
Observational Study Medicine®

OPEN
Identification of MTHFD2
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Abstract
DNA methylation is an important epigenetic regulatory mechanism in esophageal carcinoma (EC) and is associated with genomic
instability and carcinogenesis. In the present study, we aimed to identify tumor biomarkers for predicting prognosis of EC patients.
We downloaded mRNA expression profiles and DNA methylation profiles associated with EC from the Gene Expression Omnibus

database. Differentially expressed and differentially methylated genes between tumor tissues and adjacent normal tissue samples
were identified. Functional enrichment analyses were performed, followed by the construction of protein–protein interaction
networks. Data were validated based on methylation profiles from The Cancer Genome Atlas. Candidate genes were further verified
according to survival analysis and Cox regression analysis.
We uncovered multiple genes with differential expression or methylation in tumor samples compared with normal samples. After

taking the intersection of 3 differential gene sets, we obtained a total of 232 overlapping genes. Functional enrichment analysis
revealed that these genes are related to pathways such as “glutathione metabolism,” “p53 signaling pathway,” and “focal adhesion.”
Furthermore, 8 hub genes with inversed expression and methylation correlation were identified as candidate genes. The abnormal
expression levels of MSN, PELI1, andMTHFD2 were correlated with overall survival times in EC patients (P< .05). Only MTHFD2 was
significantly associated with a pathologic stage according to univariate analysis (P= .037) and multivariate analysis (P= .043).
Our study identified several novel EC biomarkers with prognostic value by integrated analysis of transcriptomic data and

methylation profiles. MTHFD2 could serve as an independent biomarker for predicting prognosis and pathological stages of EC.

Abbreviations: BP = biological process, CC = cellular component, CI = confidence interval, DAVID = Database for Annotation,
Visualization, and Integrated Discovery online tool, DEGs = differentially expressed genes, ESCC = esophageal squamous cell
carcinomas, GEO =Gene Expression Omnibus, GEPIA =Gene Expression Profiling Interactive Analysis, GO = gene ontology, HR =
hazard ratio, KEGG =Kyoto Encyclopedia of Genes and Genomes, MF =molecular function, OS = overall survival, PPI = predicted
protein–protein interaction, STRING = Search Tool for the Retrieval of Interacting Genes.
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1. Introduction
Esophageal carcinoma (EC) is one of the most common
malignant cancers. EC is prevalent in Chinese populations and
is responsible for a large proportion of all diagnosed EC cases
worldwide. Despite some recent therapeutic improvements, most
EC patients are diagnosed in the advanced stages, and the overall
5-year survival rate is <20%.[1,2] Therefore, the development of
novel therapeutic targets and molecular biomarkers for early
detection and clinical management of EC is urgently needed.
Genomic alterations and epigenetic regulation play pivotal

roles in carcinogenesis and development. DNA methylation is a
dominant form of epigenetic modification involved in the
regulation of the cancer genome.[3–5] Hypermethylation at
CpG islands or promoter regions often leads to the silencing
of tumor suppressor genes, while hypomethylation in these
regions is associated with upregulation of oncogenes.[6,7] Large-
scale and multi-omics profiling can provide a comprehensive
analysis of the genomic and epigenomic aberrations in various
cancers. In esophageal squamous cell carcinomas (ESCC), many
cancer-related genes function in modulating DNA methylation.
For example, the complete methylation of IGFBPL1 found in EC
cells can suppress EC cell growth by inhibiting PI3K-AKT
signaling.[8] Promoter hypermethylation of TGFBR2 was
identified in ESCC samples, and lentiviral mediated over-
expression of TGFBR2 could inhibit ESCC cell proliferation.[9]
Figure 1. A schematic of the bioinformatics analysis pipeline used for
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Through integrated analysis of DNA methylation and RNA
sequencing data, Chen et al[10] identified 16 key ESCC genes such
as SIX4, CRABP2, and EHD3, which demonstrate an inverse
correlation between DNA methylation and mRNA expression.
Thus, integrated multi-omics data can accurately screen potential
prognostic biomarkers and provide novel insights into precision
medicine for cancer.
In the current study, through integrated analysis of tran-

scriptomic and methylation data from the Gene Expression
Omnibus (GEO) database, we screened differentially expressed
and differentially methylated genes in EC samples compared
with normal tissue samples. Functional enrichment analysis
was conducted to identify enriched Gene Ontology (GO) terms
and pathway categories of candidate genes, followed by
protein–protein interaction (PPI) network construction. After
further data validation, we focused on 3 genes with inverse
correlations between expression level and DNA methylation
status (MSN, MTHFD2, and PELI1). Survival and Cox
regression analyses were performed to explore their prognostic
values in EC patients. A schematic of the bioinformatics
pipeline used to analyze transcriptomic data and DNA
methylation profiles is presented in Fig. 1. Our systemic
analysis provides new insights into the pathobiology of EC and
may aid in the development of novel prognostic biomarkers for
EC patients.
transcriptome analysis and generation of DNA methylation profiles.



Figure 2. Identification of candidate genes in EC samples according to microarray data. A–C (left). Heat maps representing the hierarchical clustering results of the
GSE20347, GSE75241, and GSE52826 datasets. The columns and rows represent clinical samples and differentially expressed genes, respectively. Red indicates
upregulated or hypermethylated genes, while green refers to downregulated or hypomethylated genes. A–C (right). Volcano plots representing changes in gene
expression at the transcriptional and methylation levels. The genes with j log2fold (FC)j ≥2 and P< .05 were respectively labeled with red or green. The green dots
on the left side indicate significantly downregulated or hypomethylated genes, while the red dots on the right side indicate upregulated or hypermethylated genes. D.
Venn diagram analysis showing the 232 overlapping genes that were selected as candidate genes for further analysis based on the 3 datasets. EC=esophageal
carcinoma.

Wang et al. Medicine (2020) 99:37 www.md-journal.com
2. Methods

2.1. Data resources and screening of differentially
expressed genes (DEGs)

Transcriptome data (accession numbers GSE20347,[11]

GSE75241,[12] and GSE17351[13]) and DNA methylation
profiles (GSE52826[14]) associated with EC including corre-
sponding probe annotation information were downloaded from
the GEO database. The GSE20347 mRNA microarray datasets
included 34 clinical samples and were tested on an Affymetrix
Human Genome U133A 2.0 Array platform, while GSE75241
consisted of 30 biopsy specimens and was verified on an
Affymetrix Human Exon 1.0 ST Array platform. GSE17351
included 5 paired primary ESCC tumor and normal tissues tested
on anAffymetrix HumanGenomeU133 Plus 2.0 Array platform.
EC methylation data from The Cancer Genome Atlas database
were used for data validation. Moreover, GSE52826 DNA
methylation profiles were generated using Infinium methylation
450K BeadChips, and the datasets consisted of 12 clinical
samples from ESCC patients and healthy individuals.
Additionally, the limma package[15] was used to screen DEGs

between tumor tissues and adjacent normal tissues. The minfi
package[16] was used to analyze the GSE52826DNAmethylation
dataset. The criteria for DEG classification and differentially
methylated genes were as follows: jFold Changej>2 and adjusted
P< .05, and jbetaj>2 and adjusted P< .05, respectively. Volcano
3

plots were generated to visualize upregulated and downregulated
genes using the pheatmap package.[17] Differences were
deemed statistically significant when P< .05 and jlog2fold
(FC)j ≥2.
2.2. Functional enrichment analysis

The Database for Annotation, Visualization and Integrated
Discovery (DAVID; http://david.abcc.ncifcrf.gov/)[18] is a bioin-
formatics resource for performing batch functional annotation
according to GO terms relating to biological processes (BP),
cellular components (CC), and molecular function (MF).
Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/)[19] enrichment analyses were per-
formed to identify potential pathways associated with these
DEGs. Statistical significance was defined as P< .05.
2.3. Construction of PPI network

Protein interactions were searched for using the online tool
Search Tool for the Retrieval of Interacting Genes (STRING)
(http://www.string-db.org/, version 11.0)[20] with a threshold
correlation coefficient >0.4. Cytoscape software[21] was used to
construct the PPI network. The functional modules were screened
from large protein interaction networks using the MCODE
plugin.[22] Statistical significance was defined as P< .05.

http://david.abcc.ncifcrf.gov/
http://www.genome.jp/kegg/
http://www.string-db.org/
http://www.md-journal.com


Figure 3. Functional enrichment analysis of differentially expressed genes and differentially methylated genes in ECs. A. The top 20 functional terms (FDR<0.05)
were determined by GO term analysis evaluating the BP, CC, andMF. Red dots indicate a smaller P-value. The node size corresponds to the gene count, and larger
dots indicate a higher number of genes with enriched GO terms. The intensity of dot color corresponds to the logarithmic P-value (a stronger red indicates higher
statistical significance). B. KEGG pathway categories enriched in the list of differentially expressed genes. The columns represent pathway categories. The red color
of the columns corresponds to logarithmic P-values. C. Significantly enriched pathway categories as determined by ClueGO plugin enrichment analysis. BP=
biological process; CC=cellular component; EC=esophageal carcinoma; GO=Gene Ontology; KEGG=Kyoto Encyclopedia of Genes and Genomes; MF=
molecular function.
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2.4. Survival analysis

Pearson correlation was used to evaluate correlations between
mRNA levels and methylation levels of each gene. Coefficient
values<0 were considered statistically significant. In addition,
we further performed survival analysis[4] and constructed Cox
regression models[23] to screen candidate genes associated with
EC progression. Based on univariate and multivariate analyses,
we identified several genes with prognostic value.
3. Results

3.1. Identification of differentially expressed and
methylated genes in EC

Transcriptome analysis and DNA methylation profiling were
conducted using the limma and minfi packages. After data
normalization, hierarchical clustering analysis of GSE20347 and
GSE75241 showed that multiple genes were differentially
expressed in EC tissue compared with normal samples
(Fig. 2A and B). Subsequently, we found numerous differentially
4

methylated genes from the GSE52826 dataset, and randomly
selected 100 genes for clustering analysis. Heat map results
indicate that these genes exhibited differential methylation
patterns in EC samples compared with normal samples. The
large number of points located on each side of the volcano plot
indicates that many probes exhibited differential methylation
status (Fig. 2C). We extracted the intersection of the 3 differential
gene sets, and finally obtained a total of 232 overlapping genes
with differential expression or methylation (Fig. 2D).

3.2. Functional enrichment analysis of genes related to EC

GO analysis was conducted to illustrate that EC-related proteins
are involved in many BP, CC, and MF categories. By evaluating
gene count numbers and FDR values, we identified the top 20 BPs
such as “cytoskeleton,” “cell cycle,” “biological adhesion,” “cell
adhesion,” “extracellular region part,” “M phase,” and
“response to wounding” (Fig. 3A). KEGG enrichment analysis
indicated that these candidate genes were associated with several
signaling pathways (Fig. 3B) such as “small cell lung cancer”



Figure 4. PPI network associated with differentially expressed genes in EC. A. Results of PPI network analysis. B. Regulatory network of hub genes related to EC.
EC=esophageal carcinoma; PPI=predicted protein–protein interaction.
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(hsa05222, count=5), “p53 signaling pathway” (hsa04115,
count=7), “glutathione metabolism” (hsa00480, count=7),
“focal adhesion” (hsa04510, count=9), “fatty acid metabolism”

(hsa00071, count=4), “ECM-receptor interaction” (hsa04512,
count=9), “DNA replication” (hsa03030, count=4), “cell
cycle” (hsa04110, count=8), and “biosynthesis of unsaturated
fatty acids” (hsa01040, count=3). The signaling pathways are
visualized in Fig. 3 using clueGO plugin.
Figure 5. Hub genes with inverse methylation and expression status (coefficient
expression levels (Y). Rpearson is the Pearson correlation coefficient, and n is the

5

3.3. PPI network analysis
We searched the STRING database and explored the potential
interactions between the EC proteins. PPI networks were
visualized using Cytoscape software (Fig. 4). The network
consisted of multiple edges and nodes which represent the genes
and interactions, respectively. We further identified several hub
genes from the PPI network and constructed a regulatory
network using the MCODE plugin (Fig. 4B). These hub genes
values<�0.3 and P< .05). The axes represent DNA methylation (X) and gene
number of clinical samples.

http://www.md-journal.com


Figure 6. Survival analysis and data validation identifying MTHFD2 as a prognostic biomarker in EC. A. Kaplan–Meier plots depicting survival analysis of three
candidate genes: MSN, MTHFD2, and PELI1. B. Data validation to identify MTHFD2 expression in normal and tumor tissues based on the TCGA and GSE17351
datasets. EC=esophageal carcinoma.
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were selected as candidate genes associated with EC develop-
ment, and included MTHFD2, MCM6, CENPE, NCAPH,
RRM2, PELI1, KIF15, CCNG2, and MGST2.

3.4. Eight genes are differentially methylated in EC

We analyzed EC methylation and transcriptomic data down-
loaded from the TCGA database. Using coefficient and P
thresholds of <–.3 and <.05, respectively, we identified 8 genes
with inverse correlations between mRNA expression and DNA
methylation (Fig. 5). These 8 genes were hypermethylated and
downregulated, or hypomethylated and upregulated in tumor
tissue, and are related to EC progression (CCNB1, CENPF,
KIF15, MCM7, MSN, MTHFD2, NCAPH, and PELI1).

3.5. MTHFD2 is an independent risk factor for EC
development

Survival analysis revealed that patients with high expression of
MSN or PELI1 displayed longer overall survival times compared
with those with low expression level of these genes (Fig. 6A;
MSN, hazard ratio [HR]: 0.672, 95% confidence interval [CI]
0.169–2.681, P= .0468; PELI1, HR: 0.228, 95% CI 0.037–
1.405, P= .0452). In contrast, EC patients with lower expression
of MTHFD2 exhibited better prognosis than individuals with
6

high MTHFD2 (HR: 2.394, 95% CI 0.312–18.345, P= .0361).
These results suggest thatMSN and PELI1may function as tumor
suppressor genes, while MTHFD2 may act as an oncogene.
In addition, we analyzed the overall survival of EC patients

(paying attention to several clinicopathological characteristics
such as age, sex, pathologic stage, and neoplasm type; Table 1).
Univariate and multivariate analyses showed that only the
expression of MTHFD2 expression was significantly associated
with pathologic stage (HR: 1.971, 95% CI 1.032–3.764,
P= .037; HR: 1.885, 95% CI 0.965–3.681, P= .043), indicating
that MTHFD2 is an independent prognostic factor in EC
progression.
MTHFD2 expression was further analyzed in tumors and

adjacent normal tissues by data validation of the TCGA and
GSE17351 datasets (Fig. 6B). MTHFD2 was significantly
upregulated in esophageal cancer samples compared with normal
tissues (GSE17351 dataset, n=10, P= .008; TCGA dataset, n=
173, P< .001), which was in line with our prediction results.
Thus, MTHFD2 can serve as an independent EC biomarker
associated with poor prognosis.
4. Discussion

In this present study, we identified 232 genes with aberrant
expression and methylation status based on the analysis of



Table 1

Univariate and multivariate analyses of clinicopathological characteristics and important genes with overall survival in TCGA esophageal
cancer cohort.

Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

TCGA ESCA set (n=148)
Age (>60 year vs �60 year) 0.84 (0.453–1.557) .581
Gender (male vs female) 0.387 (0.119–1.259) .115
Pathologic T (T1+T2 vs T3 +T4) 1.399 (0.747–2.619) .294
Pathologic N (N0 vs N1) 2.482 (1.257–4.9) .009 1.174 (0.478–2.886) .726
Pathologic M (M0 vs M1) 3.607 (1.736–7.496) <.001 2.084 (0.928–4.678) .075
Pathologic stage (Stage I + II vs Stage III + IV) 3.447 (1.788–6.646) <.001 2.55 (1.04–6.255) .041
Neoplasm type (G1 + G2 vs G3 + G4) 1.447 (0.779–2.685) .242
MSN (>median vs �median) 0.518 (0.268–1.002) .051
MTHFD2 (>median vs �median) 1.971 (1.032–3.764) .037 1.885 (0.965–3.681) .043
PELI1 (>median vs �median) 0.516 (0.267–0.996) .049 0.706 (0.355–1.401) .052

CI= confidence interval, HR=hazard ratio.
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transcriptome and methylation datasets. Functional enrichment
analysis of these genes revealed enrichment of pathways such as
“ECM-receptor interaction,” “focal adhesion,” “p53 signaling
pathway,” “cell cycle,” and “glutathione metabolism.” Eight
genes were identified as hub genes in the PPI network such as
MTHFD2, MCM6, and CENPE. According to survival analysis,
deregulation of 3 genes (MSN, MTHFD2, and PELI1) was
correlated with overall survival time in EC. Cox regression
analysis showed that only MTHFD2 expression status was
significantly correlated with pathologic stage (P< .05). Finally,
data validation using the TCGA database demonstrated that
MTHFD2 was significantly upregulated in tumor tissue
compared with adjacent normal samples, indicating that
MTHFD2 might have prognostic value in EC development.
MTHFD2 encodes a mitochondrial enzyme with methyl-

enetetrahydrofolate dehydrogenase and cyclohydrolase activi-
ties.[24] This protein is expressed in the developing embryo and
is absent in most adult tissues. Interestingly, recent studies have
focused on the functions of MTHFD2 in cancer biology.
Overexpression of the MTHFD2 protein was detected in 19
cancer types; high MTHFD2 mRNA expression was correlated
with poor prognosis in breast cancer patients.[25,26] Repression
of MTHFD2 decreased the invasion and migration of breast
cancer cell lines.[27,28] However, little is known about the
regulatory mechanism(s) of MTHFD2 in EC. Based on
metabolic enzyme expression analysis, MTHFD2 has a key
role in the mitochondrial one-carbon folate pathway in various
cancers.[25] Folate metabolism is central to cell proliferation,
and MTHFD2 was reported as a folate-coupled enzyme
broadly required for cancer cell proliferation. It was shown
to be responsible for mitochondrial NADPH production in
proliferating cancer cells and involved in biochemical reactions
including deoxythymidylate, purine nucleotide production, and
amino acid inter conversion.[29–31] Thus, the effects of
MTHFD2 on EC progression exerted through the regulation
of the 1 carbon metabolism and folate pathways require further
validation.
Furthermore, MTHFD2 may be regulated by several micro-

RNAs. In colorectal cancer, MTHFD2 expression promotes
cancer cell growth, and MTHFD2 is targeted by miR-33a-5p, a
microRNA with a major role in tumorigenesis.[32] In addition,
miR-92a inhibits cancer cell proliferation and induces apoptosis
7

by regulating MTHFD2 in acute myeloid leukemia.[33] Similarly,
miR-9 can directly target MTHFD2 to exert anti-proliferative
and pro-apoptotic effects in breast cancer cells.[34] A recent study
demonstrated that miRNA-940 interacts with MTHFD2 to
induce mitochondrial folate metabolism dysfunction and sup-
pression of glioma progression.[35] Thus, the mitochondrial
isozyme MTHFD2 is upregulated and associated with cancer
prognosis. Targeting MTHFD2 and the mitochondrial folate
pathway might be a potential novel therapeutic strategy for
cancer.
As for other genes, MSN encodes the moesin protein belonging

to the ERM family (ezrin, radixin, and moesin).[36,37] Extensive
roles for moesin in tumors have been uncovered, and moesin
overexpression is correlated with metastasis and poor prognosis
in different cancer types.[38–41] Wu et al[42] revealed that ECM1
interacts withMSN and facilitates invadopodia formation, which
is required for stromal invasion and metastasis in breast cancer.
Similarly, in hepatocellular carcinoma cells, Lan et al[43]

identified that moesin promotes metastasis by improving
invadopodia formation and activating the b-catenin/MMP9
axis. However, the potential role of MSN in EC remained
unknown. Our results now suggest that MSN expression is
correlated with poor prognosis in EC patients, indicating MSN
plays a vital role in EC progression. In addition, PELI1 (pellino-1)
functions as an E3 ubiquitin ligase that is degraded by the
proteasome. It is involved in inflammatory and autoimmune
diseases through mediating post-translational modifications in
animal cells.[44–46] A previous study on B-cell lymphomas found
that PELI1 promotes lymphomagenesis by regulating BCL6
polyubiquitination.[47] PELI1 is upregulated in some high-grade
B-cell lymphomas, and relatively downregulated in low grade B-
cell lymphomas or T-cell lymphomas.[48] Abnormal expression of
PELI1 is correlated with MYC and BCL6, and is associated with
poor prognosis in B-cell lymphoma patients. However, the
potential function(s) of PELI1 in solid tumors remains largely
unknown. Overexpression of PELI1 increases cell proliferation
and survival, and contributes to lung tumorigenesis by promoting
the epithelial to mesenchymal transition.[49] Furthermore, PELI1
promotes cell survival and chemoresistance by upregulating the
expression of cIAP2 in lung cancer.[50] Taken together, these
findings suggest that PELI1 might be a potential therapeutic
target in some tumor types.

http://www.md-journal.com
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5. Conclusion

In conclusion, our study identified 8 hub genes with aberrant
expression and methylation levels in EC patients through
integrated analysis of transcriptome and methylation data.
MSN, MTHFD2, and PELI1 were identified as potential tumor
biomarkers with prognostic value in EC. Expression ofMTHFD2
was significantly correlated with pathological stage and poor
prognosis, highlighting its important role in tumor development,
and ability to predict EC prognosis.
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