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Objectives. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. LncRNA PTPRG-AS1 (PTPRG-AS1)
has been confirmed to function as a regulator in various cancers, whose function during HCC tumorigenesis is still not clear now.
Thus, we aim to dig out the biological function and its mechanisms of PTPRG-ASI in HCC. Methods. PTPRG-ASI relative
expression in tissues and cells was detected and analyzed using real-time quantitative PCR (qQRT-PCR). Subcellular distribution of
PTPRG-AS1 was examined by FISH experiments. The effects of PTPRG-AS1 in the growth of HCC were studied by in vitro CCK-8
experiments, transwell invasion experiments, and in vivo xenograft tumor experiments. Dual-Luciferase reporter assay was
performed to verify the interaction between PTPRG-AS1 and miR-199a-3p or miR-199a-3p and its target gene, YWHAG. Results.
PTPRG-AS1 was upregulated in HCC tissues compared with adjacent normal tissues. We identified PTPRG-ASI mainly localized
in the cytoplasm of HCC cells. Downregulation of PTPRG-ASI suppressed HCC progression, while overexpression of PTPRG-
AS1 showed the opposite effects. Furthermore, PTPRG-AS] served as a miR-199a-3p sponge and positively regulated YWHAG
expression. Besides, PTPRG-AS1 could promote HCC through miR-199a-3p/YWHAG axis. Conclusions. Taken together, we
demonstrated PTPRG-AS1 may serve as a ceRNA and reversely regulates the expression of miR-199a-3p, thus facilitating HCC

tumorigenesis and metastasis, which is expected to provide new clues for the treatment of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) accounts for more than
seven percent of primary liver cancers and is widespread in
various countries, causing serious social impact and a heavy
economic burden [1, 2]. HCC-derived deaths have been
indicated as the second reason for death caused by cancer in
humans due to its high incidence illustrated by the World
Health Organization (WHO) [3]. Every year, more than
500,000 people worldwide are diagnosed with HCC. The
latest data show that there were approximately 782,500 new
cases of HCC and 745,500 deaths in 2012, of which about
half of the above numbers occurred in China [4]. HCC is
considered an extremely complex process involving pro-
liferation, migration, and/or apoptosis in the hepatocytes
[5, 6]. At present, surgical resection or liver transplantation
is the most effective cure for patients with liver cancer [7, 8].

Nonetheless, patients with advanced liver cancer cannot
undergo these surgical interventions and liver transplanta-
tion [9, 10]. Currently, tremendous efforts have been made
in exploiting molecular markers in HCC, and some
achievements have been made [11-13]. The underlying
mechanisms largely remained unclear. In other words, it is
very urgent to find more effective markers and deepen their
mechanisms  underlying HCC  carcinogenesis and
progression.

Long noncoding RNAs (IncRNAs) are a subfamily of
noncoding RNAs, usually longer than 200 nts in length, and
have recently caused extensive attention by researchers
worldwide because of their extensive role in various diseases
[14, 15]. Recent research elaborated that IncRNAs can act as
a “sponge” and compete for the binding of miRNAs of other
genes, thereby reducing miRNA’s regulatory effect on tar-
geted mRNA, which is also known as the mechanism of
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“competing endogenous RNA” (ceRNA) [16-19]. In recent
years, much evidence has elaborated that InRNAs play an
increasingly important role in progression of liver cancer by
changing multiple cellular processed the including prolif-
eration or invasion [20-23]. Various HCC-interrelated
IncRNAs have been elaborated to own abnormal expression
pattern and involvement in the cancer phenotype. For ex-
ample, IncRNA-D16366 is reduced in HCC, which may be
an independent therapeutic indicator of the disease [24].
LncRNA HEIH was highly expressed and suppress tumor
growth and metastasis in HCC tissues and may be a pro-
spective target for HCC therapy [25]. LncRNA PTPRG
antisense RNA 1 (PTPRG-AS1), a rarely reported novel
IncRNA, was identified as an abnormal expression for the
first time in breast cancer by Mostafa et al. [26]. Subsequent
experiment demonstrated that the PTPRG-ASI expression
were dramatically higher in epithelial ovarian cancer (EOC)
tissues and may serve as a novel molecular marker for EOC
patients [27]. Functional experiments suggest PTPRG-AS1
acts as a miRNA “sponge” to regulated protein regulator of
cytokinesis 1 (PRC1) in nasopharyngeal carcinoma [28].
However, the effect model of PTPRG-AS1 in HCC is still
mostly uncharacterized up to date. We elaborated that
PTPRG-AS1 was highly expressed in HCC tissues for the
first time and expected to regarded as a novel molecular
marker for HCC patients.

In this study, we analyzed the expression of PTPRG-AS1
in human HCC tissues and paracancer tissues. Subsequently,
functional experiments were performed to verify the car-
cinogenic effect of PTPRG-AS1. The regulatory relationship
between PTPRG-AS1 and miR-199a-3p was further studied.
This study may provide new biomarkers for the treatment of
liver cancer. Our study may also provide new insights into
clinical treatment and further intervention targets for HCC.

2. Materials and Methods

2.1. Patient Tissue Samples. We collected 30 cases of hepa-
tocellular carcinoma (HCC) tumor tissues, along with
matched adjacent normal tissues at our hospital. Inclusion
criteria: (1) preoperative radiotherapy and chemotherapy
not performed, (2) pathological examination confirming
primary liver cancer, and (3) complete data. Exclusion
criteria: (1) reject participants, (2) patients suffering from
other malignant tumors, and (3) patients suffering from
serious heart, liver, kidney, and other important organ
diseases. The diagnosis basis of liver cancer refers to Chinese
Society of Clinical Oncology (CSCO) guidelines for the
diagnosis and treatment of primary hepatocellular carci-
noma (HCC). All experiments were approved by the Re-
search Scientific Ethics Committee of the second People’s
Hospital of Taizhou City. All experiments were conducted
with informed consent signed by all diagnosed patients.

2.2. Cell Culture. SMMC-7721 (human hepatoma cell line),
HepG2 (human hepatoma cell line), Huh-7 (human hepa-
toma cell line), PLC-PRF-5 (human hepatoma cell line), and
THLE-3 (human liver epithelial cells) cells were purchased
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from American Type Culture Collection (ATCC, Manassas,
VA, USA). All cells were cultured in normal-glucose DMEM
medium (Gibco, Rockville, MD, USA) containing 10% fetal
bovine serum (FBS, Gibco) and kept in an incubator
(Thermo Fisher Scientific, Waltham, MA, USA) containing
5% CO, under 37°C.

2.3. Fluorescence In Situ Hybridization (FISH) Assay.
FISH assays were employed using the Fluorescence In Situ
Hybridization kit (RiboBio, Guangzhou, Guangdong,
China). Cells were seeded on slides and fixed in 4% para-
formaldehyde (PFA) at room temperature for half an hour.
Then, cells were treated with 0.5% Triton X-100 on ice for
15min to enhance membrane permeability. Subsequently,
cells were mixed with hybridization buffer containing FISH
probes for half an hour under 60°C. After washing off the
residual reagent, the slides were dehydrated, and DAPI
(Promega, Madison, WI, USA) was employed for staining
nucleus. The laser-scanning confocal microscope was
employed to observe images (Leica Microsystems,
Germany).

2.4. Cell Transfection. The short hairpin RNAs (shRNAs) for
PTPRG-AS1 (sh-PTPRG-AS1) and their negative control
(sh-NC) and the miR-199a-3p mimics, mimics-NC, miR-
199a-3p inhibitor, and inhibitor-NC were designed by
GenePharma Co., Ltd. (Shanghai, China). About 2 x 10° cells
were cultured in six-well plates with 2 mL complete medium,
and transfection was routinely performed with the help of
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) when
they were 80% confluent. qRT-PCR was employed to detect
the transfection efficiency after 48 hours of transfections.

2.5. RNA Isolation and RT-qPCR Assay. RNA was extracted
from corresponding tissues and cell lines using TRIzol re-
agent and then synthesized into cDNA by the corresponding
reverse transcription kit (Invitrogen, Carlsbad, CA, USA).
Subsequently, quantitative PCR was done using SYBR Green
reagent (Invitrogen) on the 7500 Fast Real-Time System
(Thermo Fisher Scientific, Waltham, MA, USA) to detect the
RNA expression levels. The results were standardized to
GAPDH and U6. The relative quantification of indicated
genes were normalized through the 27**“' method. All genes
were assayed at least in triplicate. The primer information is
lists in Table 1.

2.6. Cell Viability Assay. Cell viabilities were estimated by
the CCK-8 detection kit (Apexbio, Houston, USA). Briefly,
treated HepG2 and PLC-PRE-5 cells were seeded into 96-
well plates (4 x 10° cells/well) and incubated for about 12 h.
10 uL CCK-8 solutions was instilled to each well 24, 48, 72,
and 96 hours later respectively, and cells were incubated for
another 2 h under 37°C. The absorbance value was detected
under 450 nm wavelength with a microplate reader (Mul-
tiskanEX, Lab systems, Helsinki, Finland).
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TaBLE 1: Primer for qRT-PCR analysis.

Gene Forward sequence (5'-3") Reverse sequence (5'-3")
GAPDH TCAAGGCTGAGAACGGGAAG TGGACTCCACGACGTACTCA
U6 CTCGCTTCGGCAGCACATATACT CGCTTCACGAATTTGCGTGT
PTPRG-AS1 AAGCCAAGCAGTCAGAAGC CAATGACCCCTTCATTGAC
miR-199a-3p GCACAGTAGTCTGCACATTGG GTGCAGGGTCCGAGGTATTC
E-Cadherin GGATTGTCGGATTGGGAGAA CATTCTGCTGCTTGAGGGTT
Vimentin GATGTTTCCAAGCCTGACCT CACTTCACAGGTGAGGGACT

2.7. EdU Staining. We seeded the transfected PLC-PRF-5
cell and HepG2 cell into 96-well plates until cell attachment
and detected DNA synthesis using EdU detection Kit
(RiboBio, Guangzhou, China). Briefly, we added reagent A
to each well (100 yL/well, 1 diluted to 1000 with media) and
made them react at 37°C for 120 min. Then, we added PBS
solution containing 4% PFA to each well and incubated at
room temperature for 30 minutes for cell fixation. After that,
we added 50 microliters of glycine solution (2 mg/mL) to
each well to neutralize the residual paraformaldehyde. We
discarded the solution and added PBS to wash.
100 microliters of penetrating agent (PBS solution with 0.5%
Trixon-100) was supplemented to each well to enhance the
cell membrane permeability. 1X Apollo staining reaction
solution was supplemented to each well for 30 min in the
dark at room temperature. We used PBS containing 0.5%
Trixon-100 to rinse cells and then washed them with
methanol to reduce the staining background. Finally, we
employed the Hoechst solution for nuclear coloration and
washed it three times with PBS. The staining was observed
under a microscope (Nikon, Tokyo, Japan) and photo-
graphed immediately after all procedure completion.

2.8. Transwell Invasion and Migration Assay. In terms of
transwell invasion assay, approximately 5 x 10° treated PLC-
PREF-5 or HepG2 cells were resuspended and placed in the
upper space of a transwell system (8 ym pore size, Corning,
Cambridge, USA) with a Matrigel-coated membrane (BD
Bioscience, San Jose, USA), containing medium without
serum. Lower chambers were supplemented with a 100%
complete culture medium. Consequently, hungry cells will
penetrate from the upper to the bottom, attaching them-
selves to the membrane below. Afterward, the upper layer
was removed, while the cells in the lower layer were retained
for subsequent analysis, employing 4% PFA to fix the
retained cells and using 0.1% crystal violet solution to stain
for 30min to evaluate invaded cell numbers. For the
transwell migration experiment, the procedure was de-
scribed as invaded assay above only without Matrigel-coated
membrane. We randomly selected five mirror views to
perform cell counts under a 200x microscope (Leica
Microsystems, Germany).

2.9. HCC Tumor Xenograft In Vivo. 12 athymic male nude
mice of BALB/c aged about 6 weeks old were purchased from
the National Experimental Animal Center (Beijing, China)
and kept in a sterile environment with stable humidity and
temperature. All animal procedures have been approved by

the Animal Research Ethics Committee of the Second
People’s Hospital of Taizhou City. Approximately, 1x 10
PLC-PREF-5 after transfection with LV-NC (n=6) and LV-
shPTPRG-AS1 (n=6) were diluted in 100uL medium,
mixed well with a pipette, and then hypodermically injected
into the dorsal skin of nude mice. We used a digital caliper to
measure tumor volume on the 7%, 14™, 21%, and 28" day
after injection and calculated using the following formula:
tumor volume = 47/3 x (width/2)* x (length/2). When all
procedures were completed, nude mice were euthanatized
and tumor tissues were isolated for tumor weight
examination.

2.10. Dual-Luciferase Reporter Assay. Wild-type PTPRG-
AS1 (wt-PTPRG-AS1) or YWHAG (wt-YWHAG) and
mutant PTPRG-AS1 (mut-PTPRG-AS1) or YWHAG (mut-
YWHAG) were employed to insert into pGL3 vector
(Promega, Madison, WI, USA). Subsequently, luciferase
constructs and miR-199-3p mimics or negative control were
cotransfected into cells using Lipofectamine 3000 (Invi-
trogen). Luciferase activities were evaluated through the
dual-luciferase assay system (Promega) 48h after
transfection.

2.11. Histology. Tumor tissue slides were stained using he-
matoxylin and eosin (H&E) to observe the changes in
metastases numbers due to PTPRG-AS1 knockdown. 5um
microsections were prepared and fixed by infusing 4% PFA
and then subsequently stained with H&E to assess tumor
metastases numbers. For immunohistochemical (IHC) as-
say, slides were also fixed with 4% PFA, using 0.1% Triton
X-100 in PBS solution to penetrate. The slides were blocked
using PBS solution supplemented with 5% bovine serum
albumin to remove specific background staining. After
cleaning and removing residual reagent, Ki67 primary an-
tibody (ab15580, 1:200, Abcam, Cambridge, MA, USA) was
employed to cover sections overnight at 4°C. Primary an-
tibody was washed away with PBS, and the samples were
incubated with a specific secondary antibody for 1h under
room temperature condition and imaged using a light
microscope.

2.12. Statistical Analysis. Statistical analysis was performed
employing GraphPad Prism 7.0 software. Mean + standard
deviation (SD) was used to describe all quantitative ex-
perimental data. Two-tailed student’s t-test was employed to
evaluate the difference between the two groups. One-way



ANOVA analysis followed by Tukey’s multiple comparison
test was used to compare the difference between multiple
groups. P <0.05 was considered statistically significant.

3. Results

3.1. PTPRG-AS1 Was Intensified and Correlated with Poor
Prognosis in HCC. To elaborate the specific function of
PTPRG-AS1 in HCC, qRT-PCR analysis was employed to
detect the quantification of PTPRG-AS1 in human HCC
tissues obtained from 30 HCC patients and their adjacent
normal tissue. The result exhibited that PTPRG-AS1
quantification was intensified if we contrasted this to
neighboring tissues (Figure 1(a)). Then, the PTPRG-ASI
quantification in 4 different HCC cell lines was estimated.
We found that PTPRG-AS1 quantification was intensified in
HepG2 and PLC-PRF-5 compared with that in SMMC-7721
and Huh-7 (Figure 1(b)). In addition, FISH assays were
carried out to demonstrate the localization of PTPRG-AS1 in
the nuclei and cytoplasm. Figure 1(c) shows that PTPRG-
AS1 was predominately located in the cytoplasm. Next, we
divided patients into high or low expression groups
according to PTPRG-AS1 quantification. We used the
Kaplan-Meier survival analysis to make the overall survival
(OS) curves to explore the consequence of PTPRG-ASI in
clinical prognosis. The results showed that patients with high
PTPRG-ASI1 expression quantification had shorter OS than
patients with low PTPRG-AS1 (Figure 1(d)). These results
demonstrated that a high PTPRG-AS] expression level was
significantly associated with poor HCC outcomes.

3.2. PTPRG-Asl Influences HCC Tumor Proliferation and
Invasion In Vitro. Next, we knocked down PTPRG-AS1
using siRNA transfection technology (Figure 2(a)). Subse-
quent cell proliferative experiment revealed that down-
regulation of PTPRG-ASI restrained the growth of HepG2
and PLC-PRF-5 (Figure 2(b)). Furthermore, the EdU assay
showed that the proliferation potential of HepG2 and PLC-
PRF-5 was all impaired upon downregulation of PTPRG-
ASI1 (Figure 2(c)). To further investigate the biological effects
of PTPRG-ASI in tumor growth in vitro, transwell invasion
and migration were performed. Moreover, we found that
inhibition of PTPRG-ASI led to a prominent decrease in
invaded cell numbers (Figure 2(d)) and migrated cell
numbers (Figure 2(e)). In addition, we employed qRT-PCR
to examine the quantification of E-cadherin and vimentin in
HCC cells. E-cadherin was intensified upon downregulation
of PTPRG-ASI (Figure 2(f)). However, vimentin was at-
tenuated (Figure 2(g)). These findings showed that down-
regulation of PTPRG-AS1 could inhibit proliferation and
migration in HCC.

In order to further explore the function of PTPRG-ASI,
we conducted overexpression analysis. As shown in
Figure 3(a), we observed the successful overexpression ef-
ficiency of PTPRG-ASI in HepG2 and PLC-PRF-5. More-
over, overexpression of PTPRG-AS1 dramatically promoted
cell proliferation of HepG2 and PLC-PRF-5 (Figure 3(b)).
Then, EAU assay showed that the proliferation potential of
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HepG2 and PLC-PRF-5 was all improved upon upregulation
of PTPRG-AS1 (Figure 3(c)). Similarly, transwell invasion
and migration were employed to detect cell growth in vitro.
Furthermore, we found that upregulation of PTPRG-AS1 led
to a prominent increase in invaded cell numbers
(Figure 3(d)) and migrated cell numbers (Figure 3(e)).
Moreover, PTPRG-AS1 expression increased the mRNA
expression of vimentin (Figure 3(g)), whereas it decreased
E-cadherin (Figure 3(f)). The above findings elaborated that
the increased expression of PTPRG-AS1 could intensify
proliferation and migration in HCC.

3.3. PTPRG-ASI Acts as miR-199a-3p Sponge. To disclose the
interaction between miR-199a-3p and PTPRG-AS], starBase
2.0 database (http://starbase.sysu.edu.cn/) [29] was
employed to predict their interaction. We found that miR-
199a-3p was a promising miRNA target of PTPRG-ASI
(Figure 4(a)). Besides, miR-199a-3p relative expression after
transfection with miR-199a-3p mimics increased notably
(Figure 4(b)) and decreased notably after transfection of
miR-199a-3p inhibitor (Figure 4(b)). Next, we used double
luciferase reporter gene detection to explore whether miR-
199a-3p could directly target PTPRG-AS1. The results
showed that compared with the control group, luciferase
activity was significantly decreased when miR-199a-3p was
combined with PTPRG-AS1-WT. However, after mutation
of ptPRG-ASI binding site and addition of miR-199a-3p,
luciferase activity did not change (Figure 4(c)). Inversely,
miR-199a-3p relative quantification in tumor was decrease
significantly if we contrasted this to neighboring tissues
(Figure 4(d)). Moreover, Pearson’s correlation analysis
suggested PTPRG-AS1 quantification was significantly
negatively correlated with miR-199a-3p expression in HCC
(Figure 4(e)). Moreover, miR-199a-3p expression was en-
hanced with PTPRG-AS1 downregulation (Figure 4(f)).
Subsequent CCK-8 assay revealed that upregulation of miR-
199a-3p markedly suppressed proliferation of HepG2 and
PLC-PREF-5 (Figure 4(g)). Similarly, transwell assay showed
that upregulation of miR-199a-3p led to a significant re-
duction in invaded cell numbers, both HepG2 and PLC-
PREF-5 (Figure 4(h)). Taken together, PTPRG-AS1 directly
targeted miR-199a-3p.

3.4. PTPRG-AS1 Mediates miR-199a-3p/YWHAG Axis to
Promote HCC. Through the TargetScan database, we found
YWHAG is a presumptive potential target of miR-199a-3p.
Figure 5(a) shows their matching binding sites. The lucif-
erase reporter assay shows wild-type (wt) YWHAG could
change the relative luciferase activity. In contrast, no obvious
change in the luciferase activity was detected in the mut 3'-
UTR of YWHAG (Figure 5(b)), indicating a direct inter-
action between YWHAG and miR-199a-3p. Furthermore,
YWHAG relative quantification in the tumor was signifi-
cantly heightened if we contrasted this to neighboring tissues
(Figure 5(c)), which was opposite to that of miR-199a-3p.
Furthermore, Pearson’s correlation analysis suggested
YWHAG was significantly negatively correlated with miR-
199a-3p expression in HCC tissues (Figure 5(d)). qRT-PCR
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FIGURE 1: PTPRG-AS1 was upregulated in hepatocellular carcinoma tissues. qRT-PCR was used to test the expression level of PTPRG-AS1
in liver cancer tissues (1 =30) (a) and different hepatoma cell lines (b). (c) FISH analysis of PTPRG-ASI (nuclei were stained with blue, and
PTPRG-AS]1 was stained with red; scale bar: 5 ym). (d) Kaplan-Meier curves display the estimated survival probability in HCC patients with
high expression and low expression of PTPRG-ASI1. All experimental data are carried out 3 times, and mean + standard deviation was

employed to represent experimental data. *P <0.05, **P <0.01.

results uncovered that YWHAG relative expression de-
creased notably after transfection of miR-199a-3p mimics.
However, YWHAG quantification was intensified after
transfection with miR-199a-3p inhibitor (Figure 5(e)).
Moreover, YWHAG expression was attenuated after
transfection with sh-PTPRG-ASI (Figure 5(f)). Next, we
explore the effects caused by knocking down the expression
of YWHAG to evaluate its biological function in HCC.
Figure 5(h) demonstrates that the inhibition was successful.
Subsequent CCK-8 assay revealed that downregulation of
YWHAG significantly restrained the growth of HepG2 and
PLC-PRF-5 (Figure 5(h)). Furthermore, the transwell assay
showed that the invasion potential of HepG2 and PLC-PRF-
5 was all impaired upon downregulation of YWHAG
(Figure 5(i)). Thus, PTPRG-AS] mediated miR-199a-3p/
YWHAG axis to promote HCC.

3.5. Downregulation of PTPRG-Asl Restrains HCC Cell
Growth and Migration In Vivo. Furthermore, to determine
the effects of PTPRG-AS1 on HCC in vivo, PTPRG-AS1
knockdown (LV-shPTPRG-AS1) or control (LV-NC) PLC-
PREF-5cells were injected subcutaneously into nude mice

(n=6). Figure 6(b) demonstrates that the expression of
PTPRG-AS1 was inhibited. The results uncovered that tu-
mor volume and weight in mice injected with LV-shPTPRG-
AS1 PLC-PRE-5 cells were notably reduced compared with
the above index in control mice (Figures 6(a) and 6(c)). Ki67
staining is frequently used in oncology to estimate a tumor’s
proliferation index. Here, IHC results showed that down-
regulation of PTPRG-ASI significantly inhibited Ki67 ex-
pression in nude mice, indicating a decreased proliferation
level after PTPRG-AS1 downregulation (Figure 6(d)).
Moreover, PTPRG-AS1 downregulation led to a decrease in
the number of metastases in vivo (Figure 6(e)). qRT-PCR
delineated that E-cadherin quantification was upregulated in
the tumor of LV-shPTPRG-AS1 group compared with the
control group. However, vimentin was downregulated
(Figures 6(f) and 6(g)).

4. Discussion

Hepatocellular carcinoma (HCC) is one of the six most
prevalent cancer in the world [30], with the incidence rate of
men much higher than that of women [31]. The number of
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FIGURE 4: PTPRG-ASI directly targeted miR-199a-3p. (a) starBase prediction of PTPRG-AS] and miR-199a-3p sites. (b) qRT-PCR was
employed to estimate the quantification of miR-199a-3p after transfection with mimics-NC, miR-199a-3p mimics, inhibitor-NC, or miR-
199a-3p inhibitor. (c) Luciferase reporter analysis of the targeted binding between miR-199a-3p and PTPRG-ASI. (d) qRT-PCR was
employed to exam miR-199a-3p miRNA relative expression in HCC tumor tissue. (e) The linear correlations of PTPRG-AS1 and miR-199a-
3p expression were demonstrated by Pearson analysis. (f) The relative level of miR-199a-3p in cell transfected with LV-shPTPRG-AS1 and
LV-NC. (g) Overexpression of miR-199a-3p inhibited proliferation of HepG2 and PLC-PRF-5 indicated by CCK-8 assay. (h) Over-
expression of miR-199a-3p attenuated invasion of HepG2 and PLC-PRF-5 detected by transwell assay. WT: wild-type. MUT: mutated.

*P<0.05, **P<0.01.
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deaths caused by liver cancer ranked second in the world
among all deaths derived from cancer, accounting for 11% of
deaths caused by cancer, only after lung cancer [32]. The
five-year survival rate for liver cancer is only 14% in the
United States, which is even lower in some underdeveloped
areas [33]. Thus, finding effective tumor markers can reduce
HCC recurrence rate and improve survival rate, further
providing important guidance for clinical treatment
[34-38].

Although recent studies have identified many novel HCC
biomarkers, including IncRNAs [39-41], LncRNAs have been
found to have functions in HCC development. Studies have
indicated that the IncRNAs, MIAT [42], GABPBI [43], and
PDPK2P [44] influence tumor progression in HCC. Addi-
tionally, research revealed a relationship between PTPRG-AS1
and epithelial ovarian cancer [27] or osteosarcoma [45].
However, whether PTPRG-ASI participates in the tumor
progression of HCC has not been investigated. In the current
research, we assessed the quantification of PTPRG-ASI in
HCC to find out whether they could be served as a novel
prognostic biomarker for early detection and prediction of
HCC. Our study showed that PTPRG-AS1 was a major par-
ticipant in regulating the HCC tumorigenesis. Then, we in-
vestigated their underlying molecular mechanisms of how
PTPRG-AS1 modulated the cell activities of HCC and found

that upregulation of PTPRG-ASI could strengthen HCC de-
velopment, including replication proliferation and metastasis
through downregulating miR-199a-3p. As a ubiquitous
miRNA, miR-199a-3p is one of the miRNAs conspicuously
overexpressed in liver tissues under normal conditions. It is
downregulated in almost all HCC, and this downregulation is
associated with poor prognosis [46, 47]. The antineoplasmic
activity of miR-199a-3p in HCC has already been verified in
past research using the mice model [48, 49]. Studies in recent
years have shown that the synergistic regulation of multiple
genes by specific miRNA is sophisticated in controlling the
onset of diseases [50]. For example, miRNA-199a-3p weakened
tumor progression in HCC by targeting VEGFA, HGF, or
MMP2 [51]. Moreover, miRNA-199a-3p could effectively
decrease tumorigenesis in HCC, which may be related to
ZHX1-dependent PUMA signals [52]. In this research, we have
recognized that miR-199a-3p expression was attenuated in
HCC and negatively associated with PTPRG-ASI expression,
which may be regarded as a potential target of PTPRG-ASI.

Micro-RNAs (miRNAs), a set of noncoding RNAs, exert
the biological functions through directly binding mRNAs
and consequently suppress their expression [53-56].
YWHAG gene resides on 7ql11.23 and encodes 14-3-3y
protein, a member of the 14-3-3 family, which functions as a
scaffolding protein to maintain the stability of multiprotein
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Figure 6: Downregulation of PTPRG-ASI inhibited HCC proliferation and invasion in vivo. (a) Tumor image and volume in nude mice
injected subcutaneously with PLC-PRF-5 cell transfected with LV-NC and LV-shPTPRG-AS1 (n=6). (b) qRT-PCR was employed to
estimate miRNA quantification of PTPRG-ASI in nude mice of the above groups. (c) Tumor weight in nude mice injected subcutaneously
with PLC-PRF-5 cell transfected with LV-NC and LV-shPTPRG-AS1. (d) Ki67 staining of tissues in different groups. (e¢) Number of
metastases after PTPRG-AS1 downregulation by HE staining. qRT-PCR was employed to depict mRNA expression of E-cadherin (f) or

vimentin (g) in nude mice of above groups. *P <0.05, **P <0.01.

complex and therefore participates in a multitude of cellular
processes as a regulatory molecule, including cell viability
and apoptosis [57-60]. It is reported that stably overex-
pressed YWHAB aggravated the metastases of tumors and is
expected to be adopted as a new signature molecule for HCC
prognosis and provide potentially powerful clues for its
treatment [61]. As a member of the 14-3-3 family, YWHAG
was intensified in HCC if we contrasted this to neighboring
tissues. Cell developments of both HepG2 and PLC-PRF-5
were all restrained by YWHAG knockdown. Moreover, it is
predicted that matching sites exist between YWHAG and
miR-199a-3p. YWHAG is a direct molecular binding to
miR-199a-3p confirmed by corresponding luciferase activ-
ities. There are also shortcomings in this study. Whether
there are other target genes of PTPRG-AS1 needs further
study. In addition, more experimental studies are needed to
translate the findings into clinical practice.

5. Conclusion

In summary, PTPRG-AS]1 expression was upregulated in HCC
in this study. The expression of miR-199a-3p was decreased.
PTPRG-ASI can be regarded as a miR-199a-3p “sponge” and
significantly promote the occurrence of liver cancer by acti-
vating YWHAG expression. The results of this study suggest
that PTPRG-AS1 can be used as a new molecular marker for
the progression and diagnosis of liver cancer and provide new
ideas for the treatment of liver cancer.
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