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ABSTRACT

Translational regulation is a critical step in the process of gene expression and governs the synthesis of

proteins frommRNAs. Many studies have revealed translational regulation in plants in response to various

environmental stimuli. However, there have been no studies documenting the comprehensive landscape of

translational regulation and allele-specific translational efficiency inmultiple plant tissues, especially those

of rice, a main staple crop that feeds nearly half of the world’s population. Here we used RNA sequencing

and ribosome profiling data to analyze the transcriptome and translatome of an elite hybrid rice, Shanyou

63 (SY63), and its parental varieties Zhenshan 97 andMinghui 63. The results revealed that gene expression

patterns variedmore among tissues than among varieties at the transcriptional and translational levels. We

identified 3392 upstream open reading frames (uORFs), and the uORF-containing genes were enriched in

transcription factors. Only 668 of 13 492 long non-coding RNAs could be translated into peptides. Finally,

we discovered numerous genes with allele-specific translational efficiency in SY63 and demonstrated

that some cis-regulatory elements may contribute to allelic divergence in translational efficiency. Overall,

these findingsmay improve our understanding of translational regulation in rice and provide information for

molecular breeding research.
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INTRODUCTION

Understanding themolecular basis of phenotypic variation, espe-

cially variation in gene expression, is essential for eukaryotic

biology research. Transcription and translation are two critical

steps in the process of gene expression (Crick, 1970). Over the

past few decades, transcriptomic studies have described gene

expression profiles in a wide variety of species of animals

(Cardoso-Moreira et al., 2019) and plants (Klepikova and Penin,

2019), revealing the complexity of gene-regulatory networks

and the evolution of gene expression patterns in different

species. However, proteomics studies are lagging behind,

largely because of limitations caused by the relatively low

throughput of mass spectrometry (Noor et al., 2021). Ribosome
Plant Com
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profiling (Ribo-seq), a technique for deep sequencing of

ribosome-protected fragments (RPFs) (Ingolia et al., 2012),

enables global monitoring of translational processes in vivo and

quantification of translated open reading frames (ORFs) in RNA;

it may thus be used as a proxy for protein synthesis (Brar and

Weissman, 2015). When combined with corresponding RNA

sequencing (RNA-seq), Ribo-seq can be used to investigate the

dynamics of translational efficiency on a genome-wide scale

(Ingolia et al., 2009). Assessment of translational efficiency can
munications 4, 100457, March 13 2023 ª 2022 The Authors.
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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indirectly decipher the effect of extensive translational regulation

that results in poor correlations between RNA abundance and

protein level (Wang et al., 2020).

Unlike mammals, plants generally exhibit broad variation within

their genomes and correspondingly complex translational pro-

files because of several ancient whole-genome duplication

events and subsequent chromosomal rearrangements (Clark

and Donoghue, 2018). Understanding the role of translational

changes in gene expression is more challenging but important,

and many researchers have attempted to describe it in plants,

particularly in Arabidopsis (Juntawong et al., 2014) and maize

(Lei et al., 2015). More recently, a study in rice revealed the

effect of nitrogen application after abrupt drought-flood alter-

nation on translation and revealed that a fraction of genes

were up- or downregulated in the translatome (Xiong et al.,

2020). Researchers have also investigated the divergence in

translational efficiency of alleles in hybrid yeast (Artieri and

Fraser, 2014; Muzzey et al., 2014) and mice (Hou et al., 2015).

For example, Hou et al. (2015) first detected over 1000 genes

with allele-specific translational efficiency (ASTE) in hybrid mice

and demonstrated the effects of cis-regulatory elements (Hou

et al., 2015). However, a comprehensive study of ASTE at the

single-gene level in plants remains to be performed and could

help to enhance our understanding of heterosis (Zhu et al., 2021).

In this study, we performed RNA-seq and Ribo-seq experiments

on leaves, panicles, and roots of three Asian rice varieties (Oryza

sativa ssp. xian/indica): Minghui 63 (MH63), Zhenshan 97 (ZS97),

and their elite hybrid Shanyou 63 (SY63). We compared gene

expression at the transcriptional and translational levels and

investigated the differences in translational efficiency (TE) among

different tissues. Thousands of actively translated upstream

ORFs (uORFs) and hundreds of active ORFs were detected

frommRNAs and long non-coding RNAs (lncRNAs), respectively,

enabling the full characterization of translational regulation in rice.

Based on identified genes with ASTE, we found many genes with

special translational patterns in the hybrid compared with its par-

ents, some of which were related to agronomic traits, and some

cis-regulatory elements on mRNAs that influenced the TE of

alleles.
RESULTS

Data quality and characteristics of ribosome profiling in
rice

We carried out Ribo-seq on three different tissues in three rice va-

rieties, with two biological replicates per tissue and variety

(Figure 1A). RNA-seq and Ribo-seq were carried out on the

same materials, and the RNA-seq data have been published in

our previous work (Zhou et al., 2021). Here, the Ribo-seq and

RNA-seq data were mapped to the gap-free MH63RS3 genome

(Song et al., 2021) to determine the data quality and the overall

landscape of translational regulation. The mean Pearson

correlation coefficient between two biological replicates was

0.92, indicating good reproducibility of our Ribo-seq data

(Supplemental Figure 1A).

Ribo-seq data possess several unique features that can be used

to monitor the dynamic translation process and determine the
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quality of the ribosome profiling libraries (Ingolia et al., 2009; Liu

et al., 2013; Juntawong et al., 2014; Lei et al., 2015; Wu et al.,

2019). The dominant length of RPFs reported in animals and

maize (Lei et al., 2015) is 28–30 nt. However, in rice, we

observed that the vast majority of RPFs were 26–28 nt in

length, particularly 27 nt (Figure 1B), as also reported in a

previous study (Yang et al., 2020). In total, 96.0% of the RPFs

could be mapped to annotated coding sequences (CDSs), and

the remaining RPFs were almost equally distributed among 50

UTR, 30 UTR, and intron regions (Figure 1B). In the ribosome,

peptidyl elongation occurs at the P site (Lauria et al., 2018), and

the estimated P-site offset varied depending on the read length

(Supplemental Figure 1C). Reading frame analysis of the

mapped RPFs revealed that more than 70% of them were

accumulated in the first frame of the CDS (Figure 1D), whereas

no enrichment of RPFs was found in the 50 UTR or 30 UTR.

Corresponding to codon triplets, a clear 3-nt periodicity could

be detected when using the first nucleotide of the P site as the

position of the ribosome footprint on mRNAs (Figure 1E).

There was a higher density of reads near the end regions of

mRNAs, which could be attributed to the use of rare codons

(Supplemental Figure 1D; Wang and Roossinck, 2006). Finally,

of the 39 046 non-transposable element genes in MH63RS3,

50%–60% could be transcribed and translated (Figure 1F),

consistent with a previous report (Zhao et al., 2017). When

transcribed, an average of 85% of the genes would recruit the

ribosome complex for translation (Supplemental Table 1),

indicating the protein-coding function of these genes. These

results suggested that our Ribo-seq libraries for all three varieties

and tissues were of high quality (Dunn et al., 2013; Fields et al.,

2015) and suitable for further analysis.
Expression changes at transcriptional and translational
levels

Based on the transcriptome and translatome data, we first inves-

tigated the global differences in gene expression patterns among

different varieties and tissues. There were high correlations

(�0.95; Supplemental Figure 2A and Supplemental Methods 2)

between the normalized expression values (TPM, transcripts

per million) generated from 150-bp paired-end reads and

simulated 30-bp single-end reads, indicating that the length of

RNA-seq reads would cause little bias in the analysis results

and that the computation of TE was appropriate, regardless of

the difference in sequenced read length (Lei et al., 2015).

Next we computed the expression variance at both levels to

measure the effects of transcriptional or translational regulation

on gene expression (Wang et al., 2020). Various types of post-

transcriptional modifications can regulate gene expression by

modulating TE, leading to higher expression variance in the

translatome (Csárdi et al., 2015; Weinberg et al., 2016). We

found that the expression variances in the translatome were

higher than those in the transcriptome for all varieties and

tissues (Figure 2A and 2B and Supplemental Figure 2B). On

average, the Ribo-seq variances for the leaf, panicle, and root

were �0.733, �0.858, and �0.793, about 8.39%–25.3% higher

than those of RNA-seq (Figure 2B). Genome-wide analysis of

the TE variation range showed that the panicle had the broadest

TE range (�167-fold), but no consistent pattern was observed for

the three varieties (Supplemental Figure 2C). By contrast,

the overall TE distribution displayed a clear tissue-specific
thors.
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Figure 1. Deep sequencing-based global quantification of parents and hybrids.
(A) Brief overview of the experimental design. Detailed protocols for the Ribo-seq and RNA-seq experiments can be found under methods.

(B) Length distribution of Ribo-seq ribosome-protected fragments (RPFs) with a peak at 27 nt.

(C) The proportion of RPFs within annotated genes, �96% of which are located in the CDS region.

(D) Reading frames of optimally mapped Ribo-seq reads and RNA-seq reads within annotated genes.

(E) Distribution of optimally mapped reads along the CDS within each codon. Each read was represented by a specific P-site position depending on its

fragment length. TSS, translation start site; TTS, translation termination site.

(F) The proportion of expressed genes (TPM > 0.1) at the translatome level (orange), transcriptome level (blue), and both levels across tissues and va-

rieties.

Data in (B)–(E) were calculated for each replicate and aggregated. RPFs with a size of 25–31 nt were used in (D) and (E). Error bars display ±SEM.
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pattern: the leaf had higher TE than the other two tissues

(Figure 2C), which probably reflected an optimized usage of TE

favored by each tissue, as observed in animals (Waldman

et al., 2010). Next we conducted a Gene Ontology (GO)

enrichment analysis and found functional divergence between

genes with high and low translation (Figure 2D and

Supplemental Data 2), indicating that some specific genes
Plant Com
are strongly influenced by translational regulation (Lei et al.,

2015; Wang et al., 2020) in rice. Although there were relatively

high correlations of gene expression between the two levels

(Supplemental Figure 3), TE and RNA abundance were

relatively weakly associated (Supplemental Figure 2D and 2E).

These results suggest that TE can be used as an indicator to

study gene expression regulation in rice.
munications 4, 100457, March 13 2023 ª 2022 The Authors. 3
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Figure 2. Gene expression divergence between the transcriptome and translatome.
(A) The distribution of expression values at the translational level in panicles of SY63 compared with that at the transcriptional level. The expression

variance at the translational level is greater than that of the transcriptome.

(B) The expression variances were calculated for the translatome and transcriptome levels across tissues and varieties. Error bars indicate ±SEM.

(C) Cumulative distribution of TE for protein-coding genes expressed across tissues and varieties.

(D) GO enrichment results for the top 5% and bottom 5% TE genes in MH63 leaves. Only biological process terms are shown.

(E) Euclidean distances of expression profiles at the translational and transcriptional levels across tissues and varieties.
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We calculated the divergence of expression profiles between or

within the transcriptional and translational levels for all varieties

and tissues. In Figure 2E, the squares and circles represent the

gene expression distances at the two levels. The data in the

three red dashed boxes and along the blue dashed lines

represent the expression distances of RNA-seq and Ribo-seq

in different tissues of the same variety and the same tissue of

different varieties, respectively. The expression distances in the

red dashed boxes are significantly larger than those on the blue

dashed lines at the transcriptional and translational levels. In gen-

eral, the inter-tissue expression distances within a variety were

much larger than the inter-variety distances within a tissue, sug-

gesting that a given tissue has similar transcriptional and tran-

slational regulatory mechanisms among different varieties. The

transcription distance or translation distance in the same tissue

was roughly equal between varieties. To quantify the contribution

of transcriptional or translational regulation to gene expression

and explore the potential effects of this regulation on shaping

phenotypic diversity, we performed differential expression ana-

lyses between different tissues of the same variety (inter-tissue)

and between the same tissue in different varieties (intra-tissue).
4 Plant Communications 4, 100457, March 13 2023 ª 2022 The Au
In general, we found that the number of differentially expressed

genes in the transcriptome (RNA_only) was approximately 2.39

times higher than that in the translatome (Ribo_only; 3616 versus

1516; Supplemental Figure 4), suggesting that more genes were

subjected to regulation at the transcriptional level. However, GO

enrichment results for Ribo_only genes revealed that they were

involved in a number of crucial biological processes, some of

which may be closely related to tissue-specific or variety-

specific phenotypes (Supplemental Data 3). For example,

‘‘reproduction’’ (GO:0000003; P = 4.59e�04) was enriched in

the comparison of panicle and root, suggesting that some

genes dominantly regulated by translation are associated

with reproductive growth, as the panicle is known as the

beginning of the reproductive phase of rice development (Li

et al., 2021). ZS97 usually grows much faster than MH63 at the

seedling stage (Xu et al., 2004), and we found that some GO

terms were enriched in the comparison of MH63 and ZS97,

such as ‘‘generation of precursor metabolites and energy’’

(GO:0006091; P = 0.0209), which may be linked to this

phenotypic difference. Although fewer genes were dominantly

regulated by translation, their notably enriched functions
thors.
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Figure 3. uORF-mediated translational regulation.
(A) Three-way Venn diagram showing the numbers of uORFs shared by the three varieties.

(B) Length distribution of the translated uORFs, with a median length of 96 nt (red dashed line).

(legend continued on next page)
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suggest that translational regulation plays important roles in rice

development.

Regulation of translation by uORFs in rice

Although a previous study identified thousands of uORFs in rice,

that work focused mainly on the effect of abrupt drought-flood

alternation (Xiong et al., 2020). Here, we comprehensively

characterized uORFs among three varieties and different

tissues. In total, 2902, 2474, and 2912 uORFs were identified in

MH63, ZS97, and SY63, respectively (Supplemental Table 2

and Supplemental Data 4). Although each variety harbored

hundreds of unique active uORFs, about two-thirds of the

uORFs were shared by all three varieties (Figure 3A), indicating

that these uORFs are necessary and may participate in

important cellular processes. As expected, the length of active

uORFs was shorter than that of main ORFs (mORFs), with a

median value of 96 nt (Figure 3B and Supplemental Figure 5A).

The core function of uORFs is to suppress translation of

mORFs in animals (Calvo et al., 2009; Ingolia, 2014) and plants

such as maize (Lei et al., 2015). However, it has been reported

that genes with one uORF have a TE similar to that of genes

without uORFs; when the number of uORFs increases to two or

more, the uORFs can improve the TE of their mORFs in young

rice leaves (Xiong et al., 2020). Here, we calculated the

cumulative distribution of TE and found a tissue-specific pattern

in the regulatory effect of uORFs on mORFs. In the root, the

TE of mORFs with one or more uORFs decreased (Figure 3C

and Supplemental Figure 5B). However, in the leaf and panicle,

the cumulative distribution curves for mORFs without or with

one or more uORFs largely overlapped, indicating that the

presence and number of uORFs did not significantly alter the

TE of mORFs (Supplemental Figure 5B). These distinct

regulatory patterns among tissues were also confirmed using

more reliable uORFs identified with RiboTaper (Supplemental

Figure 6), although the number of uORFs was much smaller

(Supplemental Data 3), probably because of the strict inbuilt 3-

nt periodicity criterion, which required a higher sequence depth

(Calviello et al., 2016). We also calculated the coefficient of

variation of TE to evaluate the effects of uORFs. The

coefficients of variation of TE were higher for genes without

uORFs than for genes with one or more uORFs across all

varieties and tissues (Figure 3C and Supplemental Figure 5C).

This was consistent with another function of uORFs found in

Drosophila melanogaster (Patraquim et al., 2020), in which

uORFs were reported to buffer the translation of mORFs,

leading to lower dispersion of TEs.

Considering that a large proportion of uORFs were shared by all

samples (Figure 3D), we performed a GO enrichment analysis to

understand the potential functions of these uORF-containing
(C)Cumulative distribution of CDS TEs in mORFs and coefficients of variation (

test P values are labeled.

(D)GO terms and TF categories of uORF-containing genes shared by the three

shared by the three varieties across tissues. The right panel shows the GO t

tissues.

(E) The geneOsMH_02G0496600, a homolog ofATHB1 inArabidopsis, contain

The Ribo-seq and RNA-seq signals from leaf, panicle, and root of MH63 are s

from the MH63 leaf are also shown to explain that these signals are fromCPuO

comparison of CPuORF33 in Arabidopsis and rice is shown at the top right,

shown at the bottom right.
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genes. As shown in Figure 3D, although some GO terms were

tissue specific, ‘‘DNA-binding transcription factor activity’’ (GO:

0003700, Pmax = 1.94e�04) was significantly enriched for all

three tissues, indicating that these genes play certain roles as

transcription factors (TFs). By searching plant TF databases, we

found that many uORF-containing genes harbor various TF

DNA-binding domains, as shown in the right panel of Figure 3D.

Some of these genes may be vital for plant development. For

example, OsMH_02G0496600 is the homolog of Arabidopsis

ATHB1 (AT3G01470), which encodes a homeodomain-leucine

zipper domain TF. Overexpression of ATHBI in Arabidopsis

causes deleterious phenotypes such as serrated leaves, and

a uORF (CPuORF33) can repress translation of this TF via a ribo-

some stalling mechanism in aerial tissues of Arabidopsis (Ribone

et al., 2017). A DNA sequence similar to this uORF was identified

in rice, and the two uORFs had relatively high identity (66.7%;

Figure 3E). The expression profile showed that the mORF of

this gene was expressed in all tissues (Figure 3E; Supplemental

Data 4), but the TE was low in most tissues (in the bottom 20%

of all translated genes on average), indicating that the presence

of CPuORF33 homologs may contribute to this low TE. These re-

sults suggest that the identified uORFs have multiple roles in rice,

some of which may be important for gene regulation; they can

also serve as a valuable resource for further experimental studies.

Translation ability of lncRNAs in rice

To understand the translation ability of the widely distributed

lncRNAs reported in our previous work (Zhou et al., 2021), we

re-identified the lncRNAs in the MH63RS3 genome using the

same pipeline and predicted their coding potential. In total, only

4.95% (668) of all lncRNAs with one or more active ORFs could

be translated (Figure 4A and Supplemental Data 5), suggesting

that the identification of a majority of lncRNAs in our previous

study is reliable and that translation of lncRNAs is not universal

in rice. Although these active ORFs had a greater median

length (237 nt) than uORFs, they were still significantly

shorter than ORFs from protein-coding genes (Figure 4B and

Supplemental Figure 5A). Five types of lncRNAs have been

classified previously, and we found that 60.3% of active ORFs

were derived from long intergenic noncoding RNAs, followed by

long noncoding natural antisense transcripts (23.4%; Figure

4C). Considering the poor conservation of lncRNAs among

varieties (Zhou et al., 2021) and the relatively large number of

shared active translational ORFs among varieties and tissues

(Supplemental Figure 7A), we speculate that these lncRNAs

may have functions similar to protein-coding genes.

To validate this speculation, we performed de novo functional

annotation of 834 active ORFs in lncRNAs using three ap-

proaches (Figure 4D and Supplemental Data 5). First, we
inset) grouped by uORF number in the root of SY63. Kolmogorov–Smirnov

varieties in different tissues. The left panel shows the proportion of uORFs

erms of the uORF-containing genes shared by the three varieties across

s the same uORF, CPuORF33, which also inhibits translation of themORF.

hown in the left panel (only tissues from MH63 are shown). The raw reads

RF33, not the anti-sense geneOsMH_02G0496700. The protein sequence

and the expression level and TE of the mORF in OsMH_02G0496600 are

thors.
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Figure 4. Translation of lncRNA genes.
(A) The number of actively translated ORFs in lncRNAs identified in each tissue and variety.

(B) Length distribution of active ORFs, with a median length of 237 nt (red dashed line).

(C) Pie chart of lncRNA categories containing active ORFs.
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kinds of genes are labeled.
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searchedmultiple protein databases using InterProScan 5 (Jones

et al., 2014) and found that 16.1% (134) of the 834 active ORFs

contained one or more conserved domains. Second, we found

that 62 (7.43%) active ORFs had high sequence similarity to

known proteins by searching against all annotated small

proteins (shorter than 100 amino acids [aa]) in the MH63RS3

genome. Third, because small proteins can function as signal

peptides in a wide range of plant species (Matsubayashi, 2014),

we predicted the transmembrane topology and signal peptide

structure of these active ORFs and found that 101 (12.1%)

might be located on the membrane (82) or secreted (31).

Considering the relatively short lengths of active ORFs

(Supplemental Figure 7B), we next attempted to determine

whether there were differences between active ORFs and

mRNAs that contained small ORFs (sORFs; CDS shorter than

300 nt), such as differences in TE. We found that 243, 292, and

206 lncRNAs and 300, 286, and 259 mRNAs could be

translated into small peptides in MH63, SY63, and ZS97,

respectively (Supplemental Table 3). We then compared the

TE of sORFs from mRNAs and lncRNAs. The results showed

that active ORFs had higher TE than mRNAs (Figure 4E and

Supplemental Figure 7C). The sORFs in lncRNAs were shorter

in length and higher in TE in all tissues (Supplemental

Figure 8A), and we speculated that this higher TE could be
Plant Com
partly attributed to the shorter length of these sORFs (Zhao

et al., 2017). We also observed that the translation of these

sORFs in lncRNAs tended to use rare codons compared with

those in mRNAs (Supplemental Figure 8B).
Identification of genes with ASTE in hybrid rice

In addition to the above findings, our data can also be used to

determine the TE divergence between allelic genes in the hybrid

SY63 and identify cis-regulatory elements that are responsible for

such divergence. Because both allelic genes in a hybrid are influ-

enced by the same trans-acting factors (such as TFs and micro-

RNAs [miRNAs]), the observed TE divergence in alleles may be

caused by cis-regulatory elements in mRNAs, such as GC con-

tent, secondary structure, and miRNA binding sites (McManus

et al., 2014). To test this possibility, it is crucial to assign

sequenced reads to definite parental alleles. We designed a

pipeline to obtain such reads and identified genes with ASTE

(Figure 5A; methods). The phasing separation rate for RNA-seq

was 14.90% on average, whereas fewer reads from Ribo-seq

could be phased (1.49%); this can be explained intuitively by their

short length (�30 nt), which results in a small probability of con-

taining SNPs. However, the average phasing error rates for

RNA-seq and Ribo-seq were 1.13% and 2.10% (Supplemental

Table 4 and Supplemental Data 5), respectively, indicating a
munications 4, 100457, March 13 2023 ª 2022 The Authors. 7
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Figure 5. Characteristics of genes with ASTE.
(A) The left panel shows the pipeline used to identify genes with ASTE, including read mapping, phasing with PP2PG, and difference detection by

DESeq2. See methods for details. The right panel shows an example of a gene with ASTE. Gene OsMH_07G0033800 is shown with Ribo-seq and RNA-
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allelic TE.

(B) Relationships between TE and RNA abundance in genes with allelic expression bias in root tissue. The false discovery rate (FDR) for each gene

represented by each point in the left panel was adjusted according to its fold change: � log10ðFDRÞ if FCðZS97 =MH63Þ> 0; log10ðFDRÞ
if FCðZS97 =MH63Þ<0 at the mRNA or TE level. The right panel shows the numbers of different kinds of genes in the left panel.

(legend continued on next page)
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comparable accuracy for Ribo-seq reads without being

compromised by a low separation rate. The phased reads also

showed high correlations between replicates (on average

0.953 and 0.947 for Ribo-seq and RNA-seq, respectively;

Supplemental Figure 9). We then selected 14 659 genes

containing SNPs within their CDS region from all 1:1

orthologs between MH63 and ZS97 to identify genes with

significant ASTE. Under the cutoff false discovery rate FDR%

0:05 and jlog2ðFold changeÞ jR 1, we identified 420 genes

with ASTE, including 81, 36, and 358 in the leaf, panicle, and

root of SY63, respectively (Supplemental Data 7 and 8). Only a

few ASTE genes were shared by all three tissues (Supplemental

Figure 10A). The right panel of Figure 5A shows a

representative example. The ONAC096 (OsMH_07G0033800/

LOC_Os07g04510) gene, which belongs to the NAM, ATAF and

CUC (NAC) TF superfamily (Puranik et al., 2012), has been

reported to mediate abscisic acid-induced leaf senescence and

improve grain yield (Kang et al., 2019). Expression of this gene

at the RNA-seq level was high in the root but low in the panicle

in all three varieties (Supplemental Figure 10B), consistent with

the finding of Kang et al. (2019). However, further examination

at the translational level in the hybrid showed that the Ribo-seq

signal from the MH63 allele was much stronger than that from

ZS97, indicating strong allelic specificity of this gene at the trans-

lational level (Supplemental Figure 10C).

Previous studies have reported multiple patterns of allelic regu-

lation at the transcriptional and translational levels in yeast

(Artieri and Fraser, 2014) and mice (Hou et al., 2015). Thus,

we also explored this phenomenon in rice by taking the root

as an example because it had the largest number of ASTE

genes (358). Following the procedures in a previous study

(Hou et al., 2015), all genes with allelic bias were classified

into four categories (Supplemental Data 9). Among these

genes, 610 showed significant allelic specificity only in mRNA

abundance (hereafter referred to as mRNA-only genes).

By contrast, 301 genes had significant allelic specificity only

in TE (hereafter referred to as TE-only genes). Another 57 genes

had allelic specificity in mRNA abundance and TE. As shown in

Figure 5A and 5B, a positive coordinate value indicates that the

gene was biased to ZS97, and a negative coordinate value

suggests that the gene was biased to MH63. Among these 57

genes, 52 were in the second and fourth quadrants, exhibiting

a compensatory effect of transcription and translation, and

these were called compensatory genes. This regulatory

pattern may be used by hybrids to maintain equal protein

levels of the two alleles. Another five genes were in the first

and third quadrants, showing a reinforcing effect of the

transcription and translation processes, and were designated

reinforcing genes.
(C) Comparison of total mRNA expression levels among three kinds of genes

only and TE-only genes are displayed in (B). Other genes, equal in number to th

not in one of the four categories.

(D) The numbers of MH63-biased or ZS97-biased TE-only genes in three tiss

(E) Twomajor regulatory patterns exhibited in TE-only genes. In pattern A, diffe

pattern B, the TE level is biased toward one allele.

(F) Number of TE-only genes with different patterns in three tissues of SY63.

(G) RNA-seq and Ribo-seq signals for gene OsSPX-MFS3 (OsMH_06G002460

tracks); the gene shows higher TE of the MH63 allele in the hybrid (pattern B) an

in rice.
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We compared the transcription level between mRNA-only

and TE-only genes in all three tissues. The results showed

that TE-only genes had significantly higher total mRNA abun-

dance (Figure 5C and Supplemental Figure 10D and 10E),

suggesting that allele-specific translational regulation occurred

preferentially on mRNAs with higher abundance. TE-only genes

were involved in various processes, like ‘‘response to stimulus’’

(GO:0050896, P = 4.69e–05), whereas very few enriched

functions were found for mRNA-only genes (Supplemental

Figure 12A and Supplemental Data 10). Last, we categorized

the TE-only genes into MH63-biased or ZS97-biased types and

found that, in all three tissues of SY63, these two types of genes

were highly similar in number (Figure 5D).

To understand the potential role of translational regulation in het-

erosis, we analyzed the TE-biased patterns of all TE-only genes

among the parents and the hybrid variety (Figure 5A; methods).

The TE of the two alleles of a TE-only gene in the hybrid had

three possible patterns, MH63 biased, ZS97 biased, and no

bias (Figure 5E), and it was similar for a TE-only gene between

the two parents. In total, the TE bias of the hybrid and parents

had nine possible combinations, four of which accounted for a

large proportion of the TE-only genes (Supplemental Data

11) and were named pattern A and pattern B (Figure 5E). In

pattern A, the hybrid and parents had the same TE bias,

whereas in pattern B, the TE changed from no bias to biased

toward one allele. Pattern A comprised 43.3% of the total TE-

only genes on average (Figure 5F). Among these genes, 87.2%

could be functionally annotated, a higher percentage than that

of randomly selected genes (Fisher’s exact test, P = 0.009482).

Among genes with similar regulatory patterns, several genes

experimentally validated as associated with disease resistance

tended to show high TE in the MH63 allele, such as OsHIR1

(Zhou et al., 2010) and OsLOX3 (Marla and Singh, 2012;

Supplemental Figure 11A and 11B). MH63 has been reported to

be resistant to multiple rice diseases, such as blast disease (Xie

and Zhang, 2018). Therefore, this similar regulatory pattern is

very likely related to the disease resistance phenotype of hybrid

SY63 inherited from MH63. Another gene, OsMH_09G0296900,

was biased toward ZS97 at the TE level and identified as a

transporter of cytokinin in rice (Supplemental Figure 11C). The

protein encoded by this gene may promote the growth of rice

and may therefore play an important role in the faster growth of

ZS97 and SY63 compared with MH63 at the early seedling

stage (Xu et al., 2004). Pattern B included approximately 40.1%

of the total TE-only genes (Figure 5F). A large proportion of

these genes could be functionally annotated (Supplemental

Data 11). For example, the gene OsMH_06G0024600 (LOC_

Os06g03860) was switched to higher TE in the MH63 allele in

the root of SY63; it encodes a phosphate (Pi) transporter
in root tissue. Wilcoxon test P values are labeled. The numbers of mRNA-

e set of mRNA-only genes, were randomly selected from genes that were

ues of SY63.

rences in TE levels are the same in the parents and the hybrid, whereas in

0/LOC_Os06g03860) in the hybrid (first four tracks) and parents (next four

d has been reported to participate in maintaining phosphate homeostasis
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involved in maintaining cytosolic Phosphate concentration in rice

(Qi and Xiong, 2013; Figure 5G). Although the role of allele-

specific expression in heterosis has been studied mainly at the

transcriptional level, our finding that these two patterns only

change in TE may provide a new perspective for studying the

role of allele-specific expression in heterosis at the translational

level.
cis-regulatory elements related to divergence of allelic
TE

To study the role of cis-regulatory elements in determining the

divergence of TE-only genes, 361 genes were used for further an-

alyses. We first compared the sequence variations between TE-

only genes and those without allelic TE divergence (hereafter

referred to as control genes; Figure 6). The TE-only genes had

more SNPs than the control genes (Figure 6A). Also, a higher

SNP density was observed in the TE-only genes (3.15 versus

2.40 SNP/kb; Figure 6B; Wilcoxon test, P = 2.43e�05). In both

types of genes, SNPs were enriched in UTRs (Figure 6C).

Compared with the control genes, TE-only genes had slightly

more SNPs within their 50 UTRs but many more SNPs in the

CDS and 30 UTR regions. In the region near the start codon, we

also found more SNPs in TE-only genes (Supplemental

Figure 12B).

We next took several cis-regulatory elements into account to

study their contribution to the TE divergence of alleles. GC

content around the start codon, as a basic feature, did not

differ between TE-only genes and control genes (Figure 6D;

mean GC content, 0.604 versus 0.587; Wilcoxon test, P =

0.108). The Kozak sequence (Kozak, 1987) has been reported

to control the translational process in multiple ways (Hata et al.,

2021). We found that 18 TE-only genes (accounting for 5%)

showed variations in their Kozak sequence, as did 11 control

genes (accounting for 3.05%), and this difference was not

significant (Fisher’s exact test, P = 0.255; Supplemental

Table 5). In addition, no significant difference was observed in

the position around the start codon (Figure 6E). Another

important factor that may influence TE is the secondary

structure of mRNAs (Hall et al., 1982). We predicted the

minimum free energy (MFE) of each mRNA around the start

codon. The results showed that the TE-only genes had a signifi-

cantly lower MFE than the control genes (Figure 6F; Wilcoxon

test, P = 2.84e�05), suggesting that genes with allelic TE

divergence tend to possess a more stable secondary structure.

It has been reported that codon usage can regulate the speed

of ribosome movement on mRNAs and, thus, influence TE

(Wang and Roossinck, 2006). We found that TE-only genes

tended to use more optimal codons with high frequencies

compared with control genes (Supplemental Figure 12C;

Wilcoxon test, P = 2.98e�04). Moreover, 11.9% of TE-only

genes contained at least one uORF, a percentage that did not

differ significantly from that of control genes (7.11%; Fisher’s

exact test, P = 0.134). There were also no significant

differences in the number of uORFs in these two types of genes

(Figure 6G).

Finally, we checked the differences in miRNA binding sites

because many previous studies have highlighted the importance

of miRNAs in controlling translation in plants (Brodersen et al.,
10 Plant Communications 4, 100457, March 13 2023 ª 2022 The Au
2008; Iwakawa and Tomari, 2013; Song et al., 2019). We

detected no significant differences in the number of miRNA bind-

ing sites between TE-only and control genes (Figure 6H; Wilcoxon

test, P = 0.701). However, we still suspected that binding site

divergence within a pair of alleles could contribute to allelic TE

divergence. We therefore predicted the genome-wide miRNA

binding sites on MH63 and ZS97 genes. The results showed that

17.5% of TE-only genes showed differences between the two al-

leles (Supplemental Data 12). For example, OsMH_12G0321800/

OsZS_12G0351200, which showed tissue-specific expression in

roots (Supplemental Figure 12D), contained a binding site for

osa-miR6249 only in the CDS region of the MH63 allele

(Figure 6I). The Ribo-seq signal derived from the MH63 allele

was significantly lower than that from the ZS97 allele, whereas

almost equal RNA-seq signals were detected (Figure 6I),

indicating reduced TE on the MH63-derived allele.

Further examination revealed that one SNP (chromosome 12:

22745704–22745705 in the MH63RS3 genome) may be res-

ponsible for the difference in binding sites between the two

alleles (Figure 6I and 6J). The predicted mRNA secondary

structures around this SNP site for the two alleles were clearly

different (Supplemental Figure 12E). To validate this binding

difference, a luciferase reporter assay was performed for the

two homologous genes in protoplasts of hybrid SY63

(Supplemental Methods 4). Transfection of the miRNA osa-

miR6249 significantly reduced the luciferase activity of the target

gene only in the MH63 allele but not in the ZS97 allele (Figure 6K

and Supplemental Data 13). This decreased luciferase activity

could come from miRNA-mediated mRNA degradation, transla-

tional repression by prevention of ribosome elongation, or a com-

bination of both (Iwakawa and Tomari, 2013; Kaur et al., 2020),

thereby enabling the detection of altered TE. Therefore, we can

speculate that the binding difference of this miRNA may be

responsible for the observed TE divergence between these two

alleles.

DISCUSSION

Protein synthesis level has been shown to correlate poorly with

mRNA abundance in eukaryotic organisms (Ingolia et al., 2009;

Battle et al., 2015), a phenomenon that may be largely ascribed

to translational regulation (Urquidi Camacho et al., 2020). In this

study, by analysis of three tissues in two parental varieties and

their hybrid, we provide a comprehensive profile of translational

regulation and allelic TE divergence in rice. We found some

interesting regulatory patterns at the translational level. When

measuring the overall level of TE, the root showed the lowest

TE level (Figure 2C) compared with the panicle and leaf. This

may be attributed to some overall unique features of expressed

genes at the early stage of rice development, such as the

shorter poly(A) tail length that represses translation, as

observed in animals (Subtelny et al., 2014). A study using a

more accurate poly(A) enrichment-free and nanopore-based

method found that, in Arabidopsis, poly(A) tail length was much

shorter in the root (Jia et al., 2022). However, comparison of the

dispersion of expression across genes at the translational level

led to the finding that the panicle showed increased variance

(Figure 2B). This result may reflect the strong translational

impacts of some newly involved genes, such as those related

to reproduction, as the panicle represents the initial stage of
thors.
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Figure 6. Effect of cis-regulatory elements on TE-only genes.
TE-only genes and control genes (those without TE divergence between alleles) are compared.

(A) Total number of SNPs.

(B) SNP density (SNPs/kb).

(C) Enrichment of SNPs among three features. Only genes with completely annotated structures (50 UTR, CDS, and 30 UTR) were used (n = 251). The SNP

density enrichment (y axis) was calculated as the ratio of SNP density in each feature to the overall SNP density of each gene. Error bars display ±SEM.

(D) GC content around the start codon.

(E) Kozak sequence around the start codon.

(F) Minimum free energy (MFE), which reflects the secondary structure of mRNAs.

(G) uORF density. Only genes with uORFs were used for comparison (n = 25 and 15 for TE-only and control genes, respectively).

(H) Numbers of miRNA binding sites. Only genes with miRNA binding sites were used for comparison (n = 121 and 87 for TE-only and control genes,

respectively).

(A, D, F, and H) Wilcoxon test P values are labeled.

(I) Difference in miRNA binding sites could potentially contribute to TE divergence in OsMH_12G0321800. Ribo-seq and RNA-seq from phased reads of

hybrid and parents are shown in the first eight tracks, followed by SNPs, gene structure, and miRNA binding site tracks. The mature sequence of osa-

miR6249 and target sites of MH63 and ZS97 alleles are shown at the bottom. An asterisk marks the SNP position in the target site between the two alleles.

(J)Sanger sequencing validated the true heterozygous status of the SNP in (I) in hybrid plant SY63. Two peakswith equal height represent adenine (green)

and guanine (black).

(K) The relative luciferase activity for alleles OsMH_12G0321800 and OsZS_12G0351200 in protoplasts of hybrid SY63. Luciferase activity was signif-

icantly suppressed in theMH63 allele but not in the ZS97 allele, indicating that binding of miRNA osa-miR6249 only occurred in the former. Black and gray

bars represent the control (null vector) and miRNA vector. Error bars display ±SEM. n = 3; **P%0.01 (Student’s t-test).
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transition from vegetative to reproductive growth in rice, and

numerous key genes change their expression behavior at this

time (Ke et al., 2018). These differences in the translatome are

closely associated with the unique attributes of specific tissues.

Not all uORFs repress translation of mORFs, as reported

recently in the embryos of D. melanogaster (Patraquim et al.,

2020) and maize (Chotewutmontri and Barkan, 2021), indicating

a passive ‘‘bystander’’ role in which mORF translation is

independent of uORFs as a result of the relatively high TE of the

mORFs (Patraquim et al., 2020). In the present study, only a

very small proportion of lncRNAs were translated and

functionally annotated in rice, making it a greater challenge to

dissect the roles of most of the rest.

Allelic TE divergence in the hybrid variety SY63 was another major

focus of this study, and in general, TE-only genes showed

higher mRNA abundance across tissues (Figure 5B and

Supplemental Figure 10D and 10E). It is somewhat intuitive

that, for translational regulation to trigger large effects, there

must be a higher content of regulatory substrates, that is,

higher total mRNA abundance. Some studies, for example in

Saccharomyces cerevisiae (Li et al., 2017), have confirmed that

translational regulation is dependent on mRNA amount to some

extent. This phenomenonmay be specific to allelic-specific trans-

lational regulation. A higher total mRNA level of genes with allelic

TE divergence has also been observed in mice (Hou et al., 2015),

indicating that allele-specific translational regulation is

dependent on mRNA levels in animals and plants. Another

interesting bias of TE-only genes was the apparent difference in

the number of TE-only genes across tissues, with a markedly

higher number in the root compared with the leaf and panicle.

We speculated that this might reflect adaptation of the root to a

more complex local developmental environment. Exposure of

roots to the culture solution rather than the air, as for leaves and

panicles, may necessitate some degree of translational regulation

of specific genes. Apart from translation-related functions, some

unique enriched GO terms of TE-only genes in the root, such as

‘‘response to osmotic stress’’ (GO: 0006970; P = 2.87e�05), also

supported this hypothesis. Many investigated mRNA features

showed no significant difference between TE-only genes and

those without TE divergence (Supplemental Table 5). This might

be explained by the relatively small effect of individual features

on TE (Eichhorn et al., 2014) or by inaccurate prediction of cis-

regulatory elements such as miRNA binding sites, which

precluded comparisons from achieving statistical significance

(Hou et al., 2015).

We suggest that future researchmay be focused on several of the

following topics. First, about a decade ago, Brawand et al. (2011)

investigated the evolution of gene expression in mammals using

RNA-seq data and found that the evolutionary rate varied among

different lineages and tissues. Recently, using the samematerials

plus Ribo-seq data, they demonstrated a co-evolutionary pattern

of the transcriptome and translatome in mammals (Wang et al.,

2020). One important reason for the success of their study was

the innovation in algorithms for measuring the evolution of gene

expression at the transcriptional and translational levels. To

date, Ribo-seq and corresponding RNA-seq data have become

available for several important monocots and dicots, such asAra-

bidopsis (Juntawong et al., 2014; Hsu et al., 2016; Bazin et al.,

2017), maize (Lei et al., 2015), wheat (Guo et al., 2015),
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soybean (Shamimuzzaman and Vodkin, 2018), potato (Wu

et al., 2019), and rice (Xiong et al., 2020), providing valuable

resources for studying the evolution of genes at the

transcriptional and translational levels in plants (Voelckel et al.,

2017). However, in the long history after the divergence of

animals and plants, plants have acquired many distinct

genomic and morphological features totally different from those

of animals. Hence, more new and robust algorithms are

required to dissect the evolutionary history of plants at the

translational level. Second, when evaluating the effect of cis-

regulatory elements on allelic TE divergence, we mainly

considered mRNA sequence features such as uORFs within the

50 UTR and miRNA binding sites. However, we ignored another

important factor, epigenetic mRNA modifications such as N6-

methyladenosine (m6A) methylation, which are currently a

fascinating research hotspot in plant mRNA studies. Many

studies of mammals have revealed that m6A modification can

mediate multiple biological processes, such as mRNA degrada-

tion, stability, and, most importantly, translation (Visvanathan

and Somasundaram, 2018). However, such studies are still

relatively rare in plants, and most of the available studies are

focused mainly on the roles of m6A modification in plant

development (R�u�zi�cka et al., 2017) and stress response

(Scutenaire et al., 2018). Whether these mRNA modifications

also contribute to allelic TE divergence remains to be explored.

Last but not least, as one of the most complex issues in plant

biology research, heterosis has been attracting attention for

more than 100 years because of its great significance in crop

breeding (Schnable and Springer, 2013). With the availability of

methods for quantifying gene expression levels, such as gene

expression microarrays and RNA-seq, breeders can validate

many modes of gene action, such as additivity and under- or

over-dominance (Hochholdinger and Hoecker, 2007). However,

very little research has been conducted on allele-specific expres-

sion at the translational level (Zhu et al., 2021). Neglect of

heterosis at the translational level in previous studies is

probably due to the intrinsic complexity of heterosis, as the

observed heterosis cannot easily be explained by a single

mechanism. Despite such great difficulties, we still observed

two major regulatory patterns at the TE level, which accounted

for more than 80% of TE-only genes, by comparing the

variations at the transcriptional and translational levels between

the parents and hybrid (Figure 5F). These two patterns only

showed divergence at the TE level, highlighting the potentially

important role of translational regulation in heterosis, which

cannot easily be inferred using RNA-seq data only. Although

pattern A can be primarily attributed to the inheritance by hybrid

progeny of cis-regulatory variations from their parents, the mech-

anisms behind pattern B are somewhat more arcane. Differences

in trans-acting factors that influence translation, like miRNAs, be-

tween parents and hybrid (Chen, 2013) as well as variations in

some post-transcriptional epigenetic modifications at the

mRNA level, like m6A (Xu et al., 2021), may lead to biased

translation of one allele compared with its counterpart in the

hybrid. More innovative experimental methods may be

developed to help explore this phenomenon in more detail,

thereby enhancing our understanding of the mechanism of

heterosis and facilitating crop breeding for food safety.

By combining Ribo-seq and RNA-seq data from three tissues of

three rice varieties, we obtained a comprehensive translational
thors.
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profile that highlights the variations in translational regulation

among tissues. By taking advantage of the hybrid and its parents,

this study provides a first glimpse into allele-specific translational

regulation in plants, which may have great significance for ex-

panding our knowledge of crop breeding.
METHODS

Plant materials, library construction, and routine data
processing

The seeds of three rice varieties, MH63, ZS97, and SY63, were first germi-

nated by soaking in sterile water for 2 days and then transferred to a light

incubator for growth under normal conditions (28�C for 14 h in the light and

26�C for 10 h in the dark, 70%humidity) in culture solution (Yoshida, 1976).

Samples of young leaves and roots at the four-leaf stage and panicles

were collected for RNA-seq and Ribo-seq library construction. All fresh

samples were immediately frozen in �80�C liquid nitrogen until use.

RNA-seq library construction and sequencing were performed as

described in our earlier work (Zhou et al., 2021). The details of Ribo-seq

library construction are described in Supplemental Methods 1. Multiple

routine tools were used to process the RNA-seq and Ribo-seq data,

and the details can be found in Supplemental Methods 2.

Analysis of unique features of Ribo-seq data

General features, such as length and genome distribution of RPFs, were

calculated using custom R scripts. The P-site offset for each read length

was determined with the psite command in Plastid (v.0.4.8) (Dunn and

Weissman, 2016), and RPFs with a length of 25–31 nt were used for

subsequent analysis. The 15th base from the 50 end of reads was

considered to be a simulated P-site offset while using RNA-seq as the

control. Then riboWaltz (Lauria et al., 2018) was used to calculate the

distribution of the P-site signal among the 50 UTR, CDS, and 30 UTR

regions. For analysis of 3-nt periodicity, we first summed up the P site

across every position of all mRNAs and then normalized the data with

the average value of the upstream 20 bases from the start codon. The

relative codon usage in Supplemental Figures 1D, 8B, and 12C was

calculated in CodonW (v.1.4.2; http://codonw.sourceforge.net/) with the

respective genes.

Calculation of TE and expression distance

The TE for each gene with a TPM value equal to or greater than 0.1 at

both levels was defined as the ratio of TPMRibo-seq to TPMRNA-seq, and

the TE range across genes in each sample was calculated as the ratio

of the 97.5th to the 2.5th percentile of TEs to eliminate the effects of

outliers. The expression variances were calculated from the expression

matrix in R (Team, 2012), and the divergence in expression profile

(expression distance) between a pair of tissues was measured by the

Euclidean distance (Glazko and Mushegian, 2010): dðm; nÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1

½log10ðxi +1Þ � log10ðyi + 1Þ�2=N
s

. In the equation, m and n refer to

samples m and n; the variables x and y are the TPM values for gene i at

the transcriptional or translational level in samples m and n,

respectively; and the variable N represents the number of transcribed

genes (N = 23 957) in all three varieties. A larger d(m, n) indicates a

greater variation in expression profile.

Identification of uORFs

uORFs longer than 10 aa were identifiedwith an AUG start codon followed

by an in-frame stop codon within the annotated 50 UTR of primary protein-

coding mRNAs in MH63RS3. ORFs completely contained within another

were discarded. The sequenced reads mapped to uORFs were then

counted with featureCounts (v.2.0.0) (Liao et al., 2014). ORFs with RPFs

greater than three in any replicates were considered active uORFs in

each sample. We downloaded all rice datasets of TFs from PlantTFDB
Plant Com
(v.5.0) (Tian et al., 2020) to analyze the TF types of uORF-containing

genes.

Detection and de novo functional annotation of actively
translated ORFs in lncRNAs

The detection of actively translated ORFswas performed using RiboTaper

(v.1.3.1a) (Calviello et al., 2016) with pairing RPF length and P-site offset:

25, 26, 27, 28, 29, 30, and 31 and 9, 10, 11, 12, 13, 13, and 13. ORFs with

the same stop codon but different start codons were regarded as the

same ORF across samples. The lncRNAs in the MH63RS3 genome

were re-identified with the same pipeline described in our previous work

(Zhou et al., 2021). Three strategies were used for de novo functional

annotation of active ORFs. First, each putative active ORF was queried

against multiple databases through a local InterProScan 5 (v.5.48-83.0)

(Jones et al., 2014) with a hit e value threshold of 1e�5. Second, all

annotated protein sequences in MH63RS3 with lengths shorter than 100

aa were treated as the set of known small proteins. The active ORFs

were queried against this database using BLASTP (v.2.9.0+) (Camacho

et al., 2009) with an e value threshold of 1e�5. Third, TMHMM 2 (Krogh

et al., 2001) and SignalP-5.0 (Almagro Armenteros et al., 2019) were

used with default parameters to predict transmembrane proteins and

signal peptides. sORFs were first selected from protein-coding genes

with CDSs shorter than 300 nt, and only those with translational activity

predicted by RiboTaper were retained. The control sets were randomly

selected from actively translated genes with CDSs longer than 300 nt,

and the number was the same as that of the sORFs identified above.

Read phasing and identification of genes with ASTE

To identify genes with ASTE, it is necessary to distinguish reads derived

from different parents. Previous studies in yeast (Artieri and Fraser,

2014) and mice (Hou et al., 2015) adopted the perfect matching strategy

for read phasing. In this strategy, the reads should be perfectly matched

to the SNP position of either homologous gene, but the perfectly

matched reliable reads in one parent should have a mismatch in the

SNP position of the other parent. We used PP2PG (v.1.0) (Feng et al.,

2021), which implements such an algorithm, to phase the reads of

SY63. Before the reads were phased (Figure 5A), nucmer, delta-filter,

and show-snps in the MUMmer4 package (v.4.0.0beta2) (Marçais et al.,

2018) were used to call SNPs between the MH63RS3 and ZS97RS3 ge-

nomes, and a total of 1 757 026 SNPs were identified. To evaluate the

phasing quality, we also applied the same procedure to the Ribo-seq

and RNA-seq reads from MH63 and ZS97. The error rate, which bench-

marks the proportion of reads in MH63 datasets that were wrongly as-

signed to ZS97 or vice versa, was defined as ZS97-derived reads /

(MH63-derived reads + ZS97-derived reads) in MH63 datasets or

MH63-derived reads / (MH63-derived reads + ZS97-derived reads) in

ZS97 datasets. Another quality index, separation rate, was used to

describe how many reads in the total datasets could be phased and

was calculated as (MH63-derived reads + ZS97-derived reads) / (MH63-

derived reads + ZS97-derived reads + unknown reads). The phasing re-

sults are listed in Supplemental Table 4 and Supplemental Data 6.

After acquiring the phased reads, we used the intersect subcommand in

Bedtools (v.2.28.0) (Quinlan and Hall, 2010) to select 14 659 genes from

all 1:1 orthologs between the MH63 and ZS97 genomes that contained

SNPs within their CDS regions and could thus be used to determine the

allelic origin of reads that mapped to them. Next, featureCounts (v.2.0.0)

(Liao et al., 2014) was used to assign the phased reads to these genes,

and two read-count matrices could be constructed at the transcriptional

and translational levels. Finally, we modified the R scripts in deltaTE

(Chothani et al., 2019) and used DESeq2 (Love et al., 2014) to identify

genes with significant differences in transcription as well as TE levels

under a FDR % 0.05 and |log2(fold change)| R 1 cutoff. According to

the log2(fold change) values at the transcriptional and TE levels, genes

with allelic expression divergence were divided into four categories:

genes whose expression changed only at the mRNA level (mRNA-only
munications 4, 100457, March 13 2023 ª 2022 The Authors. 13
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genes) or only at the TE level (TE-only genes), compensatory genes, and

reinforcing genes. The two alleles of mRNA-only genes differ only at the

transcriptional level, but their TEs are not significantly different.

Similarly, the two alleles of TE-only genes differ only in TE, but there is

no significant difference at the transcriptional level. All of these analyses

were performed with a custom R script.

Identification of cis-regulatory elements

Several mRNA sequence features were identified in this study. First, the

SNPs called in the previous step were transferred from the genomic po-

sition to the mRNA position by the R package GenomicFeatures

(v.1.40.1) (Lawrence et al., 2013). To reveal the unique features of TE-

only genes, we randomly selected an equal number of homologous

genes without TE divergence in a pair of alleles as the control genes.

The SNP number, enriched density, distribution in different features,

and density before the start codon were calculated using a custom R

script. Second, the GC content of 30 bases around the start codon

(–15, +14 bases) and the Kozak sequence (defined as the sequence

from –6 to +5 bases relative to the start codon) for each involved

gene was calculated or extracted using Bedtools. Third, RNAfold

(v.2.4.16) (Lorenz et al., 2011) was used to calculate the

MFE around the start codon (–15, +14 bases) with default parameters

at a temperature of 28�C. The secondary structure in Supplemental

Figure 12E was predicted using MXfold2 (Sato et al., 2021) with

the default setting. Finally, to obtain highly reliable miRNA binding

sites, we downloaded all mature rice miRNA sequences from

miRBase (release 22) (Kozomara et al., 2019), and only the binding

sites predicted by TargetFinder (https://github.com/carringtonlab/Target

Finder) and psRNAtarget (2017) (Dai et al., 2018) were retained for

comparison analysis. The TE-only and control genes from the MH63

parent were used for the comparison in Figure 6D–6H.

GO enrichment analysis

We improved the functional annotation of genes in the MH63RS3 genome

(Supplemental Methods 3), and the script run_GOseq.pl in the Trinity

package (v.2.8.5) (Haas et al., 2013) was used for GO enrichment analysis.

Statistical methods

Fisher’s exact test, Wilcoxon test, Kolmogorov–Smirnov test, and

Pearson correlation coefficient calculation were performed using fish-

er.test, wilcox.test, ks.test, and cor.test in R, respectively. Additional

data processing and plotting methods are described in Supplemental

Methods 5.
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