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Abstract: Dyslipidemia, a major risk factor for cardiovascular diseases (CVDs), is modifiable by diet
and lifestyle changes. A large population with mild to moderate dyslipidemia is at risk of developing
CVDs, and early initiation of preventive measures can avert advancing into severe medical conditions.
Studies suggest increasing slowly digestible starch (SDS) in diets can help lower blood lipids. We
processed dehulled adlay, a cereal rich in bioactive compounds, such as polyphenols and phytosterols,
into an instant meal by extrusion and milling and then assessed its starch composition and in vitro
digestibility. The dehulled adlay was found to consist of 32% SDS and resistant starch combined. Then,
eligible subjects with dyslipidemia were recruited to explore the adlay’s hypolipidemic potential,
safety, and acceptability. Subjects consumed the dehulled adlay as the sole carbohydrate source in their
breakfast, without changing other components in the diet or lifestyle, for 12 weeks. After intervention,
serum total cholesterol (TC) decreased significantly in subjects with hypercholesterolemia. In addition,
both TC and triglyceride levels decreased significantly in those above 50 years old. In conclusion, the
extruded dehulled adlay displays potential for favorably modulating blood lipids, and the effect is
more pronounced in the middle-aged population.

Keywords: dehulled adlay; dietary intervention; dyslipidemia; slowly digestible starch

1. Introduction

Cardiovascular diseases (CVDs) rank as the first leading cause of death globally [1].
According to the Global Burden of Disease Study 2019 [2], the prevalence of CVDs nearly
doubled in the past 20 years, and 523 million people worldwide are currently affected.
Several modifiable risk factors contribute to cardiovascular health, including body mass
index, smoking, and health conditions, such as elevated blood sugar and blood lipid
levels [3]. Dyslipidemia is a term that describes unhealthy levels of lipids in the blood, and
it is crucially associated with nutritional overload and physical inactivity [4]. Physiological
lipid metabolism can be divided into three parts: exogenous (dietary), endogenous (hepatic
lipogenesis), and reverse cholesterol transport [5]. After dietary fats are digested, cholesterol
(TC) and triglycerides (TG) are assembled into chylomicrons that are absorbed by the
intestinal villi, enter the circulation, and are distributed to adipose tissues for storage or
acted upon by lipoprotein lipase (LPL) into glycerol and fatty acids that may be used for
fuel. Endogenously, the liver synthesizes very-low-density lipoprotein (VLDL), which is
cleaved by LPL into intermediate-density lipoprotein (IDL) and further into low-density
lipoprotein (LDL) to release free fatty acids. High-density lipoprotein (HDL) functions to
transport excessive cholesterol from peripheral tissues back to the liver.
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Exposure to even mildly elevated cholesterol levels increases the risk of developing
coronary heart disease later in life [3]. Early measures, such as lifestyle changes, can be
taken to prevent the development of severe medical complications. Diet modifications
to incorporate high amounts of fruits and vegetables, nuts and legumes, whole grains,
and moderate amounts of dairy and seafood can be adopted to prevent CVDs [6]. Such
dietary components have a lower glycemic index (GI) than refined, highly processed foods,
meaning they impose a relatively low effect on blood glucose variations after consumption.
Food starches are the primary determinant of glycemic response; based on their rate
of digestion, starches can be classified into three types: rapidly digestible starch (RDS),
slowly digestible starch (SDS), and resistant starch (RS), in decreasing order of glycemic
stimulation. Several studies have reported the beneficial effect of SDS in managing diabetes,
heart disease, and obesity [7,8].

Adlay (Coix lachryma-jobi L.), also called Job’s tears, is a cereal cultivated as a food
and medicinal crop in Asia [9]. Adlay seeds are rich in functional compounds, such as
dietary fibers, polyphenols, as well as phytosterols. Various bioactivities have been reported
for adlay, including anti-oxidation, anti-allergy, hypolipidemia, and immunoregulation,
proven in both in vitro and in vivo studies [10]. Our team previously developed a dehulled
adlay snack with a higher SDS and RS content by extrusion processing as an alternative
snacking option for controlling glycemic response. In order to improve the hard texture
of the snack to fit the demand of the elderly, we modified the form by pulverizing, which
would inevitably influence the original composition of starches. There are two aims of this
study, therefore. First, to determine the starch composition of the dehulled adlay powder.
Second, to investigate the effects of the dehulled adlay powder on subjects with mild to
moderate dyslipidemia in a dietary intervention study.

2. Materials and Methods

Dehulled adlay of cultivar Taichung No. 4 (TCS4) was purchased from Taichung
District Agricultural Research and Extension Station, Council of Agriculture, Taiwan. The
white bread (Uni-President Inc., Tainan, Taiwan) used as the reference sample in the
in vitro digestibility experiments was purchased from a local convenience store. D-glucose
assay kit (K-GLUC) was from Megazyme International, Ltd. Other chemicals were from
Sigma-Aldrich, Merck, or J. T. Baker.

2.1. Sample Preparation

Dehulled adlay was prepared by extruding with the following conditions: feed mois-
ture at 22–25%, screw speed at 130–267 rpm, and a temperature gradient of 100–150 ◦C.
The extruded dehulled adlay (hereafter referred to as EDA) was cooled, dried, milled to
fine powder with a high-speed pulverizer (Rong Tsong Precision Technology Co., Taichung
City, Taiwan), and then passed through a 100-mesh sieve. The filtrate was collected and
used as the samples for subsequent experiments. The reference sample was prepared from
white bread with the edges removed and the center cut into 5 × 5-cm squares.

2.2. Solutions Preparation

Pepsin solution was prepared by adding 0.33 g pepsin and 0.33 g guar gum to 67 mL
of 0.05 M HCl and stirring with a magnetic bar for 15 min until totally dissolved. Pan-
creatin/amyloglucosidase mixture was prepared by dissolving 6 g pancreatin in 40 mL
distilled water and centrifuging at 1500× g for 10 min. Then, 30 mL of the supernatant
was combined with 1.33 mL amyloglucosidase solution (140 amyloglucosidase unit/mL)
followed by the addition of 2 mL distilled water. The enzyme solutions were prepared just
before use.

2.3. In Vitro Starch Digestibility Assay

This method is based on Englsyt [11] and Goñi [12] and modified to comply with
the glycemic response to foods in Asian people based on previous work from our lab
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(unpublished) and described as follows. EDA powder was weighed to 1 g in a flask,
followed by the addition of 10 mL of pepsin solution, and then incubated at 37 ◦C for
30 min in a shaking water bath at 130 rpm to simulate stomach digestion. After 30 min,
10 mL of 0.1 M sodium acetate buffer (pH 5.2) in saturated benzoic acid and three 15 mm-
diameter glass balls were added to the solution. A sample of 100 µL was transferred to a
tube containing 1.8 mL distilled water, which was considered to be at 0 min. Then, 5 mL
of pancreatin/amyloglucosidase mixture solution was added to each sample to simulate
intestinal digestion, and 100 µL of solution was sampled at 10, 20, 30, 45, 60, 120, and
180 min separately following enzyme addition to a tube containing 1.8 mL of distilled
water; then, the solution immediately placed in 100 ◦C dry bath for 20 min to inactivate
enzyme reaction. Afterward, each sampling tube was centrifuged at 1500× g for 10 min,
and 30 µL of supernatant was then transferred to 1 mL of glucose oxidase/peroxidase
reagent from the K-GLUC kit and incubated at 50 ◦C for 20 min. Triplicates of 200 µL
of each sampling time for each sample were transferred to a 96-well plate along with
standard glucose solutions at 0, 0.125, 0.25, 0.5, 0.75, and 1 mg/mL. Absorbance was
measured at 510 nm using a microplate reader (Epoch™ Microplate Spectrophotometer,
BioTek Instruments, Winooski, VT, USA) to determine the glucose content by interpolation
using the standard curve.

The starch hydrolysis rate for each sampling time was calculated by Equation (1):

Starch hydrolysis rate (%) =
glucose

(mg
mL
)
× 0.9 × 19 × 25

total starch in sample (mg)
× 100 (1)

where 0.9 is the conversion factor (162/180) from starch (empirical MW: 162) to glucose
(MW: 180), 19 is the dilution factor (100 µL sample added to 1.8 mL of distilled water), and
25 is the total reaction volume in mL.

The kinetics of enzymatic starch hydrolysis for each sample follows a first order
equation, from which we can derive the area under the curve (AUC) of the sample [12]:

Ct = C∞

(
1 − e−kt

)
(2)

AUC = C∞

(
t f − t0

)
− (C∞/k)

[
1 − exp − k

(
t f − t0

)]
(3)

where Ct is hydrolysis rate (%) at each sampling time t, C∞ is the starch hydrolysis rate (%)
at equilibrium at the end of the 180 min reaction, k is the kinetic constant, tf is the final time
(180 min), and t0 is the initial time (0 min).

The percentages of different starch fractions, namely rapidly digestible starch (RDS),
slowly digestible starch (SDS), and resistant starch (RS), were calculated by the following
equations according to Englsyt [11]:

RDS (%) = (G20 − G0)× 0.9 (4)

SDS (%) = (G120 − G20)× 0.9 (5)

RS (%) = 100 − RDS − SDS (6)

where G0, G20, and G120 are glucose content (%) released at 0, 20, and 120 min following
pancreatin/amyloglucosidase digestion.

2.4. Phytosterols and Phenolic Compounds Analysis

The analysis of phytosterols was performed according to Sorensen and Sullivan [13]
with some modifications. GC–MS analyses were performed on an Agilent 5975 mass
spectrometer (electron impact ionization, 70 electron volts; Agilent, Santa Clara, CA, USA)
connected to a 7890 gas-chromatography fitted with a fused silica capillary column (HP-
5MS, 0.32 mm × 25 m, 0.17-µm film thickness; Agilent). The oven temperature was
maintained at 190 ◦C for 2 min, elevated to 230 ◦C at a rate of 20 ◦C/min, and then
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maintained at 250 ◦C for 40 min. Helium was used as the carrier gas at a flow rate of
2.0 mL/min. The injection volume was 1 µL. Temperatures of ion source and transfer
line were set at 200 ◦C and 300 ◦C, respectively. Argon was used as the collision-induced
dissociation gas at a pressure of 1.5 mTorr. The standard curves of campesterol, stigmasterol,
and β-sitosterol (Sigma-Aldrich, Saint Louis, MO, USA, 0.1–20 µg/L with the correlation
coefficient (r) above 0.9992 in all cases) were performed for quantification. The limit of
quantification (LOQ) was 0.1 µg/mL, calculated at a signal-to-noise ratio (S/N) of 10.
The standard curves for each of the three phytosterols (Figures S1–S3) are provided in
Supplementary Materials.

Phenolic compounds in the EDA powder were identified and quantified according
to the method described by Tanriseven et al. [14] using LC-ESI-MS/MS. Samples were
subjected to a 0.22-µm nylon membrane filter prior to injection. A UHPLC system (Ultimate
3000, Thermo Fisher Scientific, Bremen, Germany) is equipped with a quadrupole orbital
trap mass spectrometer (Q-Exactive, Thermo Fisher Scientific, Waltham, MA, USA) with an
electrospray ionization (ESI) interface. Kinetex® 1.7 µm Phenyl-Hexy 100 Å, LC Column
(150 × 2.1 mm) (Torrance, CA, USA) was used in the analyses. The elution was carried
out using double-distilled water containing 0.1% formic acid (eluent A) and acetonitrile
containing 0.1% formic acid (eluent B). The flow rate was 400 µL/min with the following
gradient: 0 min 5% B; 0–50 min 55% B; 50–55 min 80% B; and 55–65 min 100% B. The
temperature of autosampler was set at 40 ◦C. The injection volume was 5 µL. The positive
model was performed, and the scan range was from m/z 100~1000. Data acquisition was
done by the data-dependent MS2 (ddMS2) mode. In the absence of commercial standards,
the ten phenolic compounds listed were identified according to the accurate mass (MS1),
isotopic pattern, and product fragment ions (MS2) using Compound Discoverer 3.0 (Thermo
Fisher Scientific, Waltham, MA, USA). The mass tolerance is 5 ppm. Semi-quantitation
of the phenolic compounds was done using the standard curve (0.04–0.66 µg/mL) of
a structurally related substance, quercetin (Sigma-Aldrich, Saint Louis, MO, USA) and
expressed in µg/mL of quercetin equivalents (QE). The correlation coefficient (r) of the
quercetin standard curve was 0.9982; the LOQ was 0.04 µg/mL, calculated at an S/N of 10.

2.5. Human Study Design

This study was performed following the Assessment Guidelines of Health Foods for
the Regulation of Blood Lipids announced by the Ministry of Health and Welfare, Taiwan
(Amendment No. 0960403114). This study was a prospective, open label, interventional
study using a single-group pretest-posttest design, with a three-month dietary intervention
period. The main purpose of this study was to offer insight into the hypolipidemic potential
of the EDA in addition to its safety and acceptability within the target population. Volun-
teers were recruited through posters in public bulletin boards in communities, universities,
and hospitals. Randomization and blinding to treatment were not applicable due to the
single-arm design of this study, and investigators were aware of possible biases, such as
placebo effect, overestimation of efficacy, and in the reporting of adverse events. Detection
bias was minimized by outsourcing the measurement of blood lipid levels to an external
contracted clinical center.

In this study, we aimed to target dyslipidemia in terms of hypertriglyceridemia,
hypercholesterolemia, high low-density lipoprotein cholesterol (high LDL), and low high-
density lipoprotein cholesterol (low HDL). Inclusion criteria included 30–80 years of age
and having one or more fasting serum lipids above optimal levels and/or on the borderline
high end as specified in the following ranges:

(1) 142 mg/dL 5 TG 5 420 mg/dL;
(2) 190 mg/dL 5 TC 5 252 mg/dL;
(3) HDL-C < 42 mg/dL for male or < 53 mg/dL for female; and
(4) 123 mg/dL 5 LDL-C 5 168 mg/dL.

Exclusion criteria included taking medications or supplements for lowering blood
lipids, being allergic to adlay, and being pregnant or planning pregnancy. Volunteers
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were given a detailed explanation of the purpose, content, and protocol of the study as
well as potential side effects. All subjects provided written informed consent and were
recompensed for their participation in the study. They were also free to resign from the
study at any time. The protocol was approved by the Research and Ethics Committee of
Behavior and Social Sciences of National Taiwan University (approval ID: 2017HM020 and
date: 20171221) and conducted in accordance with institutional and national guidelines
and to the Declaration of Helsinki (revised 2013).

2.6. Sample Size Determination

The sample size was calculated using G*power 3.1.9.2 software. We determined the
sample size by setting α probability to 5%, the power to 90%, and the effect size to 0.91 (a
decrease in mean cholesterol levels by 10% between two groups (before-after) and variance
at 11% based on previous literature [15]), and the number of subjects needed to achieve
sufficient power was 15. More subjects were recruited to account for potential dropouts or
losses to follow-up. Forty-two potential subjects were assessed for eligibility. Thirty-three
subjects met the inclusion criteria after a blood lipid assessment was performed in our
contracted health center and started the study. One participant resigned for personal
reasons, and two others were asked to resign for taking hypolipidemic drugs during the
experimental period. A total of 30 subjects completed the study (Figure 1).

Figure 1. Flow diagram from recruitment to study completion.

2.7. Dietary Interventions

The test sample was formulated to consist of 90% by weight of the EDA powder and
10% by weight of fibersol®-2. Subjects were provided the test sample packed in sachets
of 40 g for females and 55 g for males in order to provide the recommended daily calorie
intake for breakfast staple according to the Health Promotion Administration, Ministry of
Health and Welfare, Taiwan. The EDA powder was to be consumed at breakfast along with
low-fat milk or unsweetened soymilk as the sole carbohydrate source and replacing other
starchy and sugary foods, such as bread, fruits, and any foods with added sugar normally
consumed at breakfast. Subjects were given sufficient sachets along with instructions for
consuming the powder when the subjects came to the clinic for baseline and follow-up
examinations every four weeks. The experimental duration lasted 12 weeks, and all subjects
were asked not to modify their regular lifestyle and dietary habits during this period. Blood
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samples were drawn, and height, body weight, waist circumference, and blood pressure
were recorded at baseline and at each follow-up every four weeks until the end of the
intervention. To monitor changes in dietary intakes that play an important role in regulating
blood lipid levels, 24-h dietary recalls were collected from participants at baseline and at
each follow-up for a total of four times. No adverse events were reported by the subjects.

2.8. Serum Lipids Assays

Blood samples were drawn in the morning after an overnight fast. The serum levels of
TG, TC, LDL-C, and HDL-C were analyzed using commercially available kits according
to the manufacturer’s instructions in conjunction with UniCel® DxC 800 and Synchron®

Systems Multi Calibrator (Beckman Coulter, Inc., Brea, CA, USA).

2.9. Outcome Measures

Participants in this study had abnormal levels of one or more blood lipids (single or
mixed dyslipidemia). The primary outcome was changes in any of the four blood lipids
measured (TC, TG, LDL-C, or HDL-C). Changes in blood lipid levels in the three follow-ups
at weeks 4, 8, and 12 were compared to baseline values. Self-reported side effects and
acceptability to the taste and texture of EDA were also recorded.

2.10. Statistical Analysis

All data were expressed as mean ± standard deviation (SD). For the in vitro digestibil-
ity experiments, data were analyzed by Student’s t-test with statistical significance defined
at p < 0.05 and computed with SAS 9.4 (SAS Institute Inc., Ellicott, MD, USA). For the
dietary intervention study, subjects were analyzed based on their initial blood lipid status
and classified into three groups: hypercholesterolemia group, high LDL group, and low
HDL group; one subject may qualify for more than one group, and the number of subjects in
each group was indicated. Comparisons between baseline and every 4-week measurement
were made using repeated-measures one-way analysis of variance (ANOVA) followed by
Dunnett’s multiple comparisons test with statistical significance defined at p < 0.05.

3. Results
3.1. Properties of Extruded Dehulled Adlay (EDA) Powder
3.1.1. In Vitro Digestibility of EDA Powder

We processed dehulled adlay of cultivar TCS4 as described in the Materials and
Methods. The in vitro digestion rate of the EDA powder was measured using the Englyst
method [11], which classifies starch into three fractions, namely RDS, SDS, and RS, based
on their rate of breakdown into glucose during controlled enzymatic hydrolysis. The starch
hydrolysis curves are shown in Figure 2, and the results of equilibrium concentration (C∞)
and kinetic constant (k) of the EDA powder are shown in Table 1.
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Figure 2. Starch hydrolysis curves for extruded dehulled adlay and white bread as reference. Data
are expressed as mean ± SD (n = 3).

Table 1. The starch hydrolysis parameters of extruded dehulled adlay powder and white bread as
reference sample.

Sample C∞ (%) k

White bread 96.98 ± 2.45 0.088 ± 0.006
Extruded dehulled adlay 89.08 ± 4.2 * 0.070 ± 0.002 **

p Value 0.048 0.008
Data are expressed as mean ± SD (n = 3). Asterisks indicate significant difference by Student’s t-test between the
samples (* p < 0.05, ** p < 0.01). C∞, concentration at equilibrium at the end of reaction; k, the kinetic constant.

Compared to white bread, the hydrolysis rate of the EDA powder was significantly
slower at 15, 60, and 120 min of the enzymatic reaction, and significantly lower equilibrium
concentration and kinetic constant were observed, indicating an overall slower enzymatic
breakdown. The starch composition is shown in Table 2. The EDA powder had 15% lower
RDS and 36% higher SDS as well as a 7.8-fold increase in RS compared to white bread. In
addition, SDS and RS summed to comprise about 32% of the starches in the EDA powder.

Table 2. The contents of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant
starch (RS) of extruded dehulled adlay powder and white bread.

Sample RDS (%) SDS (%) RS (%)

White bread 80.35 ± 1.59 16.63 ± 2.30 1.20 ± 1.58
Extruded dehulled

adlay 68.42 ± 2.25 ** 22.61 ± 1.94 * 9.36 ± 4.20 *

p Value 0.002 0.026 0.035
Data are expressed as mean ± SD (n = 3). Asterisks indicate significant difference by Student’s t-test between the
samples (* p < 0.05, ** p < 0.01).

3.1.2. Phytosterols and Phenolic Compounds in EDA Powder

Phytosterols and phenolics are two of the most prominent bioactive compounds
reported in adlay. The contents of the phytosterols campesterol, stigmasterol, and β-
sitosterol as well as the phenolic compounds in the EDA powder are shown in Table 3.
The three phytosterols summed up to 75.63 mg/g powder. The most abundant phenolic
compounds in the EDA powder were di-coumaroylspermidine-1, di-coumaroylspermidine-
2, chrysoeriol, and kaempferol, which amounted to 53.30 µg/g. Having determined
the in vitro digestibility characteristics and the contents of phenolics and phytosterols,
we prepared the EDA powder into the test sample for the subsequent human dietary
intervention study.
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3.2. Human Dietary Intervention

A total of 30 subjects (men = 5, women = 25), with a mean age of 52.77 ± 12.32
years, completed the study. Subjects were classified into three groups based on their initial
blood lipid status (single dyslipidemia) determined during recruitment and screening:
hypercholesterolemia group (n =26) for subjects having total cholesterol levels between
190 and 252 mg/dL, high LDL group (n = 22) for subjects having low-density lipoprotein
cholesterol levels between 123 and 168 mg/dL, and low HDL group (n = 11) for subjects
having high-density lipoprotein cholesterol levels below 42 mg/dL for males and 53 mg/dL
for females. The number of subjects who had hypertriglyceridemia, defined as having
triglyceride levels between 142 and 420 mg/dL, was not sufficient (n = 7), and thus, they
were not analyzed separately. The baseline characteristics of all subjects (n = 30) and of each
dyslipidemia group are shown in Table 4. Generally, the subjects did not identify any side
effect associated with the ingestion of the test product and reported favorable tolerance
regarding its taste and texture.

Table 3. The contents of phytosterols and phenolic compounds (in quercetin equivalent, QE) in
extruded dehulled adlay powder.

Phytosterols Content
(mg/g) Standard Curves Correlation

Coefficients
LOQ

(µg/mL)

Campesterol 9.76 ± 0.52 y = 1.17432 + 0.00212571 0.99989 0.1
β-Sitosterol 56.2 ± 1.31 y = 1.15789x + 0.00194746 0.99993
Stigmasterol 9.67 ± 0.20 y = 1.117x + 0.00224211 0.99987

Phenolic compounds Content in QE
(µg/g) Standard curve (quercetin) Correlation

coefficient
LOQ

(µg/mL)

Chrysoeriol 0.98 ± 0.34 y = 26242392x − 1554452 0.99982 0.04
Coumaric acid isomer-1 0.34 ± 0.01
Coumaric acid isomer-2 0.21 ± 0.05

ρ-Coumaric acid 0.20 ± 0.05
di-Coumaroylspermidine-1 8.87 ± 0.25
di-Coumaroylspermidine-2 42.90 ± 0.16

Eriodictyol 0.20 ± 0.05
Ferulic aicd 0.35 ± 0.04
Hesperetin 0.47 ± 0.14
Kaempferol 0.55 ± 0.18

Table 4. Baseline characteristics of all subjects and of each dyslipidemia group in the intervention study.

Characteristic All Subjects
(n = 30)

Hypercholesterolemia
(n = 26)

High LDL
(n = 22)

Low HDL
(n = 11)

Age (y) 52.77 ± 12.32 54.69 ± 11.60 54.27 ± 12.56 48.00 ± 12.31
Male/Female ratio 5/25 5/21 4/18 0/11

Anthropometric values
(cm)

Height 160.85 ± 7.29 160.70 ± 7.82 160.72 ± 7.70 159.09 ± 5.92
Weight 65.02 ± 11.80 64.98 ± 12.40 65.19 ± 12.64 61.00 ± 8.62

Waist circumference 85.65 ± 9.38 85.73 ± 9.72 85.77 ± 10.31 82.18 ± 6.01
Body mass index (kg/m2) 25.03 ± 3.54 25.06 ± 3.68 25.14 ± 3.88 24.07 ± 2.95

Fasting serum lipids
(mg/dL)

Total cholesterol 221.80 ± 28.92 230.27 ± 17.78 229.27 ± 15.91 204.09 ± 35.48
HDL-C 54.17 ± 13.77 55.54 ± 14.19 57.23 ± 14.66 44.45 ± 4.03
LDL-C 143.17 ± 24.15 149.85 ± 16.01 150.23 ± 9.49 131.64 ± 33.76

Triglycerides 127.53 ± 81.51 130.69 ± 83.11 109.23 ± 52.75 143.18 ±
101.75

Blood pressure (mmHg)
Systolic 123.33 ± 16.68 125.38 ± 16.06 127.27 ± 16.38 112.73 ± 12.72
Diastolic 78.53 ± 10.81 79.46 ± 10.49 80.27 ± 11.03 73.64 ± 9.24

Data are expressed as mean ± SD. LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
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3.2.1. The Effects of EDA on Subjects in the Hypercholesterolemia Group

After 12 weeks of consuming the EDA powder, there was a significant decrease in TC
from 230.27 ± 17.78 mg/dL to 220.42 ± 22.88 mg/dL and HDL-C from 55.54 ± 14.19 mg/dL
to 52.81 ± 12.42 mg/dL (p<0.05) in the hypercholesterolemic subjects (Table 5). No signif-
icant change in TG and LDL-C was observed, and the TC to HDL-C ratio (TC/HDL-C)
showed no significant difference after the intervention. We then analyzed the population
50 years and above in this group and found a significant reduction in serum TG levels at
Week 12 (Table 6).

Table 5. Analysis of serum lipid profile in hypercholesterolemia group (n = 26).

TG (mg/dL) TC (mg/dL) LDL-C (mg/dL) HDL-C (mg/dL) TC/HDL-C

Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value 1

Baseline 130.69 ± 83.11 - 230.27 ± 17.78 - 149.85 ± 16.01 - 55.54 ± 14.19 - 4.36 ± 0.95 -

Week 4 115.31 ± 56.83 0.152 223.88 ± 21.92 0.101 147.69 ± 17.77 0.801 52.92 ± 13.39
** 0.009 4.43 ± 0.91 0.759

Week 8 117.85 ± 64.07 0.571 229.50 ± 22.04 0.994 149.81 ± 18.36 >0.999 54.54 ± 14.55 0.768 4.48 ± 1.22 0.834
Week

12 114.77 ± 67.87 0.099 220.42 ± 22.88
* 0.033 144.35 ± 17.97 0.212 52.81 ± 12.42 * 0.043 4.34 ± 0.87 0.994

Data are expressed as mean ± SD. 1 p value: Significant difference (bolded number) versus baseline by repeated-
measures one-way ANOVA followed by Dunnett’s multiple comparisons test (* p < 0.05, ** p < 0.01). TG, triglycerides;
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

Table 6. Analysis of serum lipid profile in hypercholesterolemic subjects above 50 years old (n = 20).

TG (mg/dL) TC (mg/dL) LDL-C (mg/dL) HDL-C (mg/dL) TC/HDL-C

Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value 1

Baseline 131.50 ± 84.03 - 232.21 ± 18.99 - 149.25 ± 17.61 - 57.45 ± 16.64 - 4.22 ± 0.86 -

Week 4 111.70 ± 57.93 0.060 214.47 ± 21.64
* 0.016 147.25 ± 16.78 0.786 54.35 ± 14.10

** 0.002 4.32 ± 0.88 0.454

Week 8 105.85 ± 47.94 0.178 231.16 ± 21.92 0.991 152.00 ± 19.56 0.833 56.40 ± 15.05 0.850 4.38 ± 1.26 0.821
Week

12
106.80 ± 56.53

* 0.020 216.63 ± 23.69
** 0.002 141.30 ± 19.38 0.120 54.40 ± 12.78 * 0.044 4.14 ± 0.75 0.809

Data are expressed as mean ± SD. 1 p value: Significant difference (bolded number) versus baseline by repeated-
measures one-way ANOVA followed by Dunnett’s multiple comparisons test (* p < 0.05, ** p < 0.01). TG, triglycerides;
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

3.2.2. The Effects of EDA on Subjects in the High LDL Group

After the 12-week intervention, a significant reduction was seen in serum HDL-C
levels, but the TC/HDL-C ratio was not significantly changed (Table 7). We narrowed the
age range to 50 years and above and observed a significant reduction in serum TC levels in
addition to a decrease in HDL-C (Table 8). However, the ratio of TC/HDL-C in this age
range was not significantly altered after the intervention.

Table 7. Analysis of serum lipid profile in high LDL group (n = 22).

TG (mg/dL) TC (mg/dL) LDL-C (mg/dL) HDL-C (mg/dL) TC/HDL-C

Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value 1

Baseline 109.23 ± 52.75 - 229.27 ± 15.91 - 150.23 ± 9.48 - 57.23 ± 14.66 - 4.22 ± 0.96 -
Week 4 102.64 ± 41.19 0.686 221.5 ± 21.04 0.071 146.41 ± 12.96 0.454 54.36 ± 14.07 * 0.012 4.27 ± 0.89 0.905
Week 8 111.18 ± 61.56 0.984 227.91 ± 22.72 0.976 150.27 ± 16.23 >0.999 55.36 ± 15.69 0.378 4.43 ± 1.32 0.617
Week

12 103.95 ± 57.45 0.655 220.05 ± 21.72 0.084 145.23 ± 12.92 0.318 53.68 ± 13.16 * 0.017 4.28 ± 0.92 0.893

Data are expressed as mean ± SD. 1 p value: Significant difference (bolded number) versus baseline by repeated-
measures one-way ANOVA followed by Dunnett’s multiple comparisons test (* p < 0.05). TG, triglycerides; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
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Table 8. Analysis of serum lipid profile in high LDL subjects above 50 years old (n = 16).

TG (mg/dL) TC (mg/dL) LDL-C (mg/dL) HDL-C (mg/dL) TC/HDL-C

Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value 1

Baseline 102.19 ± 33.73 - 230.31 ± 16.74 - 149.63 ± 9.58 - 60.25 ± 14.91 - 4.00 ± 0.80 -

Week 4 93.38 ± 31.35 0.371 220.81 ± 19.58
** 0.004 145.38 ± 7.90 0.187 56.69 ± 14.87

** 0.003 4.08 ± 0.81 0.661

Week 8 93.69 ± 31.78 0.442 229.88 ± 22.43 >0.999 153.19 ± 16.91 0.784 58.00 ± 16.48 0.460 4.29 ± 1.40 0.602
Week

12 89.94 ± 24.28 0.136 216.25 ± 21.76
* 0.021 141.75 ± 13. 32 0.179 56.00 ± 13.64 * 0.013 4.01 ± 0.76 0.999

Data are expressed as mean ± SD. 1 p value: Significant difference (bolded number) versus baseline by repeated-
measures one-way ANOVA followed by Dunnett’s multiple comparisons test (* p < 0.05, ** p < 0.01). TG, triglycerides;
TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

3.2.3. The Effects of EDA on Subjects in the Low HDL Group

At the end of the intervention period, serum TG, TC, LDL-C, and HDL-C levels
remained unchanged after statistical analysis although a transient increase in HDL-C was
observed by week 8, resulting in a significant decrease in TC/HDL-C ratio (p = 0.037), but
it became non-significant by week 12 (Table 9).

Table 9. Analysis of serum lipid profile in low HDL group (n = 11).

TG (mg/dL) TC (mg/dL) LDL-C (mg/dL) HDL-C (mg/dL) TC/HDL-C

Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value
1 Mean ± SD p Value

1 Mean ± SD p Value 1

Baseline 143.18 ±
101.75 - 204.09 ± 35.48 - 131.64 ± 33.76 - 44.45 ± 4.03 - 4.63 ± 0.85 -

Week 4 155.00 ± 96.58 0.931 204.09 ± 35.00 >0.999 129.45 ± 36.73 0.970 44.91 ± 7.74 0.984 4.67 ± 0.99 0.992
Week 8 119.64 ± 64.27 0.965 206.55 ± 45.51 0.966 131.00 ± 43.04 >0.999 48.00 ± 7.82 0.117 4.36 ± 0.84 * 0.037
Week

12 144.82 ± 79.19 >0.999 200.73 ± 30.45 0.949 124.73 ± 30.23 0.479 46.91 ± 7.45 0.172 4.39 ± 0.89 0.350

Data are expressed as mean ± SD. 1 p value: Significant difference (bolded number) versus baseline by repeated-
measures one-way ANOVA followed by Dunnett’s multiple comparisons test (* p < 0.05). TG, triglycerides; TC, total
cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.

4. Discussion

Previous studies show that the rate of carbohydrate digestion of starchy foods can
be modified by the source, processing, and culinary preparation [16]. Compared to the
reference sample, the EDA powder, after extrusion and milling, had a lower in vitro
digestibility. We attributed the lower digestion rate to its lower content of RDS and
higher content of SDS and RS, which prolonged the enzymatic conversion to glucose.
Furthermore, SDS and RS combined made up about 32% of total starch in the EDA powder.
A previous study reported that consuming breakfast cereal containing 28% SDS+RS resulted
in significantly lower postprandial glucose and insulin release, showing potential for
improving metabolic syndrome [17].

Furthermore, a review of similar studies concluded that higher SDS are beneficial
for the management of hyperlipidemia [18]. Since the population with mild to moderate
dyslipidemia, which is at risk of developing CVDs, is larger than the population already
diagnosed with CVDs and may be less careful about cardiovascular health, we recruited
subjects from this population (criteria specified in Materials and Methods) and investigated
the impact of consuming the EDA on their blood lipid levels. This was an open-label,
non-controlled study using pre- and post-intervention comparisons of the same set of
participants. In general, no statistically significant differences were found in weight, waist
circumference, and blood pressure after the 12-week intervention. In addition, macronu-
trient analysis of the dietary records from the participants also showed no significant
difference between baseline and at each follow-up (Tables S1–S4), minimizing the effect
background diet may have on blood lipid variations detected in this study. With regards
to blood lipid levels, a reduction in TC levels after 12 weeks of EDA consumption was ob-
served in the hypercholesterolemia group. We also observed that subjects in the high LDL



Foods 2022, 11, 493 11 of 14

group exhibited reduced mean TC values from 229.27 ± 15.91 to 220.05 ± 21.72 mg/mL
(Table 7). However, there were also significant reductions in HDL-C levels at weeks 4 and
12 in both groups. Nonetheless, the TC/HDL-C ratio, which is an indicator of ischemic
heart disease, was not altered significantly in either group, suggesting the decrease in
HDL-C level was unlikely to be associated with increased cardiovascular risk. Elevations in
TC/HDL-C as well as non-HDL cholesterol levels, on the other hand, are better indicators
of cardiovascular risk [19]. Meanwhile, there was an increase in mean HDL-C values in the
low HDL group at week 8 compared to baseline, which resulted in a significant decrease in
the TC/HDL-C ratio (Table 9). Nevertheless, the HDL-C level decreased later at week 12,
and the TC/HDL-C ratio was not different from baseline. A general observation on the
values of the blood lipids showed a U-shaped trend, where TG, TC, and LDL-C decreased
after four weeks of EDA consumption but increased from Week 4 to 8 and then decreased
again from week 8 to 12, whereas HDL-C had an opposite trend. This might suggest
long-term consumption of EDA is required for seeing consistent blood lipid changes.

Aging is associated with lipid imbalance and increases in adiposity [20]; therefore, we
decided to stratify subjects and analyze those over 50 years old (middle aged and beyond).
The effect of age was evident in the hypercholesterolemia group, where there was a signifi-
cant decrease in both TC and TG levels (Table 6) though the TC/HDL-C ratios remained
not significantly changed despite decreases in HDL-C levels. There was also a significant
decrease in TC levels at weeks 4 and 12 in the high LDL subjects above 50 years old (Table 8).
We propose this enhanced effect of EDA in the middle-aged probably comes from the fact
that advancing age increases the risk of insulin resistance due to skeletal muscle aging,
which is associated with increased oxidative stress and inflammation and promotes hepatic
lipogenesis [21]. Insulin resistance not only induces chronic hyperglycemia but also alters
lipid metabolism [22]. Studies suggest that SDS may lower plasma lipids by prolonging
intestinal lipid absorption and providing a sustained release of glucose, which insults
in a lower insulin response to food and less lipid storage [23,24]. In addition, RS, also
known as soluble dietary fiber, may lower plasma cholesterol by delaying gastric emptying,
interfering with intestinal absorption, and increasing its excretion [25]. Consistently, the
higher contents of SDS and RS of the EDA offers a favorable dietary formula to lower
insulin-reduced lipidemic response following food ingestion, alleviating insulin resistance
and thereby reducing TC and TG in the long term.

The decrease in blood lipid levels in the subjects may also come from the collectively
greater intake of phytosterols and phenolic compounds in the EDA (Table 3). By calculation,
consumption of 40 g of the EDA product provides 2.7 g phytosterols per day, which meets
the recommended intake of dietary phytosterols that provides cardioprotective effects [26].
In addition, Li et al. [27] reported a positive association of higher dietary phytosterols with
reductions in serum TC and LDL-C as well as the prevalence of obesity. Although the
reduction in serum LDL-C was not statistically significant in our subjects despite a hypoc-
holesterolemic effect, we did observe a reduction in mean LDL values. Several phenolic
compounds have also shown hypolipidemic potential. For example, $-coumaric acid has
been shown to decrease both plasma and tissue levels of TC and TG in diabetic rats [28].
Chrysoeriol, a flavone that is also present in citrus peels and rooibos, has been reported to
protect against lipid oxidation and exhibit anti-inflammatory and anti-cardiotoxic actions
in vitro [29] and anti-obesity effects by reducing hepatic cholesterol content in high-fat-
diet-induced mice [30]. Kaempferol is also found to alleviate hyperlipidemia by reducing
visceral fat deposits and plasma lipid levels in high-fat-diet-fed obese rats [31]. Similarly,
hesperetin shows cholesterol-lowering and anti-oxidative functions in hypercholesterolemic
hamsters. Furthermore, in hyperlipidemic subjects, ferulic acid supplementation for six
weeks improves the lipid profile, oxidative stress, and inflammatory status [32]. Another
component in our dehulled adlay formulation, fibersol®-2, is composed of 90% resistant
maltodextrin (RMD) and is also a dietary fiber. A recent randomized, placebo-controlled
study by Kitagawa and colleagues involving 140 healthy subjects revealed that consump-
tion of 5 g RMD three times daily for three months did not cause reductions in blood TC,
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TG, or LDL-C though an increase in HDL-C and a decrease in visceral adipose tissue were
observed [33]. The addition of 10% w/w fibersol®-2 in our formulation provided a daily
dose of 3.6 g or 4.95 g RMD per 40-g or 55-g test sample, respectively. We proposed that
this low dose would not be bioactive and that the lipid-lowering effect seen in our subjects
was contributed mainly by the EDA.

This preliminary dietary intervention study followed a single-arm design, and placebo
effect was not controlled for and may have played a role in the outcomes measured.
The power and effect size did not meet predefined values; the results may thus not be
statistically sufficient to confirm a significant finding, especially the low HDL group due to
smaller sample size. However, the reductions of TC levels in high LDL subjects above 50
years old and of both TC and TG levels in hypercholesterolemic subjects above 50 years old,
accompanied by the absence of reported adverse events and general tolerability of the test
product, may warrant further investigation into the efficacy of the EDA in the middle-age
population in alleviating dyslipidemia. Suggestions for a future randomized, controlled
trial include involving more subjects to increase study power and including a comparator
group to eliminate placebo effect and measures to assess and reinforce protocol compliance
to resolve the U-shaped trend in the blood lipid changes.

5. Conclusions

In summary, the EDA contains about 32% SDS and RS combined. Consuming the
EDA powder modulated blood lipid levels in dyslipidemic subjects, especially TG and TC
levels in subjects above 50 years old with elevated serum TC, possibly contributed by the
combination of SDS, RS, and phytochemicals present in the EDA, including phytosterols
and phenolic compounds, which have been reported to exhibit lipid-lowering effects. In
conclusion, EDA displays a potential for controlling blood lipids, and the effect is more
distinct in the middle-aged population. Overall, the consumption of EDA was safe and
well tolerated and warrants further investigations into its efficacy in future randomized,
controlled trials.
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hypercholesterolemia group (n = 26); Table S3: Analysis of macronutrients from 24-h dietary recalls
in the high LDL group (n = 22); and Table S4: Analysis of macronutrients from 24-h dietary recalls in
the low HDL group (n = 11).

Author Contributions: Conceptualization, C.C., T.-Y.C., H.-J.C., W.C., and S.-C.H.; methodology,
C.C., T.-Y.C., H.-J.C., and G.-R.X.; formal analysis, all; investigation, C.C., T.-Y.C., H.-J.C., and G.-R.X.;
resources, H.-J.C., S.-C.H., and W.C.; writing—original draft preparation, C.C., T.-Y.C., and S.-C.H.;
writing—review and editing, all; visualization, C.C., T.-Y.C., H.-J.C., and G.-R.X.; supervision, H.-J.C.,
S.-C.H., and W.C.; project administration, H.-J.C. and S.-C.H.; funding acquisition, H.-J.C., S.-C.H.,
and W.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by funds provided by the Council of Agriculture, Taiwan (fund
ID:107AS-13.4.1-ST-a6 and 108AS-12.4.1-ST-a3) and Ministry of Science and Technology, Taiwan (fund
ID: MOST 104-2320-B-002-039, MOST 107-2320-B-002-003-MY3, and MOST 110-2320-B-002-034-MY3).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Research and Ethics Committee of Behavior and Social Sciences of
National Taiwan University (approval ID: 2017HM020 and date: 20171221).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are included in this
article and Supplementary Materials. Further enquiries can be directed to the corresponding author.

https://www.mdpi.com/article/10.3390/foods11040493/s1
https://www.mdpi.com/article/10.3390/foods11040493/s1


Foods 2022, 11, 493 13 of 14

Acknowledgments: The authors thank our contracted health center, Hoping Clinical Center, for
assisting with blood draw and the measurement of serum lipids.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. WHO Reveals Leading Causes of Death and Disability Worldwide: 2000–2019. Available online: https:

//www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019 (accessed
on 15 May 2021).

2. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.;
Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019; Update from the GBD 2019 Study. J.
Am. Coll. Cardiol. 2020, 76, 2982–3021. [CrossRef]

3. Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng,
S.; Delling, F.N.; et al. Heart disease and stroke statistics-2021 update. Circulation 2021, 143, E254–E743. [CrossRef] [PubMed]

4. World Heart Federation. Cardiovascular Risk Factors. Available online: https://www.world-heart-federation.org/resources/
risk-factors/ (accessed on 15 May 2021).

5. Wickramasinghe, M.; Weaver, J.U. Lipid disorders in obesity. In Practical Guide to Obesity Medicine; Elsevier: Amsterdam, The
Netherlands, 2018; pp. 99–108.

6. Yu, E.; Malik, V.S.; Hu, F.B. Cardiovascular disease prevention by diet modification: JACC health promotion series. J. Am. Coll.
Cardiol. 2018, 72, 914–926. [CrossRef]

7. Sardá, F.A.H.; Giuntini, E.B.; Nazare, J.-A.; König, D.; Bahia, L.R.; Lajolo, F.M.; Menezes, E.W. de Effectiveness of carbohydrates as
a functional ingredient in glycemic control. Food Sci. Technol. 2018, 38, 561–576. [CrossRef]

8. Vinoy, S.; Laville, M.; Feskens, E.J.M. Slow-release carbohydrates: Growing evidence on metabolic responses and public health
interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015). Food Nutr. Res. 2016, 60.
[CrossRef] [PubMed]

9. Kang, S.H.; Kim, B.; Choi, B.S.; Lee, H.O.; Kim, N.H.; Lee, S.J.; Kim, H.S.; Shin, M.J.; Kim, H.W.; Nam, K.; et al. Genome assembly
and annotation of soft-shelled adlay (Coix lacryma-jobi Variety ma-yuen), a cereal and medicinal crop in the Poaceae Family.
Front. Plant Sci. 2020, 11, 630. [CrossRef]

10. Zhu, F. Coix: Chemical composition and health effects. Trends Food Sci. Technol. 2017, 61, 160–175. [CrossRef]
11. Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J.

Clin. Nutr. 1992, 46 (Suppl. 2), S33–S50.
12. Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17,

427–437. [CrossRef]
13. Sorenson, W.R.; Sullivan, D. Determination of campesterol, stigmasterol, and beta-sitosterol in saw palmetto raw materials and

dietary supplements by gas chromatography: Single-laboratory validation. J. AOAC Int. 2006, 89, 22–34. [CrossRef]
14. Tanriseven, D.; Kadiroglu, P.; Selli, S.; Kelebek, H. LC-DAD-ESI-MS/MS-assisted elucidation of the phenolic compounds in

shalgams: Comparison of traditional and direct methods. Food Chem. 2020, 305. [CrossRef]
15. Jalali-Khanabadi, B.A.; Mozaffari-Khosravi, H.; Parsaeyan, N. Effects of almond dietary supplementation on coronary heart

disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med.
2010, 16, 1279–1283. [CrossRef]

16. Zhu, R.; Fan, Z.; Han, Y.; Li, S.; Li, G.; Wang, L.; Ye, T.; Zhao, W. Acute effects of three cooked non-cereal starchy foods on
postprandial glycemic responses and in vitro carbohydrate digestion in comparison with whole grains: A randomized trial.
Nutrients 2019, 11, 643. [CrossRef] [PubMed]

17. Vinoy, S.; Normand, S.; Meynier, A.; Sothier, M.; Louche-Pelissier, C.; Peyrat, J.; Maitrepierre, C.; Nazare, J.A.; Brand-Miller, J.;
Laville, M. Cereal processing influences postprandial glucose metabolism as well as the GI effect. J. Am. Coll. Nutr. 2013, 32,
79–91. [CrossRef] [PubMed]

18. Miao, M.; Jiang, B.; Cui, S.W.; Zhang, T.; Jin, Z. Slowly digestible starch—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1642–1657.
[CrossRef] [PubMed]

19. Calling, S.; Johansson, S.E.; Wolff, M.; Sundquist, J.; Sundquist, K. Total cholesterol/HDL-C ratio versus non-HDL-C as predictors
for ischemic heart disease: A 17-year follow-up study of women in southern Sweden. BMC Cardiovasc. Disord. 2021, 21, 1–9.
[CrossRef]

20. Toth, M.J.; Tchernof, A. Lipid metabolism in the elderly. Eur. J. Clin. Nutr. 2000, 54 (Suppl. 3), S121–S125. [CrossRef]
21. Shou, J.; Chen, P.J.; Xiao, W.H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr.

2020, 12, 14. [CrossRef]
22. Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the

development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [CrossRef]
23. Aller, E.E.J.G.; Abete, I.; Astrup, A.; Alfredo, M.J.; van Baak, M.A. Starches, sugars and obesity. Nutrients 2011, 3, 341–369.

[CrossRef]

https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019
https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019
http://doi.org/10.1016/j.jacc.2020.11.010
http://doi.org/10.1161/CIR.0000000000000950
http://www.ncbi.nlm.nih.gov/pubmed/33501848
https://www.world-heart-federation.org/resources/risk-factors/
https://www.world-heart-federation.org/resources/risk-factors/
http://doi.org/10.1016/j.jacc.2018.02.085
http://doi.org/10.1590/fst.42517
http://doi.org/10.3402/fnr.v60.31662
http://www.ncbi.nlm.nih.gov/pubmed/27388153
http://doi.org/10.3389/fpls.2020.00630
http://doi.org/10.1016/j.tifs.2016.12.003
http://doi.org/10.1016/S0271-5317(97)00010-9
http://doi.org/10.1093/jaoac/89.1.22
http://doi.org/10.1016/j.foodchem.2019.125505
http://doi.org/10.1089/acm.2009.0693
http://doi.org/10.3390/nu11030634
http://www.ncbi.nlm.nih.gov/pubmed/30875961
http://doi.org/10.1080/07315724.2013.789336
http://www.ncbi.nlm.nih.gov/pubmed/24015715
http://doi.org/10.1080/10408398.2012.704434
http://www.ncbi.nlm.nih.gov/pubmed/24915311
http://doi.org/10.1186/s12872-021-01971-1
http://doi.org/10.1038/sj.ejcn.1601033
http://doi.org/10.1186/s13098-020-0523-x
http://doi.org/10.1186/s12933-018-0762-4
http://doi.org/10.3390/nu3030341


Foods 2022, 11, 493 14 of 14

24. Jenkins, D.J.A.; Kendall, C.W.C.; Axelsen, M.; Augustin, L.S.A.; Vuksan, V. Viscous and nonviscous fibres, nonabsorbable and low
glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr. Opin. Lipidol. 2000, 11, 49–56. [CrossRef] [PubMed]

25. Soliman, G.A. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients 2019, 11, 1155. [CrossRef] [PubMed]
26. Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; et al.

Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014,
232, 346–360. [CrossRef] [PubMed]

27. Li, Y.C.; Li, C.L.; Li, R.; Chen, Y.; Zhang, M.; Guo, P.P.; Shi, D.; Ji, X.N.; Feng, R.N.; Sun, C.H. Associations of dietary phytosterols
with blood lipid profiles and prevalence of obesity in Chinese adults, a cross-sectional study. Lipids Health Dis. 2018, 17, 1–9.
[CrossRef]

28. Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid
in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016, 84, 230–236. [CrossRef]

29. Dludla, P.V.; Joubert, E.; Muller, C.J.F.; Louw, J.; Johnson, R. Hyperglycemia-induced oxidative stress and heart disease-
cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr. Metab. 2017, 14, 1–18. [CrossRef]

30. Han, L.K.; Sumiyoshi, M.; Zhang, J.; Liu, M.X.; Zhang, X.F.; Zheng, Y.N.; Okuda, H.; Kimura, Y. Anti-obesity action of Salix
matsudana leaves (Part 1). Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals. Phyther.
Res. 2003, 17, 1188–1194. [CrossRef] [PubMed]

31. Chang, C.J.; Tzeng, T.F.; Liou, S.S.; Chang, Y.S.; Liu, I.M. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an
increase in hepatic PPAR levels. Planta Med. 2011, 77, 1876–1882. [CrossRef]

32. Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic acid supplementation improves lipid
profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled
clinical trial. Nutrients 2018, 10, 713. [CrossRef]

33. Kitagawa, M.; Nakagawa, S.; Suzuki, T.; Kishimoto, Y.; Kanahori, S.; Hatakeyama, Y.; Tomita, S.; Fukuhara, I. Visceral fat-
reducing effect and safety of continuous consumption of beverage containing resistant maltodextrin: A randomized, double-blind,
placebo-controlled, parallel-group clinical trial. J. Nutr. Sci. Vitaminol. 2020, 66, 417–426. [CrossRef]

http://doi.org/10.1097/00041433-200002000-00008
http://www.ncbi.nlm.nih.gov/pubmed/10750694
http://doi.org/10.3390/nu11051155
http://www.ncbi.nlm.nih.gov/pubmed/31126110
http://doi.org/10.1016/j.atherosclerosis.2013.11.043
http://www.ncbi.nlm.nih.gov/pubmed/24468148
http://doi.org/10.1186/s12944-018-0703-y
http://doi.org/10.1016/j.biopha.2016.09.039
http://doi.org/10.1186/s12986-017-0200-8
http://doi.org/10.1002/ptr.1404
http://www.ncbi.nlm.nih.gov/pubmed/14669254
http://doi.org/10.1055/s-0031-1279992
http://doi.org/10.3390/nu10060713
http://doi.org/10.3177/jnsv.66.417

	Introduction 
	Materials and Methods 
	Sample Preparation 
	Solutions Preparation 
	In Vitro Starch Digestibility Assay 
	Phytosterols and Phenolic Compounds Analysis 
	Human Study Design 
	Sample Size Determination 
	Dietary Interventions 
	Serum Lipids Assays 
	Outcome Measures 
	Statistical Analysis 

	Results 
	Properties of Extruded Dehulled Adlay (EDA) Powder 
	In Vitro Digestibility of EDA Powder 
	Phytosterols and Phenolic Compounds in EDA Powder 

	Human Dietary Intervention 
	The Effects of EDA on Subjects in the Hypercholesterolemia Group 
	The Effects of EDA on Subjects in the High LDL Group 
	The Effects of EDA on Subjects in the Low HDL Group 


	Discussion 
	Conclusions 
	References

