of
safety during extubation, and prevention of atelectasis, might, therefore, be reached by applying
0.80 FiO2.

2.3. Hyperbaric Oxygenation

We now look at the most severe form of hyperoxia, namely HBOT. We believe that a lack of
harm of hyperbaric hyperoxia would make adverse effects of a short-term perioperative normobaric
hyperoxia even less likely.

Patients undergoing HBOT breathe 1.0 FiO2 at pressures of 1.4–2.8 atmospheres absolute (ATA)
(142–284 kPa) for varying amounts of time [67]. Clinically employed regimens may involve 20–80
daily sessions at 2.5 ATA (253 kPa) of 90–120 min each, for instance for the treatment of diabetic ulcers
and late radiation tissue injuries [68]. Given these indications for HBOT, the medical condition of
these patients regarding comorbidity can be considered quite similar to that of the general surgical
population. PaO2 in HBOT is up to 3.5 times higher than during normobaric 0.80 FiO2, and PtO2 during
HBOT may be as high as 55 kPa [69], as opposed to values in the range of 4.0–6.7 kPa with normobaric
0.21 FiO2 [70]. Despite these high PtO2 values, large retrospective series show that HBOT is safe [71].
In hyperbaric medicine, the increased production of ROS is considered to have positive aspects. ROS
serve as signalling molecules for cytokines and hormones, and stimulate stem cells and growth factors,
resulting in neovascularisation and wound healing in chronic diabetic wounds [72,73]. Additionally,
HBOT inhibits neutrophil adherence in reperfusion injury and therefore has the potential to improve
postischemic tissue survival [74]. Regarding pulmonary toxicity, recent experiments from our group
in healthy subjects exposed to six daily HBOT sessions of 90 min at 2.5 ATA (253 kPa) showed no
significant changes in any of the measured pulmonary function tests, including diffusion capacity and
alveolar volume [75], suggesting that even in HBOT, pulmonary oxygen toxicity rarely reaches a level
of clinical significance. Cerebral oxygen toxicity is a known rare complication of HBOT, occurring at
partial oxygen tensions above 1.6 ATA (162 kPa) [76] at a rate of 1:40.000–1:60.000 exposures [77,78].
Lastly, the fact that HBOT provides vasoconstriction while increasing PtO2 is used as a beneficial effect,
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for instance, to reduce intracranial pressure in traumatic brain injury [79] and cases of cerebral arterial
gas embolism [80].

3. Beneficial Effects

3.1. Decreased Incidence of Surgical Site Infections

The most widely used argument for the use of high FiO2 perioperatively is the reduction of
the risk of SSI. Surgical wounds are poorly oxygenated, and low oxygen tension is associated with
SSI [81,82]. Hence, increasing PtO2 at the surgical wound by providing increased FiO2 might exert
beneficial effects [82]. Although oxygen delivery is much more efficiently increased by enhancing
cardiac output, this does not necessarily increase PtO2. The most efficient way of increasing PtO2 to
supranormal levels and thereby recruiting the antibacterial effect of oxygen in the tissue is by increasing
PaO2 through the increase of FiO2 [17], which occurs despite hyperoxic vasoconstriction and reduction
of cardiac output, as discussed above.

The first large trial to test the hypothesis that hyperoxia may reduce SSI showed promising
results; patients randomised to receive a 0.80 FiO2 perioperatively had a 50% reduction in SSI
compared to patients who received the standard 0.30 FiO2 [17]. This trial was well designed, with
double-blind outcome assessment limited to culture proven infections, and assessment of oxygen
delivery by measurement of PaO2 and PtO2. Subsequent trials did not meet this standard and could
not consistently reproduce these results [14–16,20]. The issue was further complicated when concerns
on the validity of some of the trials arose [7–10]. A large nonrandomised study in which default
operating room FiO2 settings varied biweekly between 0.30 and 0.80 did not show a beneficial effect of
hyperoxia on a composite outcome of infectious complications [22]. However, interpretation of these
data was challenged by the lack of randomisation and blinding, reliance on registry and billing data
for outcome assessment, contamination between the two treatment groups, and deviation from the
predefined primary outcome. Additionally, the study did not report total SSI, which makes it difficult
to compare the results to other studies. A recent meta-analysis of randomised controlled trials that
excluded the trials under scrutiny and nonrandomised studies found no definite benefit of the use of
high FiO2 overall but did find evidence for a protective effect in patients under general anaesthesia
with tracheal intubation [11]. Conversely, there was no effect of high FiO2 on SSI in patients who were
awake and received increased FiO2 through a facemask.

Several explanations have been proposed for the differences in the effects of hyperoxia on SSI in
these trials, including the inadequacy of oxygen delivery through a facemask, and differences in the use
of general anaesthesia, mechanical ventilation, laparoscopic surgery, fluid regimen, temperature control,
and pain management. For instance, the trials delivering oxygen through a facemask were exclusively
performed on young female patients undergoing caesarean section under spinal anaesthesia. This
short-lasting surgery in mostly young and healthy females having pregnancy-related changes of lung
physiology should not be directly compared to the intubated, mostly older patients with relevant
comorbidities undergoing longer-lasting abdominal surgery.

Many of the explanations for the observed difference in efficacy of hyperoxia on SSI rely on the idea
that the application of high FiO2 alone does not guarantee adequate tissue oxygenation. Adequate gas
exchange, as well as sufficient macro- and microcirculatory flow, are needed to actually deliver oxygen
to the tissues; this is also suggested by the results of the most recent trial on perioperative hyperoxia,
published after the aforementioned systematic review, that showed no beneficial effect of 0.80 versus
0.30 FiO2 in abdominal surgery [15]. In this study, both groups were ventilated using lung-protective
settings, including modulation of end-expiratory pressure to optimise pulmonary compliance. Other
confounding factors may include fluid regimen and the use of vasopressors. For instance, experimental
work showed that epinephrine infusion in healthy volunteers makes PtO2 unresponsive to increases
in PaO2 [83]. Modern, more restricted fluid regimens inevitably increase the use of vasopressors.
Important negative trials were conducted using restricted fluid regimens [14,20], and increasingly
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included laparoscopic surgery [20], whereas important positive trials hydrated participants liberally
and yielded exclusively at laparotomies [16,17]. Only the first trial [17] measured PtO2 and found a
steep increase in subcutaneous and muscle PtO2, as well as PaO2 alongside the decrease in SSI. For all
the other trials, it is not known if the intervention accomplished increased tissue oxygenation.

3.2. Decreased Incidence of Postoperative Nausea and Vomiting

PONV remains a troublesome complication of general anaesthesia. When properly and routinely
applied, conventional pharmacological measures provide a large degree of protection against PONV [84].
Intraoperative use of high FiO2 has antiemetic properties. Hovaguimian and colleagues analysed
eight trials on high versus normal perioperative FiO2 in patients subjected to inhalational (volatile)
anaesthesia without antiemetic prophylaxis. Patients receiving high FiO2 had a RR of 0.75 (95% CI;
0.62–0.90) for nausea in the first 24 h postoperatively, and a RR of 0.72 (95% CI; 0.56–0.92) for vomiting
in the first 24 h postoperatively, when compared to patients receiving normal FiO2 [85]. Although the
effects were smaller and mostly nonsignificant when patients receiving propofol anaesthesia and/or
antiemetic prophylaxis were included, the high availability and low cost of oxygen make hyperoxia a
suitable addition to the antiemetic armamentarium of the anaesthetist.

3.3. Increased Safety Margin in Cases of Intraoperative Emergencies

Preoxygenation with 1.0 FiO2 is recommended for all patients during induction of anaesthesia [86],
to increase the time until desaturation in case of a “cannot intubate, cannot oxygenate” scenario, which
nowadays occurs in less than 0.01% of anaesthetic inductions [87]. In healthy volunteers, 1.0 FiO2

provides a margin of safety of up to about 8 min until oxygen desaturation of haemoglobin to 90% [88].
In almost all unexpected AE during surgery, one of the promptly taken measures is to increase FiO2 to
1.0, to buy time to deal with the emergency [89]; this is especially useful during massive bleeding since
the relative contribution of physically dissolved oxygen to total oxygen content increases tremendously
when haemoglobin has been lost and replaced by other fluids [90]. Unfortunately, in many relevant
AE (e.g., sudden massive haemorrhage, accidental extubation), the anaesthetist does not have the time
to respond and adequately fill the patient’s functional residual capacity with oxygen.

No data exist on the incidence of intraoperative AE requiring the application of high FiO2, but an
estimate can be calculated based on a recent study that reports AE in two United States hospitals [91].
The overall rate of intraoperative AE after initiation of a mandatory reporting system was 0.64% in one
hospital, and 1.36% in the other. When analysing the categories of reported AE, a safe estimate is that
high FiO2 is likely to have been applied by the anaesthetist in 35%–60% of AE, as part of handling the
AE, which would mean that of all of the surgical cases in these two hospitals throughout the study
period, 0.23%–0.83% would have required the use of high FiO2 to respond to an intraoperative AE. This
percentage is much higher than the incidence of “cannot intubate, cannot oxygenate” during induction.
Therefore, since all our patients deserve preoxygenation to increase the margin of safety in case of the
highly unlikely scenario of ‘cannot intubate, cannot oxygenate’, we believe our patients also deserve
high FiO2 during the rest of the procedure, to prepare for much more likely intraoperative AE’s.

4. Conclusions

In this article, we have reviewed supposed harms and benefits of perioperative hyperoxia. We
have demonstrated that although perioperative hyperoxia may lead to quantifiable oxidative stress, this
does not translate into increased postoperative pulmonary complications or mortality. Furthermore,
hyperoxic vasoconstriction does not lead to decreased tissue oxygenation, nor increased cardiovascular
or cerebrovascular complications. Atelectasis is not a concern in the intubated patient treated with
positive end-expiratory pressure. Data from the field of hyperbaric medicine indicate that even
repeated administration of 1.0 FiO2 under hyperbaric conditions is safe. On the other hand, hyperoxia
in intubated surgical patients reduces SSI. In addition, hyperoxia has an antiemetic effect and provides
a margin of safety in case of intraoperative emergencies.
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Given the lack of indication of harm of perioperative hyperoxygenation and the solid beneficial
effects to be gained, we recommend providing 0.80 FiO2 to noncritically ill, intubated adults during
surgery. Future studies should look into determinants of tissue oxygenation other than FiO2 and
should include measurement of PtO2 to verify that interventions actually achieve the desired goal.
Randomised trials should look carefully into a wide spectrum of possible AE’s.
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