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Safety risk assessment of reservoir 
dam structure: an empirical study 
in China
Dingying Yang 1, Jiamei Wu 1, Zhenxu Guo 2*, Xiaoye Zeng 3* & Qianqian Zhang 1

Reservoir dam structure is critical to protect public life and property and has always been attention 
worldwide. However, a systematic approach to assessing the safety risks of reservoir dam structure 
(RDS) is still required. This study presents a holistic framework for evaluating the safety risk of RDS 
and develops an evaluation index system. A risk assessment model is constructed based on the cloud 
and Dempster-Shafer (D-S) evidence theories. The model’s validity is confirmed through an empirical 
analysis of the XY reservoir project. This study offers theoretical insights and practical solutions for 
managers to facilitate decision-making and supports the advancement of industry standards.
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Fighting with nature in exchange for a comfortable and secure living environment has been the constant pursuit 
of human beings for thousands of years. The erection of reservoir dams is a significant event in the transforma-
tion of nature by man, nevertheless, we have not tamed nature. Over the past few decades, safety accidents have 
become a global concern, including reservoir overflow, dam landslides, and dam  collapse1–3.

In the mid-twentieth century, dam breaks occurred frequently, resulting immeasurable loss. According to 
China’s dam database, there were 3358 dam accidents from 1954 to  20214. Between 1954 and 1979, floods led to 
1,527 dam failures, representing 51.5% of the total. Additionally, structural defects were the cause of 1,142 dam 
breaks, accounting for 38.5% of all dam  breaks5. Subsequently, the number of failures caused by overtopping and 
quality problems decreased significantly, but the proportion remained  high6,7. From 2001 to 2021, overtopping 
was responsible for 44.4% of dam failures, while quality issues accounted for 34.4%4,8.

The leading cause of reservoir overtopping and subsequent dam break is the overflow flood, with the prob-
lem being exacerbated by engineering quality issues. Specifically, the overflow flood issue can be attributed to 
inadequate flood discharge capacity and excessive flood levels. The engineering quality problem encompasses 
insufficient seepage stability, structural stability, flood control capacity, and seismic stability. While advancements 
in digital technology have contributed to a decrease in flood overtopping accidents, the engineering quality issues 
remains unresolved. The structural instability accounts for 78.9% of the dam quality issues, and the safety risk 
of reservoir dam structure (RDS) is worthy of in-depth  discussion9,10.

After the completion of the reservoir dam, various factors contribute to safety issues in the RDS, including 
climate conditions, corrosion, oxidation, aging, and vulnerability to damage under static and live loads for a 
long  time11,12. Safety monitoring is essential to ensure the structural integrity of the RDS. Through instrument 
monitoring, the main structure, foundation, bank slope, related facilities, and the surrounding environment 
can be observed and assessed to verify design specifications, enhance construction quality, and evaluate safety 
 measures13,14. It includes the evaluation of dam deformation, seepage levels, stress–strain relationships, and 
environmental parameters. Automatic monitoring systems can assist in providing timely alerts and assessing 
the operational status of the RDS. Ultimately, maintaining a secure RDS is crucial for its sustained and reliable 
performance. The systematic analysis and assessment of RDS safety have been longstanding priorities.

Safety risk identification is indispensable to the operation of RDS. It enables engineers and managers to assess 
the actual condition of the RDS and promptly implement necessary  repairs15,16. Identifying potential safety haz-
ards and risk factors facilitates the formulation of adequate safety measures and emergency plans. The safety risk 
factors affecting RDS encompass three aspects: structural engineering risks, environmental risks, and personnel 
risks. Prominent issues include defects in dam construction quality and inadequate flood control  standards17,18. 
Environmental risk factors include exceeding floods and temperature  fluctuations19. In hydraulic projects, out-
dated management systems and insufficient non-engineering measures contribute to dam deterioration.

OPEN

1School of Civil Engineering, Fuzhou University, Fuzhou 350116, China. 2School of Civil Engineering, Central 
South University, Changsha 410083, China. 3School of Civil Engineering, Changsha University, Changsha 410000, 
China. *email: 224801059@csu.edu.cn; Z20220903@ccsu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-71156-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20232  | https://doi.org/10.1038/s41598-024-71156-1

www.nature.com/scientificreports/

The initial methods of RDS were restricted to empirical and qualitative assessment, making it challeng-
ing to conduct scientifically rigorous safety risk assessments and effective safety management. With the rapid 
advancements in information and monitoring technology, more sophisticated theories and techniques have 
been employed for dam safety risk analysis. Papadrakakis et al. (2008) proposed a neural network combined 
with nonlinear finite element analysis for assessing the reliability of large concrete  dams20. Anna et al. (2018) 
investigated the causes of dam accidents in 2018 and identified risk factors for various types of dam using Bayes-
ian stratification  models21.

In conclusion, research on dam safety risk assessment has yielded significant results, yet there is a need for a 
similar assessment focusing on RDS. Enhancing the evaluation index system and criteria for RDS, establishing a 
standardized evaluation framework, and considering multiple indexes comprehensively are essential for meeting 
the requirements of safety risk assessment. Traditional evaluation methods rely heavily on static historical data, 
hindering real-time dynamic monitoring and evaluation capabilities. Combining real-time detection data with 
historical information and implementing a multi-source information fusion approach is crucial for enhancing 
the accuracy of evaluation  outcomes22.

The cloud model, introduced by Chinese academician Deyi  Li23, is a mathematical model that offers the advan-
tage of processing both quantitative and qualitative data. This capability effectively enhances the accuracy and 
reliability of data analysis and has found widespread applications in information processing, decision analysis, 
and intelligent control. Previous research methods in RDS safety risk assessment have ignored the uncertainty 
inherent in the assessment process, but incorporating the cloud model can effectively address this issue. The 
model’s reasoning approach incorporates soft reasoning abilities related to natural language concepts, allowing 
for a more comprehensive treatment of the evaluation process. Therefore, the cloud model holds promise for 
enhancing safety risk assessment in RDS and facilitating uncertainty analysis.

The primary advantage of the Dempster-Shafer (D-S) theory is its ability to manage uncertain information by 
consolidating data from various sources. Its fundamental characteristic lies in addressing uncertainty through 
the concepts of "evidence" and "combination." Chung-kung Lo et al. (2014) applied the D-S evidence theory to 
mitigate the uncertainty of seismic probability in nuclear power plants, thereby reducing the impact of random-
ness and cognitive biases in the entire assessment  process24. Palash (2015) proposed that in cases of environ-
mental technical challenges or special circumstances where actual data is insufficient to quantify the model, the 
possibility sampling technique can be utilized to combine the D-S framework with generalized/normal fuzzy 
focal elements for risk assessment of human  health25. Thakur et al. (2018) utilized the fuzzy Delphi method to 
identify key factors,and incorporated the D-S theory to grade factors with lower correlation coefficients, thereby 
addressing the uncertainty of information fusion between factors to obtain an optimized  model26. Sen et al. 
(2021) proposed a framework for assessing the disaster resilience of housing infrastructure based on the D-S 
theory, employing a combined approach of the Best–Worst Method and Hierarchical Evidential  Reasoning27. 
The D-S evidence theory can be leveraged to manage information from various sources and types, such as expert 
knowledge and sensor data, by combining evidence from multiple sources to assess the safety risks of RDS. 
Moreover, in scenarios where sufficient observational data is lacking, the D-S evidence theory can leverage prior 
knowledge to improve the accuracy of analytical results. Consequently, in this study, the D-S evidence theory is 
applied to analyze the safety risks of RDS.

To make up for the above research gaps, this study identifies determinants of RDS and develops a frame-
work for safety risk assessment, which is underpinned by expert consultations and empirical investigation. The 
research objective is to tackle the dynamic safety risk assessment in RDS and multi-source information. To this 
end, this study adopts a cloud model to realize the Basic probability assignment (BPA) with D-S evidence theory, 
incorporating weight coefficients to enhance this process. The robustness of the proposed approach is confirmed 
through an analysis of monitoring data.

The structure of this study is organized as follows. We discuss the related literature review in section "Meth-
odology". Section "Results" interprets the research methodologies. In section "Discussions and conclusions", 
this study carried out the safety risk assessment of RDS and Empirical verification. Finally, Sect. 6 discusses and 
concludes this study.

Methodology
Evaluation index system
This study establishes a four-layer safety risk evaluation index system for RDS. The first layer is the target layer, 
which represents the safety risk evaluation result of the RDS. The second layer is the criterion layer, encompasses 
the categorization of monitoring projects into broader classifications to aggregate similar types of monitoring 
projects. The third layer is the index layer, quantifies the basic evaluation indicators of monitoring physical quan-
tities via the prism of specific dam monitoring projects. The fourth layer is the monitoring points, is predomi-
nantly situated across various locations within and around the dam. These points collect data from monitoring 
devices, which serve as the foundational evaluation quantity, thereby yielding more realistic and accurate safety 
risk assessment results for the RDS.

Criterion layer
The safety risk assessment of RDS within the Guidelines on Dam Safety Evaluation is deeply  analyzed28. This 
study defines the criterion layer of the evaluation index system, which includes dam deformation, dam seep-
age, stress–strain, and environmental quantity. Continuous monitoring of dam deformation, dam seepage, and 
stress and strain via sensors installed across the RDS enables real-time data capture, which offers immediate 
insights into the structure’s safety status. In contrast, environmental are not directly monitored in this manner. 
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By establishing interrelationships among these parameters, the study simulates the trend of effect size over a 
time series, thus providing an objective reflection of the RDS.

(1) Dam deformation. Deformation issues such as cracking and tilting can arise during dam operation, sig-
nificantly impacting the safety and stability of hydraulic structures. Monitoring deformation at specific 
locations on the dam is essential. Deformation is the primary focus of RDS system.

(2) Dam seepage. Dam seepage refers to the flow of water inside or around the dam through the dam body, 
resulting in water pressure and affecting the stability of the dam. The seepage state of the dam directly is a 
direct reflection of changes in seepage flow, making it crucial to monitor the seepage flow within the dam 
body, the dam foundation, and the surrounding area. The accuracy and timeliness of monitoring data are 
essential for ensuring the seepage safety of dams.

(3) Stress–strain. By monitoring the stress–strain behavior of the dam, it is possible to gain insight into the 
internal stress conditions of the dam and to promptly identify and mitigate any issues that may pose safety 
hazards. When the stress–strain distribution of RDS is not uniform, the stress–strain in local areas may 
exceed its bearing capacity, resulting in deformation, crack, and collapse. The stress–strain variation of 
RDS may also indirectly affect the dam seepage.

(4) Environmental quantity. Monitoring external factors can enhance the identification of potential risks and 
facilitate the implementation of preventive measures before these risks materialize. For example, reservoir 
water level monitoring can provide advance warning of potential flood overtopping and enable the analysis 
of whether the internal RDS can withstand the resulting flood impacts.

Index layer
This study adopts various methodologies, including field investigation, monitoring data collection, geological 
surveys, meteorological observation, and historical archives. Detailed information regarding the construction 
history, structural design, materials used, dam specifications (height and width), and spillway characteristics 
is gathered through meticulous observation and systematic recording. Concurrently, a thorough investigation 
of the surrounding environment is conducted, focusing on terrain, geomorphology, and hydrometeorological 
conditions. Furthermore, operational management details of the dam are scrutinized, encompassing mainte-
nance practices and historical safety records of the RDS. Subsequently, through the analysis and synthesis of 
field investigation data, in conjunction with existing literature, the primary safety risk assessment indices for the 
RDS are established, as presented in Table 1.

Index selection
This study involved the participation of 20 experts from diverse departments and fields to ensure the scientific 
evaluation of indicators. The experts possess extensive experience and expertise in their respective domains. Spe-
cifically, the expert panel comprised individuals from the transport management department (two experts from 
the provincial Flood Prevention Office and three experts from the Hydraulic Bureau), academic professionals in 

Table 1.  Primary index.

Criterion layer Index layer References

Dam deformation

Horizontal displacement 29

Vertical displacement 30

Crack width 31,32

Dam inclination 33,34

Slope displacement 35,36

Dam seepage

Deflection 37

Uplift pressure 38

Seepage flow 39,40

Seepage around dam 41,42

Seepage pressure 43,44

Water quality analysis 45,46

Groundwater table 47

Stress–strain

Stress monitoring 48

Strain monitoring 49–51

Dam body temperature 52,53

Environmental quantity

Reservoir level 54,55

Environmental temperature 56

Water temperature before dam 57

Rainfall 58,59

Atmospheric pressure 60

Sedimentation in front of dam and erosion downstream 61
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hydraulics (two experts from Hohai University and three experts from Fuzhou University), experts in hydraulic 
engineering design (three senior engineers from the Fujian Hydraulic and Hydropower Survey & Design Insti-
tute and three senior engineers from the Fuzhou Hydraulic and Hydropower Planning & Design Institute), as 
well as experts in hydraulic engineering construction (two engineers from Fujian Hydraulic and Hydropower 
Engineering Bureau Co., Ltd., and two engineers from China Communications Hydraulic and Hydropower 
Construction Co., Ltd.).

Experts compare and rate the primary indicators to evaluate their selection, providing opinions and recom-
mendations. Twenty expert consultation questionnaires were distributed, all of which were returned. After 
excluding incomplete and duplicate responses, 18 valid questionnaires were analyzed. Considering the diverse 
expertise among experts, average scores were computed for identical indices. Following multiple rounds of 
refinement, nine indicators were ultimately chosen. It is essential to note that assessing safety risks in RDS is 
complex. The evaluation system for actual projects should reflect RDS-specific factors such as variations in 
monitoring equipment placement and health conditions. The index system for evaluating RDS is categorized 
into four layers, illustrated in Fig. 1.

Evaluation index grade standard
The safety risk evaluation result of the RDS is divided into 5 levels, as follow:

The establishment of grading standards for evaluation indicators typically involves two primary methods: 
subjective and objective. Subjective judgment relies on expert experience and historical data to qualitatively 
assess dam safety levels, whereas objective judgment utilizes statistical data and mathematical methods to quan-
titatively evaluate dam safety risks. These two approaches complement each other, enabling a more accurate and 
comprehensive assessment. Thus, the grading criteria for evaluation indicators in this study were formulated by 
referencing pertinent standards, consulting expert opinions, incorporating existing scholarly research findings, 
and considering actual engineering conditions.

The assessment of dam deformation includes three key indexes: horizontal displacement, vertical displace-
ment, and crack width. Horizontal and vertical displacements are two-dimensional measures, whereas crack 
width is unidimensional. It is important to recognize that cracks, by their nature, may exhibit closure, result-
ing in negative values in the data. The evaluation criteria for dam seepage encompass uplift pressure, seepage 
flow, and seepage around the dam. Uplift pressure is evaluated using a curtailment coefficient, while seepage 
flow is classified according to the volume of leakage per second. Seepage around the dam is graded using the 
concept of standard deviation S, according to historical data, and the five evaluation grades correspond to 
[

ymin, y
)

,
(

y + y + s
)

,
(

y + s, y + 2s
)

,
(

y + 2s, y + 3s
)

,
(

y + 3s, ymax
]

, ymax  and ymin  are the maximum and 
minimum values of the historical data, ȳ and S are the mean value and standard deviation. According to the 
Design Specification for Stone Masonry Dam62 and Design Specification for Concrete Arch Dams63 issued by the 

V ={V1,V2,V3,V4,V5}

=
{

Normal,Basically normal,Mild abnormal, Severely abnormal,Malignant disorder
}

Fig. 1.  Safety risk evaluation index system of RDS.
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Ministry of Water Resources of the People’s Republic of China, the design values for compressive stress and 
tensile stress of masonry arch dams are -4.1 MPa and 1.5 MPa respectively. Using the aforementioned design 
values as a reference point, the critical values for five evaluation levels are determined at 60%, 80%, 90%, and 
100% of the baseline value for both compressive and tensile stresses. The evaluation indexes for environmental 
factors consist of reservoir level, rainfall, and environmental temperature. There is a general agreement among 
researchers regarding the assessment of these three indicators.

Evaluation model
Cloud model
The study leverages the cloud model to address the imprecision and uncertainty inherent in standard meth-
ods of evaluating index classifications, particularly when it comes to grade intervals. According to the evalu-
ation index grade standard (Table 2), the upper and lower limits of each risk grade interval are marked as 
[

Xij(L), Xij(R)
]

, Xij(L) > Xij(R), Xij(L) ≥ 0 . The calculation of the standard cloud model of grade interval is 
shown in Eq. (1). Each evaluation index value of the research object needs to be transformed by the membership 
function to become the data required by the calculation model. According to Eq. (2), the measured time series 
of each evaluation index and the eigenvalue of the standard cloud model are used to calculate the membership 
µij of the eigenvalue of i in the j.

Exij is the expected value of the standard cloud in the j interval of the i evaluation factor. Enij is entropy. Heij 
is super entropy. s is a constant, estimated and determined by experts according to the actual situation, and is 
used to express the uncertainty existing in the identification of evaluation factor interval. s ranges from 0 to 
Exij . En′ is the expectation of En . He is a typical random number with standard deviation. xp is the p measured 
value of the time series.

Basic probability assignment matrix transformation
The membership degree of evaluation index ci(i = 1, 2, . . . , n) belonging to safety evaluation grade 
Vi

(

i = 1, 2, . . . , q
)

 satisfies the definition and nature of BPA. However, the membership degree sum of each 
evaluation grade is not 1. This study supplements the definition according to formula (3) to meet the BPA 
application requirements.

(1)















Exij =
xij(L)+xij(R)

2

Enij =
xij(L)−xij(R)

2.33

Heij = s

µij

�

p
�

= exp

�

−

�

xp − Exij
�2

2
�

Enij′
�2

�

(2)µij =

N
∑

k=1

µij

(

p
)

N

Table 2.  Grade standard for safety risk evaluation index of RDS.

Category Evaluation index Normal Basically normal Mild abnormal Severely abnormal
Malignant 
disorder

Dam deformation

Horizontal displacement 
(mm) 64–66 [0, 20) [20, 60) [60, 100) [100, 140) [140, 200)

Vertical displacement 
(mm) 64–66 [0, 10) [10, 30) [30, 80) [80, 130) [130,, 200)

Crack width (mm) 64–66 [− 1.0, 0.4) [0.4, 1.0) [1.0, 1.6) [1.6, 4.0) [4.0, 10.0)

Dam seepage

Uplift pressure 64–66 [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0)

Seepage flow (L/s) 64–66 [0, 2) [2, 10) [10, 20) [20, 40) [40, 80)

Seepage around dam (m) [ymin , ȳ) [ȳ , ȳ + S) [ȳ + S , ȳ + 2S) [ȳ + 2S , ȳ + 3S) [ȳ + 3S , ymax)

Stress–strain
Compressive stress (Mpa) 
62,63,67 [− 2.5, 0) [− 3.3, − 2.5) [− 3.7, − 3.3) [− 4.1, − 3.7) [− 10, − 4.1)

Pull stress (Mpa) 62,63,67 [0, 0.9) [0.9, 1.2) [1.2, 1.35) [1.35, 1.5) [1.5, 6)

Environmental quantity

Reservoir level (m) 64–66 [− 40, − 10) [− 10, 2) [2, 4) [4, 6) [6, 8)

Rainfall (mm/h) 64–66 [0, 2) [2, 4) [4, 8) [8, 20) [20, 50)

Environmental tempera-
ture (℃) 64–66 [0, 5) [5, 10) [10, 20) [20, 30) [30, 50)
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mi(X) represents the probability that the decision result of the evaluation index is uncertain, which can be used 
as a confidence index to measure the reliability of the evaluation result. The larger the value, the higher the 
uncertainty of the evaluation results.

Evidence fusion and decision making
In this study, subjective and objective fusion weights are used as the weight distribution of evidence, as demon-
strated in formula (4). Experts evaluate the impact of each evaluation index on the decision outcome, establishing 
the subjective weight, and determining the objective weight based on data characteristics.

W1 , W2 are the subjective and objective weights after the fusion of corresponding indicators. K  is 
the conflict coefficient reflecting the degree of conflict between evidences. 1/(1− K) is the normaliza-
tion coefficient used to avoid the probability of assigning non-zero to the empty set ϕ in the combi-
nation. The safety risk assessment results of RDS were obtained after layer fusion of each evaluation 
index,m(A) = [m(A1),m(A2),m(A3),m(A4),m(A5),m(�)] . m(Ai) is the evaluation grade:

According to the principle of the maximum attribute, the safety grade is selected with the maximum BPA. 
This study introduced the confidence index d = 1−m(�) to measure the reliability of the safety risk perception 
results. The greater the value of the confidence index, the more reliable the fusion result of the evaluation index.

Research scenario
XY Reservoir is located in Xiyuanxi Canyon, Fuzhou City, China, serving primarily for flood control, water 
supply, and power generation. The reservoir spans approximately 83  km2 with an average annual runoff of 
0.9872 million  m3. It features a parabolic hyperbolic masonry arch dam, reaching a maximum dam height of 
68.8 m and a crest length of 237.4 m. The total storage capacity of 24.28 million  m3, including a flood control 
storage capacity of 13.23 million  m3 for the main flood season, maintaining an average water level of 97.0 m. 
The reservoir includes a 3 MW power station and a water supply system capable of delivering 70,000 tonnes per 
day to the surrounding area.

XY reservoir employs a "spillway + dam top spillway" combination mode, effectively mitigating floods by 
delaying and reducing peak flows, thus minimizing downstream impacts during mountain flood events. In 2014, 
the comprehensive safety assessment of the reservoir classified it as a Class II dam. The spillway tunnel underwent 
reinforcement in 2016 to address cavitation and leakage issues, ensuring stable operation, high project quality, 
and structural safety. Additionally, the reservoir is equipped with comprehensive monitoring systems, covering 
dam deformation, seepage, stress–strain, and environmental parameters. An intelligent dam safety monitoring 
system automatically collects, processes, and provides real-time early warnings based on monitoring data, as 
illustrated in Fig. 2.

(3)















θi = 1−max(µi1,µi1, . . . ,µi1)

mi(X) = θi

mi

�

Aj

�

=
(1−θi)µij
�q

j=1 µij
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� 1
1−K

�

Ai∩Aj=A
[W1m1(Ai)]

�

W2m2
�

Aj

��

, ∀A ⊆ �, A �= ϕ

0, A = ϕ

K(m1,m2) =
�

Ai∩Aj=ϕ

[W1m1(Ai)]
�

W2m2
�

Aj

��

< 1

{

Normal, Basically normal, Mildly abnormal, Severely abnormal, Malignant disorders
}

Fig. 2.  Layout distribution map of dam monitoring points of XY Reservoir. (Author drawing).
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(1) Dam deformation monitoring

In order to monitor the displacement of the dam top, foundation, and body, two GNSS monitoring points (G3 
and G6) were set up at the dam base, while two additional GNSS monitoring points (G4 and G5) were set up on 
the surface of the dam body. Additionally, seven measuring robot-automatic total station displacement monitor-
ing points (TR3-TR9) were set up on the dam top. Both horizontal and vertical displacements are recorded and 
analyzed at each monitoring point. Furthermore, seven vibrating wire remote sensing joint gauges (CF1-CF7) 
were installed in proximity to the dam abutment and spillway pier for the purpose of crack monitoring. It is 
important to mention that G1, G2, TR1, and TR2 serve as base calibration points and are not utilized for actual 
evaluation; therefore, they have been excluded from the analysis process.

(2) Dam seepage monitoring

Four positive displacement flowmeter seepage monitoring points (WE1-WE4) are installed on the dam 
abutment, complemented by five remote sensing seepage monitoring points (Z1-Z5) positioned along the left 
bank of the dam.

(3) Stress–strain monitoring

Four vibrating wire remote sensing strain gauges (s2-1X, s2-1Y, s2-2X, s2-2Y) have been positioned at the 
crest of the dam and the abutments on both the left and right sides to observe variations in stress and strain 
within the structure.

(4) Environmental quantity monitoring

The monitoring of water levels and temperature is conducted at various locations within the reservoir, while 
rainfall is monitored in multiple locations throughout the corresponding river basin.

Results
Evaluation index system
According to the actual layout of specific monitoring projects of XY reservoir dam, combined with the safety 
risk evaluation index system of RDS, an empirical evaluation index system has been developed, as illustrated 
in Fig. 3. Notably, the lifting pressure was omitted from this system, as it was not a factor addressed within the 
project scope.

Cloud model computing
The forward cloud generator was used to calculate the basic parameters of the cloud model Ex,En,He , and the 
safety grade interval of the XY reservoir dam structure was calculated, respectively. Moreover, MATLAB was used 
to generate a cloud model and draw each evaluation index’s corresponding normal cloud map, as shown in Fig. 4.

Fig. 3.  XY Reservoir Dam Structure Safety Risk Evaluation Index System.
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About 700 historical data were selected for each monitoring point and substituted into the cloud model. This 
process translated the data into the membership degree of the monitoring point for each corresponding monitor-
ing index, calculating the membership grade of each location. These membership grades were then transformed 
into BPA scores for individual monitoring points, which are detailed Appendix.

Weight calculation
In this study, we invited 10 experts from the previously mentioned expert panel to assess the relative importance 
of evaluation indicators and monitoring points using the Analytic Hierarchy Process (AHP) method for. Their 
background information is provided in Table 3.

In the context of distinct monitoring sites encompassed within a singular project, the entropy weight approach 
is employed to establish the weights associated with the fusion components at each site. Conversely, for disparate 
monitoring endeavors, the methodology predicated on the distance function is utilized to assign weights among 
diverse evidence sources. This procedure facilitates the rebalancing of the BPA allocation from the evidence 
sources, enhancing the capacity to reflect the distinct data attributes of the various monitoring sites within the 
project. Consequently, the approach yields more accurate evaluations that mitigate conflicts among evidence 
sources, leading to fusion outcomes that are superior in terms of completeness, precision, and relevance. Sub-
sequently, a unified weighting scheme, merging subjective and objective components, is derived through linear 
combination, as presented in Table 4.

 Horizontal Displacement (mm) Vertical Displacement (mm) 

S)mm(gninepOkcarC eepage Quantity (L/m) 

Seepage Around the Dam (m) Compressive Stress (Mpa) 

1V 2V 3V 4V 5V 1V 2V 3V 4V 5V

1V 2V 3V 4V 5V 1V 2V 3V 4V 5V

1V 2V 3V 4V 5V 1V2V3V4V5V

Fig. 4.  Safety risk assessment level cloud map.
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Evidence synthesis and decision making

(1) Evidence correction

Conflicting evidence must be identified and rectified prior to evidence fusion. For instance, when assessing 
the evaluation index through crack width, the similarity matrix for crack monitoring points is determined based 
on the BPA for each point. The results of this computation are presented in Table 5.

Fig. 4.  (continued)

Table 3.  Background information of experts involved in determining the weights.

Experts Organization Position Education background Experience (years)

1 Fujian flood control office Director Ph.D in hydraulic engineering 24

2 Hohai University Professor Ph.D in hydraulic engineering 16

3 Fuzhou University Professor Ph.D in hydraulic engineering 15

4 Fujian Water resources and hydropower survey and design 
Institute Senior engineer Ph.D in civil engineering 10

5 Fujian Water resources and hydropower survey and design 
Institute Senior engineer Ph.D in engineering management 13

6 Fuzhou water conservancy and hydropower planning and 
design Institute Senior engineer Master in civil engineering 12

7 Fuzhou water conservancy and hydropower planning and 
design Institute Senior engineer Master in hydraulic engineering 12

8 Fujian Water Conservancy and Hydropower Engineering 
Bureau Co., LTD Senior engineer Master in hydraulic engineering 13

9 Fujian Water Conservancy and Hydropower Engineering 
Bureau Co., LTD Senior engineer Ph.D in hydraulic engineering 14

10 Zhongjiao Water Conservancy and hydropower construc-
tion Co., LTD Senior engineer Master in hydraulic engineering 17
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According to the mi andmj obtained from the monitoring data obtained from different monitoring points or 
different monitoring items, the cosine similarity is used to calculate the similarity between them. The formula 
is shown in Eq. (5)

where sim
(

i, j
)(

i = 1, 2, , · · · n; j = 1, 2, · · · , n
)

 represents the similarity between the monitoring point or moni-
toring item and the monitoring point or monitoring item.

In order to calculate the correlation between monitoring points, the similarity matrix of monitoring points 
or monitoring items of the same group is constructed as follows:

For each row of the matrix, the values are aggregated to obtain the total similarity of each monitoring point 
relative to all other monitoring points, and the total similarity is averaged to obtain the mean similarity, denoted 
as sim(i):

(5)sim(i, j) = cos( �mi , �mj) =
�mi · �mj

� �mi� ·
∥

∥ �mj

∥

∥

(6)sim =











sim(1, 1) · · · sim
�

1, j
�

· · · sim(1, n)
· · · · · · · · ·

sim(i, 1) · · · sim
�

i, j
�

· · · sim(i, n)
· · · · · · · · ·

sim(n, 1) · · · sim
�

n, j
�

· · · sim(n, n)











Table 4.  Subjective and objective fusion weights.

Crack width Weight Horizontal displacement Weight Vertical displacement Weight

CF1 0.0984 G3 0.0840 G3 0.0821

CF2 0.1047 G4 0.0939 G4 0.0993

CF3 0.0677 G5 0.0920 G5 0.0952

CF4 0.0947 G6 0.0878 G6 0.0899

CF5 0.1154 TR3 0.0811 TR3 0.0836

CF6 0.1189 TR4 0.0952 TR4 0.1022

CF7 0.1357 TR5 0.0954 TR5 0.0925

CF8 0.1309 TR6 0.0900 TR6 0.0919

CF9 0.1340 TR7 0.0915 TR7 0.0881

TR8 0.0997 TR8 0.0842

TR9 0.0896 TR9 0.0912

Seepage flow Weight Seepage around dam Weight Stress–strain Weight

WE1 0.2611 Z1 0.2148 s2−1x 0.2501

WE2 0.2173 Z2 0.2162 s2−1y 0.2486

WE3 0.2824 Z3 0.1726 s2−2x 0.2592

WE4 0.2394 Z4 0.2221 s2−2y 0.2422

Z5 0.1745

Table 5.  Similarity of monitoring points of reservoir dam crack deformation.

Monitoring point CF1 CF2 CF3 CF4 CF5 CF6 CF7 CF8 CF9

CF1 1.0000 0.2275 0.8368 0.6656 0.8937 0.7383 0.5703 0.9452 0.8833

CF2 0.2275 1.0000 0.4472 0.8426 0.1955 0.3637 0.0718 0.5081 0.2328

CF3 0.8368 0.4472 1.0000 0.8500 0.5369 0.9640 0.8395 0.8114 0.5301

CF4 0.6656 0.8426 0.8500 1.0000 0.4869 0.7800 0.5222 0.8142 0.5066

CF5 0.8937 0.1955 0.5369 0.4869 1.0000 0.3712 0.1440 0.8983 0.9972

CF6 0.7383 0.3637 0.9640 0.7800 0.3712 1.0000 0.9355 0.6800 0.3597

CF7 0.5703 0.0718 0.8395 0.5222 0.1440 0.9355 1.0000 0.4207 0.1195

CF8 0.9452 0.5081 0.8114 0.8142 0.8983 0.6800 0.4207 1.0000 0.9017

CF9 0.8833 0.2328 0.5301 0.5066 0.9972 0.3597 0.1195 0.9017 1.0000

Mean similarity 0.7512 0.4321 0.7573 0.7187 0.6137 0.6880 0.5137 0.7755 0.6145
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The similarity of the monitoring point or item i compared with other monitoring points or items can be clearly 
seen through the mean similarity sim(i) . A large similarity indicates that there is no evidence conflict between 
the evidence of the monitoring point or item and that of other monitoring points or items. Conversely, the low 
similarity indicates evidence conflict between the evidence from one monitoring site or item and evidence from 
other monitoring sites or items.

By integrating academic research with practical application, this study establishes a similarity threshold of 
0.7. Evidence with a similarity score above this threshold is considered to be in substantial agreement with other 
evidence, thus it can be directly employed in calculations. Conversely, when the similarity score falls below 0.7, 
substantial inconsistency exists between the evidence in question and other evidence, necessitating modifica-
tion of the source to mitigate these conflicts before its use in calculations. This approach not only resolves the 
paradoxes stemming from conflicting evidence in fusion outcomes but also safeguards the integrity and efficacy 
of the fusion results. According to the mean similarity, the mean similarity of CF2, CF5, CF6, CF7, and CF9 is 
lower than 0.7, which requires evidence correction. According to the crack width of the weighted objective weight 
and evidence, a weighted average of evidence. m̄ = (0.2740,0.2353,0.0178,0.0490,0.0197,0.4043) . Utilizing the 
weighted mean approach, discrepant evidence is reconciled to derive a revised primary probability distribution, 
as depicted in Table 6. The correction of evidence has mitigated the discrepancies in probabilities among the 
evidence sets, thereby lessening the conflicts among them.

(2) Evidence synthesis

The new fracture deformation fusion result is obtained after the evidence replacement, according to the 
improved evidence synthesis fusion formula. Subsequently, these results were compared with those calculated 
by the traditional D-S evidence theory algorithm, as shown in Table 7.

Compared with the results, the improved algorithm based on the D-S evidence theory has outstanding advan-
tages over the traditional algorithm. On the one hand, the BPA by the traditional algorithm for the standard and 
regular evaluation grade is 0.5556 and 0.4260, and the difference between the values is close and not obvious. 
The BPA of the improved algorithm’s regular and average evaluation grades are 0.6250 and 0.3565; the difference 
is noticeable, and the uncertainty of the decision is better reduced. On the other hand, the comparison shows 
that the confidence degree d = 1−m(�) increases from 0.9893 to 0.9964, which reflects that the fusion result 
obtained by the improved algorithm holds better reliability.

According to the improved D-S evidence fusion algorithm, weight is added to the fusion process. The evidence 
fusion is executed at each monitoring point, resulting in the determination of probability distribution functions 
for each evaluative index. Subsequently, dynamic weights are computed, and these are amalgamated with subjec-
tive weights to yield an integrated measure of subjective and objective fusion weights. This composite weight is 
further refined through an additional fusion process, culminating in the allocation of BPA for comprehensive 
evaluation, as shown in Table 8.

(7)
sim(i) =

n
∑

j=1
sim

(

i, j
)

n

Table 6.  BPA distribution after modification of reservoir dam crack deformation monitoring site.

Monitoring point m1 m2 m3 m4 m5 mX

CF1 0.3061 0.0864 0.0236 0.0351 0.0205 0.5283

CF2 0.2740 0.2353 0.0178 0.0490 0.0197 0.4043

CF3 0.4045 0.1989 0.0675 0.0813 0.0166 0.2312

CF4 0.2457 0.4416 0.0297 0.0573 0.0168 0.2088

CF5 0.2740 0.2353 0.0178 0.0490 0.0197 0.4043

CF6 0.2740 0.2353 0.0178 0.0490 0.0197 0.4043

CF7 0.2740 0.2353 0.0178 0.0490 0.0197 0.4043

CF8 0.1906 0.2441 0.0073 0.0571 0.0149 0.4860

CF9 0.2740 0.2353 0.0178 0.0490 0.0197 0.4043

Table 7.  Fusion results of the improved algorithm and traditional algorithm.

Evaluation index m1 m2 m3 m4 m5 mX

Improved DS algorithm 0.6250 0.3565 0.0034 0.0095 0.0021 0.0036

Traditional DS algorithm 0.5556 0.4260 0.0006 0.0058 0.0013 0.0107
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(3) Evaluation decision

According to the principle of the maximum attribute, the maximum value of m(Ai) is 0.9902, which corre-
sponds to the evaluation grade of "normal," and the safety grade of the dam structure of the reservoir is judged to 
be safe. The evaluation results are consistent with the expert’s evaluation of the safety state of the dam operation. 
It also verifies the feasibility and rationality of the evaluation model proposed in this study. According to the 
confidence index d = 1−m(�) = 0.9988 , the reliability of this evaluation result is high and proves the feasibility 
and rationality of the safety risk assessment model of RDS proposed.

Evaluation of measured data
In practical engineering, it is necessary to evaluate RDS by historical monitoring data and evaluate the real-time 
safety state. In this study, we employed measured data to substitute into an evaluation model constructed from 
historical data for fusion. Specifically, monitoring data on March 19, 2023, were selected, as shown in Table 9. 
The measured data were incorporated into the fusion method using the identical steps previously described. 
Subsequently, through layer-upon-layer fusion, the real-time safety risk assessment results of RDS under the 
background of the measured data were finally obtained, as shown in Table 10.

Discussions and conclusions
In this study, we developed a safety risk evaluation index system of RDS that primarily focuses on monitoring 
data. The system integrates industry norms, field research, relevant literature, and expert interviews. The index 
system can predict and identify the RDS, allowing for appropriate preventive and responsive actions to mitigate 
potential losses. Additionally, it fosters the advancement of hydraulic industry standardization and enhances 
management practices.

Secondly, aiming at the uncertainty and fuzziness in the safety risk analysis of RDS, the cloud model is 
introduced to blur the evaluation level. The cloud model ascertains the BPA for each index of evidence through 
the membership degrees derived from the evidence theory. This approach rectifies the limitations of evidence 

Table 8.  BPA distribution in the overall safety risks of RDS.

Evaluation index m1 m2 m3 m4 m5 mX

Structural safety 0.9902 0.0052 0 0 0.0034 0.0012

Table 9.  Monitoring data value summary.

Crack width Value Horizontal displacement X Value Horizontal displacement Y Value Vertical displacement Value

CF1 0.425 G3 − 0.155 G3 1.755 G3 8.526

CF2 − 0.449 G4 − 0.865 G4 10.652 G4 0.562

CF3 0.426 G5 2.322 G5 15.233 G5 5.992

CF4 0.565 G6 1.525 G6 1.322 G6 3.233

CF5 0.095 TR3 − 1.056 TR3 − 0.865 TR3 − 2.25

CF6 − 0.322 TR4 − 0.484 TR4 1.365 TR4 1.252

CF7 0.326 TR5 − 0.793 TR5 − 0.006 TR5 − 0.855

CF8 0.366 TR6 − 0.855 TR6 12.04 TR6 3.235

CF9 − 0.326 TR7 2.955 TR7 17.45 TR7 0.523

TR8 − 0.474 TR8 − 1.235 TR8 − 1.655

TR9 − 0.366 TR9 1.365 TR9 1.545

Seepage flow Value Seepage around dam Value Stress–strain Value Others Value

WE1 0 Z1 89.265 s2−1x − 0.1570 SW 88.014

WE2 0 Z2 76.523 s2−1y 0.1317 P 0

WE3 0 Z3 72.023 s2−2x − 0.0583 T 13.6

WE4 0.007 Z4 76.665 s2−2y − 0.3223

Z5 74.325

Table 10.  Real-time BPA distribution of overall safety risks of reservoir dams structure.

Evaluation index m1 m2 m3 m4 m5 mX

Structural safety 0.9212 0.0429 0.0016 0.0009 0.0025 0.0309
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theory when handling time series data, enhancing accuracy. Consequently, this model facilitates evidence-based 
decisions regarding operational modes and can potentially prolong the service life of RDS.

Finally, the traditional D-S evidence theory algorithm has been enhanced to mitigate the subjectivity and 
uncertainty in the evaluation process. This improvement enhances the fusion efficiency and reliability of evalu-
ation information, effectively addressing the integration of multi-source data and resolving discrepancies in 
conflicting evidence. Application of the refined algorithm is demonstrated through a safety risk analysis of the 
XY reservoir project in Fujian Province. The results align with the current conditions, thus validating the reli-
ability and applicability of the approach. The ability to monitor and evaluate in real-time facilitates the timely 
identification and resolution of existing safety concerns, thereby preempting operational risks associated with 
structural damage.

A thorough and judicious safety risk assessment of RDS is a crucial for bolstering emergency response capa-
bilities and enhancing early warning systems for RDS incidents. Continuous monitoring is pivotal within the risk 
assessment framework. The advancement of contemporary monitoring technologies is instrumental in enhancing 
the proficiency and precision of safety management practices. (1) The deployment of sensors and monitoring 
apparatuses allows for the real-time observation of RDS attributes, including displacement, water levels, and 
water temperatures. Automated systems aggregation and analysis of this data facilitate the early identification and 
forecasting of potential security threats. (2) Computer-aided numerical simulations are effective in predicting 
how RDS behave under diverse operational conditions, such as seepage, earthquake, and flood scenarios. Such 
simulations aid in the more informed evaluation and optimization of structural design for RDS. (3) By amassing 
extensive data sets and employing artificial intelligence algorithms, the safety condition of RDS can be predicted 
and potential risks warned against, enabling proactive identification and mitigation of safety concerns. (4) A 
virtual reality environment can be established to replicate various operational states of RDS, including extreme 
conditions(i.e., earthquakes and floods) to evaluate the safety performance better. (5) Utilizing wireless sensor 
networks can enable the real-time tracking of RDS parameters, including water levels, temperatures, and wind 
speeds. Furthermore, these sensors can transmit data in real-time to a central monitoring hub, ensuring the 
timely acquisition of the dam’s condition and the prompt recognition and management of latent safety risks.

The process of establishing grading standards presents an unusually complex challenge within academic 
research. Owing to the constraints on research resources, the standards proposed in this study are undoubtedly 
imperfect and require substantial refinement in subsequent inquiries. The grading criteria for evaluation indices 
are not rigid, invariable thresholds but rather should be situated within a range that is informed by real-world 
conditions, persistent monitoring data, and insights derived from expert scholarly analysis.

Due to a paucity of data from actual engineering projects, this study relies on only one year of historical data 
for foundational training. While this sufficed for meeting the specific training needs, a more protracted period 
of historical data is essential to anchor foundational training in the realm of big data. Subsequent research could 
consider incorporating an extended dataset to enhance the model’s reliability.

Although the evaluation model has been established in this study, it is still necessary to further improve the 
evaluation system and realize visualization. By visualizing the results, project decision-makers can gain a clearer 
understanding of the influencing factors and evaluation outcomes, allowing them to develop effective risk man-
agement strategies. Future research may investigate methods for visualizing evaluation results and integrating 
the evaluation system with a decision support system to enhance services in engineering practice.

Data availability
All authors are responsible for the accuracy and validity of the data and are willing to make it available for 
Scientific Reports.
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