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Letter to the Editor

Diffuse hemispheric glioma, 
H3 G34-mutant: Genomic 
landscape of a new tumor 
entity and prospects for 
targeted therapy

“Diffuse hemispheric glioma, H3 G34-mutant” (DHG) 
is being included as a new CNS grade 4 tumor type in the 
forthcoming 5th edition of the WHO Classification of Tumors 
of the Central Nervous System. DHG arises within the ce-
rebral hemispheres of teenagers and young adults and 
can histologically resemble anaplastic astrocytoma, gli-
oblastoma, or CNS embryonal tumor.1 Affected patients 
have a somewhat more favorable prognosis than both 
“Glioblastoma, IDH-wildtype” and “Diffuse midline glioma, 
H3 K27M-mutant,” but invariably suffer from disease recur-
rence and mortality using current treatment regimens.1–3 
Exploration of genomically targeted therapeutic strategies 
is therefore needed.

DHG is molecularly defined by a recurrent glycine to argi-
nine or valine substitution at codon 35 of the histone H3.3 
gene H3F3A, corresponding to amino acid 34 of the ma-
ture H3.3 protein. This p.G34R/V mutation results in steric 
change which blocks di- and tri-methylation of lysine 36, 
thereby obstructing this posttranslational modification crit-
ical for glial differentiation.4,5 Additionally, DHG frequently 
have co-occurring mutational inactivation of TP53, and del-
eterious mutations in the ATRX chromatin remodeling gene 
associated with alternative lengthening of telomeres.1–3 
However, the complete genomic landscape of this new 
tumor entity and potential targets for precision medicine 
therapy have yet to be fully defined.

Here we report genomic characterization of 10 DHG tu-
mors (Figure 1), which revealed two recurrent and poten-
tially targetable genetic perturbations: activating mutations 
in PDGFRA and diverse alterations affecting the CDK4/6-cyclin 
D-p16INK4a-Rb cell cycle pathway. All tumors harbored H3F3A 
p.G34R mutation, along with inactivating TP53 and ATRX vari-
ants. Six tumors also harbored somatic missense mutations 
in PDGFRA, and one other tumor harbored focal high-level 
amplification of wildtype PDGFRA (70% PDGFRA alteration 
frequency). Additionally, three tumors harbored homozygous 
deletion or truncating mutation of CDKN2A, one had focal 
high-level amplification of CCND2, and one other had focal 
high-level amplification of CDK6 (50% cell cycle alteration fre-
quency). This genomic analysis has revealed the possibility of 

targeting mutant PDGFRA and/or activated CDK4/6 using small 
molecule kinase inhibitors (eg, dasatinib and abemaciclib, re-
spectively), and genomically guided clinical trials investigating 
these or similar agents in children and young adults with DHG 
may thus be warranted.

A recent landmark study by Chen et al also found a high 
frequency of PDGFRA mutations in DHG, and demonstrated 
that mutant Pdgfra potently fuels gliomagenesis in vivo in 
a mouse model in concert with Atrx and Tp53 inactivation.6 
Through elegant functional studies, they identified that DHG 
arises from GSX2-expressing interneuron progenitor cells 
and that H3.3 G34R mutation stalls differentiation by epige-
netic silencing of mature neuronal genes and hijacking of 
the active cis-regulatory elements of the GSX2 gene to drive 
increased PDGFRA expression. In combination with the 
frequent PDGFRA mutations, these functional studies indi-
cate a fundamental role for activation of PDGFRA signaling 
in DHG. Analysis of the specific PDGFRA variants from our 
tumor cohort (Figure 1H) and that of Chen et al reveals most 
mutations occur in the extracellular immunoglobulin-like 
domains, but also occasionally in the transmembrane do-
main or the autoinhibition site in the intracellular tyrosine 
kinase domain (p.D842 within exon 18) commonly mutated 
in gastrointestinal stromal tumors (GIST). While first-gener-
ation tyrosine kinase inhibitors such as imatinib effectively 
inhibit select mutant isoforms of PDGFRA, exon 18 muta-
tions are associated with imatinib resistance. The agent 
avapritinib was recently approved by the FDA for the treat-
ment of adults with advanced GIST with PDGFRA exon 18 
mutations. Thus, selection of the tyrosine kinase inhibitor 
needs to be individually tailored to the specific PDGFRA mu-
tation driving each patient’s tumor.

In light of these findings, we recommend prospective ge-
nomic interrogation for DHG patients to inform potential per-
sonalized therapeutic approaches and enrollment in precision 
medicine clinical trials investigating PDGFRA and CDK4/6 
inhibitors.
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Fig. 1 Clinicopathologic features and genomic landscape of diffuse hemispheric glioma, H3 G34-mutant. (A) MR imaging typically reveals an 
expansile, contrast-enhancing tumor within the cerebral hemispheres. (B) Histologically these tumors are diffuse high-grade gliomas, often with 
a primitive embryonal-like appearance. (C) Mutant-specific antibodies have been developed to detect the H3.3 G34R or G34V-mutant protein 
that molecularly defines these tumors (RevMAb clones RM240 and RM307). Additional immunohistochemical findings usually include the ab-
sence of OLIG2 expression (D), p53 overexpression (E), and loss of ATRX expression (F). (G) Oncoprint summary table of genomic findings in a 
cohort of 10 DHG patients. (H) The majority of PDGFRA mutations localize in the extracellular immunoglobulin-like domains but may also occur 
within the transmembrane domain or intracellular tyrosine kinase domain (annotation per RefSeq transcript NM_006206). Scale bars, 50 µm. 
Abbreviations: DHG, diffuse hemispheric glioma; MR, magnetic resonance.
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