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ABSTRACT We report the genome sequences of 10 Pseudomonas aeruginosa
phages studied for their potential for formulation of a therapeutic cocktail; they rep-
resent the families Myoviridae, Podoviridae, and Siphoviridae. Genome sizes ranged
from 43,299 to 88,728 nucleotides, with G�C contents of 52.1% to 62.2%. The ge-
nomes contained 68 to 168 coding sequences.

In the context of limited success of antibiotics, phages are promising alternative
antibacterials. Phages have demonstrated therapeutic efficacy against Pseudomonas

aeruginosa infections in animals (1) and humans (1–3). Since P. aeruginosa phages have
narrow host ranges (4, 5), phage cocktails are required to cover most clinical isolates (6).
We are developing a phage cocktail that is active against the majority of multidrug-
resistant (MDR) P. aeruginosa isolates from traumatic and burn wounds. Here, we report
the whole-genome sequences of 10 P. aeruginosa phages isolated from sewage (Ta-
ble 1). Each phage lysed 23 to 58% of 156 diverse MDR isolates. The phages were
complementary to each other (their mixes showed broader activity than single phages).

The phages were isolated from sewage collected in Washington, DC. P. aeruginosa
strain PAO1 was used for enrichment. Phages were purified by three rounds of
single-plaque isolation, propagated on strain PAO1 in broth, and concentrated by
high-speed centrifugation as described previously (7). Host RNA and DNA were re-
moved from lysates with RNase A and DNase, respectively, and phage DNA was isolated
using proteinase K and SDS treatment followed by phenol-chloroform extraction,
overnight precipitation with ethanol at �20°C, centrifugation, and resuspension in
nuclease-free water (7). Phage DNA was sequenced using a Nextera XT DNA library
preparation kit (Illumina, San Diego, CA). Libraries were validated and quantified using
a TapeStation D5000 kit (Agilent Technologies, Inc., Santa Clara, CA) and an Invitrogen
Qubit double-stranded DNA (dsDNA) broad-range (BR) assay kit (Thermo Fisher Scien-
tific, Waltham, MA), respectively, purified with AMPure XP beads (Beckman Coulter
Diagnostics, Brea, CA), and sequenced using a 600-cycle MiSeq reagent kit v3 on an
Illumina MiSeq system, producing 300-bp paired-end reads. FastQC v0.11.5 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc) was used for read quality control.
Raw reads listed in Table 1 for each phage were subsequently trimmed using default
parameters in Geneious Prime v2019.2.3 and were subjected to de novo assembly using
default parameters in PATRIC (8). Phage genome annotations were carried out
using the RAST server (9). Nucleic acid sequence similarity searches were performed
using default parameters in BLASTn (10).

Phage genome sizes ranged from 43,299 to 88,728 nucleotides, with G�C contents
of 52.1% to 62.2% (Table 1). The genomes contained 68 to 168 coding sequences.
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Phages EPa1 and EPa2 (family Podoviridae, genus Bruynoghevirus) were closely related
to lytic phage LUZ24 (GenBank accession number AM910650.1) (11), based on BLASTn
sequence comparisons. The phage genomes lacked significant nucleic acid sequence
similarity to genes encoding integrases, recombinases, transposases, excisionases, and
repressors of the lytic cycle. Therefore, EPa1 and EPa2 appear to be obligatorily lytic. Six
Myoviridae phages, namely, EPa6, EPa11, EPa15, and EPa22 (genus Pbunavirus) and
EPa17 and EPa24 (genus Nankokuvirus), also lacked genes typical of temperate phages,
suggesting that they are strictly virulent, similar to other genus Pbunavirus (12) and
Nankokuvirus (13) members. BLASTn and BLASTp analyses found no significant simi-
larity in any of the eight phages to bacterial DNA and proteins, including drug
resistance and pathogenicity determinants. Our data suggest that the eight phages are
promising therapeutic candidates.

However, Siphoviridae phages EPa5 and EPa43, with high lytic potential, encoded
putative proteins described as an integrase and a repressor in genome annotations of
other phages, including Ab18, Ab19, Ab20, and Ab21, belonging to the genus Abidjan-
virus (open reading frame 22 [ORF22] and ORF21 in the Ab18 genome [GenBank
accession number LN610577]) (14). Subsequent inspection revealed only primase-
related domains and a lack of integrase-associated domains in the ORF22 product in
EPa5, EPa43, and related phages. The ORF21 homolog contained an HTH_XRE domain,
which is common in phages and has been associated with transcriptional antirepressor
and repressor activities but remains largely uncharacterized. BLASTn and BLASTp
searches for phages EPa5 and EPa43 did not identify any significant similarity to
bacterial genes or proteins. Additional analysis is required to consider these two phages
safe for therapeutic purposes.

Data availability. The 10 complete phage genome sequences were deposited in
GenBank and the NCBI Sequence Read Archive (SRA) under the accession numbers
listed in Table 1.
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TABLE 1 Genomic attributes of the 10 P. aeruginosa phages

Phage
name Family Genus

Genome
length (bp)

G�C
content (%)

No. of
protein-coding
genes

Genome
coverage (�)

No. of
raw reads

GenBank
accession no.

SRA
accession no.

EPa1 Podoviridae Bruynoghevirus 45,230 52.1 76 158.1 308,634 MT108723 SAMN15311669
EPa2 Podoviridae Bruynoghevirus 43,299 52.3 68 757.2 302,307 MT108724 SAMN15311670
EPa5 Siphoviridae Abidjanvirus 63,969 62.2 91 1,672.2 534,271 MT108725 SAMN15311671
EPa6 Myoviridae Pbunavirus 66,031 55.1 95 70.4 202,626 MT108726 SAMN15311672
EPa11 Myoviridae Pbunavirus 66,800 55.7 95 1,004.6 272,627 MT108727 SAMN15311673
EPa15 Myoviridae Pbunavirus 66,002 55.6 95 1,197.8 479,511 MT413450 SAMN15311674
EPa17 Myoviridae Nankokuvirus 88,600 54.8 164 2,099.6 671,404 MT108728 SAMN15311675
EPa22 Myoviridae Pbunavirus 65,897 55.4 98 1,556.5 457,227 MT108729 SAMN15311676
EPa24 Myoviridae Nankokuvirus 88,728 54.8 168 4,728.4 1,577,519 MT108730 SAMN15311677
EPa43 Siphoviridae Abidjanvirus 64,323 62.0 97 2,003.0 398,955 MT108731 SAMN15311678
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