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Mitochondria and aging
Mitochondria have been closely examined in aging because of 
their roles in cellular energy production, calcium homeostasis, 
apoptosis, and cell signaling (1). For example, mitochondrial dys-
function is linked to metabolic and oxidative damage pathology 
in Alzheimer’s disease and Parkinson’s disease (2–5). This is not 
entirely surprising because the brain is one of the most mitochon-
dria-rich tissues and is particularly sensitive to changes in mito-
chondrial function. Similarly, mitochondrial dysfunction is also 
linked to diabetes and obesity. Recent research suggests that this 
dysfunction may even be causative (6–8). Likewise, mitochondrial 
dysfunction and mitochondrial DNA instability are highly associ-
ated with cancer (9–11). In many cancers, a phenomenon called the 
Warburg effect, in which these cancerous cells switch to glycolysis 
over oxidative respiration, has been observed (12).

Several aspects of mitochondrial dysfunction — such as mito-
chondrial DNA (mtDNA) mutations, nuclear DNA mutations that 
encode mitochondrial proteins, mitochondrial copy number, and 
morphological dynamics (i.e., fusion and fission) — have been 
studied in aging. First, mitochondria do not possess compara-
ble DNA repair mechanisms to those found in the nucleus. Their 
inefficient repair mechanism combined with the proximity of the 
mtDNA to the electron transport chain — which generates a large 
amount of reactive oxygen species — promotes a high number of 
mtDNA mutations over a lifetime. Excessive mtDNA mutations 
cause an aging phenotype, as demonstrated in POLG mutator 
mice, which have early sarcopenia, hair graying and loss, abnor-
mal body composition, reduced fertility, and reduced lifespan 
(13–15). Additional studies in worms, flies, and mice suggested 
that manipulating mitochondria and mitochondrial genes could 
increase lifespan across species (16–19). For example, increased 
lifespan by anywhere from 15% to 30% depending on the genetic 

background is observed following reduction of the gene encoding 
the mitochondrial enzyme CLK-1, which is required for proper 
mitochondrial function (clk-1 in worms, or Mclk1 in mice) (17, 20, 
21). Yet exactly how this increase in lifespan is dependent on mito-
chondrial mechanisms remains unclear (22, 23).

Furthermore, mitochondrial copy number, the relative ratio 
of mtDNA compared with nuclear DNA, has been connected to 
aging. In humans, low mitochondrial copy number in peripheral 
blood cells is associated with poorer cognitive functioning and 
higher all-cause mortality (24). However, these results should 
be interpreted with caution. It is unclear whether changes in 
mitochondrial copy number in, for example, brain regions and 
brain cell types absolutely affect cognition. To robustly estimate 
the effects of mitochondrial copy number on cognitive function 
requires great statistical power in the form of sufficient sample size,  
cell dissociation, and deep phenotypic characterization. Howev-
er, a recent report did implement whole-genome sequencing on  
1361 human brain samples and highlighted that Alzheimer’s dis-
ease patients showed low mitochondrial copy number (25). Deter-
mining whether neuronal or glial mitochondrial copy number is 
driving these effects, and improving mtDNA-specific next-gener-
ation sequence analysis, are excellent objectives worth addressing 
in future research. The latest research has suggested the useful-
ness of machine learning–based approaches to improve quanti-
fication of mtDNA copy number and low-frequency variants to  
estimate heteroplasmy (26).

Moreover, the roles of mitochondrial morphological dynam-
ics in aging continue to be explored, but many questions remain 
unanswered. Still, inhibition of fission in Saccharomyces cerevi-
siae resulted in accelerated death, an effect that was also seen in 
Caenorhabditis elegans and Drosophila melanogaster (27–29). Addi-
tionally, mice under calorie restriction not only lived longer but 
also showed increased mitochondrial length in muscle fibers (30). 
Likewise, in human postmortem brain samples with Alzheimer’s 
disease, the mitochondrial fusion proteins OPA1, MFN1, and 
MFN2 were significantly reduced, and levels of the mitochondrial 
fission protein FIS1 were significantly elevated (31).

Taken together, these findings suggest that mitochondria are 
central to many age-related diseases and perhaps to the funda-
mental aging process.

The mechanisms that explain mitochondrial dysfunction in aging and healthspan continue to be studied, but one element has 
been unexplored: microproteins. Small open reading frames in circular mitochondria DNA can encode multiple microproteins, 
called mitochondria-derived peptides (MDPs). Currently, eight MDPs have been published: humanin, MOTS-c, and SHLPs 1–6. 
This Review describes recent advances in microprotein discovery with a focus on MDPs. It discusses what is currently known 
about MDPs in aging and how this new understanding could add to the way we understand age-related diseases including 
type 2 diabetes, cancer, and neurodegenerative diseases at the genomic, proteomic, and drug-development levels.
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colorectal cancer proliferation, while the microprotein CIP2A-
BP, encoded by LINC00665, inhibits triple-negative breast cell 
invasion (49, 50). Additionally, in a comparative genomics study 
on almost 2000 metagenomes, approximately 4500 candidate 
microproteins were categorized into cell-cell communication, 
antimicrobial, antiphage, and adaptation activities (51). Since the 
gut microbiome has been connected to age-related disease pro-
gression — including Alzheimer’s disease and metabolic dysfunc-
tion (52) — the repercussions of both eukaryotic and prokaryotic 
microproteins are relevant to human biology.

Mitochondrial microproteins (mitochondria-
derived peptides)
Human mtDNA contains hundreds of sORFs that encode puta-
tive microproteins called mitochondria-derived peptides (MDPs). 
Some of these act intracellularly, while others are found in the sys-
temic circulation and target various tissues (ref. 53 and Figure 1). 
The first MDP to be discovered was humanin. Humanin is a 24–ami-
no acid peptide encoded from the 16S rRNA region of mtDNA (54). 
Hashimoto et al. initially cloned humanin from the resilient occip-
ital lobe of an Alzheimer’s disease patient’s brain and found that 
the peptide protected against amyloid-β toxicity in neuronal cells 
(55). Around the same time, two additional laboratories discovered 
humanin as a cytoprotective peptide that binds the proapoptotic 
molecules IGFBP3 and BAX (56, 57). Since then, humanin has been 
described as a cytoprotective factor in cardiovascular, metabolic, 
and neurological contexts (Table 1). These effects have been in part 
mediated by the interaction of humanin with the tripartite receptor 
complex comprising gp130, WSX1, and CNTF receptor as well as 
with a second interacting receptor, formyl peptide receptor 2 (58). 
Downstream effects of this humanin cascade include activation of 
the AKT/ERK1/2 and STAT3 pathways (59).

After the discovery of humanin, seven additional mitochondri-
al microproteins were identified. Six of these, named small hum-
anin-like peptides 1 to 6 (SHLPs 1–6), are encoded from the 16S 
rRNA region and share some biological features with humanin (60). 
For example, SHLP2 protects cells from amyloid β–induced toxicity 
and age-related macular degeneration (61). SHLP2 also has been 
characterized as a chaperone, because it bound IAPP species and 
blocked amyloid seeding (62). This chaperone-like activity might 
link its cytoprotective roles, suggesting that SHLP2 has potential as 
a metabolic therapeutic. Moreover, administration of SHLP2 and 
SHLP3 promotes mitochondrial biogenesis, reduces reactive oxy-
gen species, and decreases mtDNA oxidation (60). Unlike these 
cytoprotective SHLPs, SHLP6 was shown to induce apoptosis in 
multiple cell lines (60). Much remains to be learned about the 
mechanisms of these SHLPs through future experimentation.

Another MDP that has been studied deeply over the past 
several years is MOTS-c, a 16–amino acid peptide encoded by 
a mitochondrial sORF within the 12S rRNA (63). MOTS-c was 
first described as an exercise mimetic peptide because it pre-
vented weight gain in mice with high-fat diet–induced obesity, 
improved insulin sensitivity, and increased exercise capacity in 
both obese and old mice (64, 65). In addition, MOTS-c acts as a 
retrograde signaling molecule by translocating from mitochon-
dria to the nucleus and binding to metabolism-regulating tran-
scription factors (e.g., NRF1) (66). Separate reports showed that 

Microproteins
Nearly 20 years ago, the Human Genome Project estimated that 
20,000 to 25,000 genes encode functional proteins (32). Today, 
over 18,000 of these proteins have been validated by the Human 
Proteome Project (33). However, one element has been missed: 
microproteins. The term “microprotein” refers to biologically 
active peptides shorter than 100 amino acids (34). Bioinformatics 
analysis of all possible open reading frames in the human genome 
suggests that there may be millions of theoretical microproteins, 
and tens of thousands of potential microprotein mRNAs have 
been proposed based on ribosome profiling experiments, although 
most have not been detected by mass spectrometry because they 
are small, low-abundance, or hydrophobic (35). Indeed, thou-
sands of microproteins have been inferred by ribosome profiling. 
In some ribosome profiling experiments, approximately 10,000 
microproteins were identified (35). In other ribosome profiling 
setups with relaxed parameters, nearly half a million small open 
reading frames (sORFs) were identified (36). Data from several 
of these experiments have been added to genome-wide informa-
tion on protein synthesis visualization (GWIPS-viz; https://gwips.
ucc.ie/) (37), allowing researchers to explore ribosome profiling 
data across species, models, and experimental conditions. Nev-
ertheless, ribosome profiling has several limitations. It is compu-
tationally challenging to detect the exact sORF undergoing trans-
lation, because codon periodicity often overlaps several sORFs. 
As a result, calling algorithms make two choices: throw away the 
reads as low-confidence, leading to false negatives; or infer active 
sORF translation, leading to false positives (38). Because of these 
limitations, hundreds of thousands of exclusive sORFs might be 
called across experiments, leading to reproducibility problems. To 
overcome these limitations, antibodies have been made against 
select microproteins such as the mitochondria-modifying pep-
tides BRAWNIN, humanin, and MOTS-c (39, 40).

Detectable microproteins challenge traditional gene anno-
tation. Most human genes have been described as monocistron-
ic, but nearly three-quarters of microprotein sORFs detected by 
ribosome profiling are encoded within 5′-untranslated regions (5′-
UTRs) (35, 41). As a result, many transcriptomes might not actu-
ally be monocistronic and might in fact encode multiple unique 
proteins ranging from dozens of amino acids (sORF) to hundreds 
of amino acids (large downstream coding region). One example 
of this phenomenon is a microprotein encoded by a sORF in the 
5′-UTR of the gene encoding mitochondrial elongation factor 1 
(MIEF1) (42). The MIEF1 microprotein (MIEF-1MP) and the MIEF 
annotated large protein act together. MIEF1-MP localizes to mito-
chondria — as does the larger MIEF protein — and modifies mito-
chondrial translation rates. Other examples include the micropro-
teins ASDURF, BiP ORF, HJV uORF (upstream ORF), MP31, PRL-1 
and PRL-2 uORF, and SEHBP, all of which have diverse functional-
ity related to protein chaperones, ion homeostasis, and metabolic 
regulation (43–48). Without advances in proteomic and genomic 
technologies, the transcripts on which these sORFs reside would 
still be considered monocistronic.

Many other transcript types in both prokaryotic and eukary-
otic genomes contain sORFs. Ironically, several “long noncod-
ing RNAs” encode biologically active microproteins. The micro-
protein ASAP, encoded by LINC00467, induces age-associated 
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Hardy-Weinberg equilibrium. As a result, bioinformatics pipelines 
and genetic editing techniques for mtDNA are limited. For instance, 
during genome-wide association studies (GWAS), mtDNA variants 
are usually filtered from analytic plans. Just a few years ago, a com-
monly used GWAS tool called PLINK was updated to accurately 
estimate the effect of mtDNA variants during mtDNA-exclusive 
analysis (72). Yet unlike traditional GWAS, there is no gold standard 
method for mitochondrial GWAS (MiWAS). In GWAS, genetic pop-
ulation structures (genetic ancestry) are controlled by data reduc-
tion techniques such as principal component analysis. Perhaps the 
best illustration of this is the 2008 report by Novembre et al. in 
which principal component analysis on half a million DNA variants 
in Europeans mirrored the geography of Europe (73). In previous 
MiWAS reports, though, many analytic methods did not consider 
controls for mtDNA-specific genetic ancestry. Some of these analyt-
ic methods instead considered mitochondrial haplogroups based on 
mitochondrial SNPs (mtSNPs), but these haplogroup assignments 
are largely based on genome arrays that might lack depth (74–76). 
Further complicating MiWAS is that population cohorts often have 
extremely variable mtSNP frequencies.

Nevertheless, recent reports highlighted significant effects 
of frequent mtSNPs on human phenotypes in large population 
cohorts. For example, a report by Yonova-Doing et al. included a 
phenome-wide mtDNA-phenotype association analysis on 260 
candidates in over 300,000 individuals (77). They found signif-
icant associations between mtDNA variants and type 2 diabetes 
(T2D), multiple sclerosis, height, and liver and renal function. Like-
wise, Kraja et al. found several mtDNA variants that associated with 
multiple metabolic traits in 45 combined cohorts (78). Independent 
reports on smaller cohorts noted associations between mtDNA 
variation and neurodegeneration including Parkinson’s disease, 
Alzheimer’s disease, and eye disease (79–81). While MiWAS can 
reveal meaningful mitochondrial genomic regions, its statistical 
limitations necessitate experimental validation.

Validating MiWAS associations experimentally is incredibly 
challenging because of the fundamental problem that mtDNA 
editing lacks fidelity. Whereas laboratories can edit single nuclear 
nucleotides with CRISPR, mtDNA cannot be edited with similar 
precision (82). Thus, MiWAS is rarely followed up with compre-
hensive functional experimentation, although in vitro models 
called cybrids, whereby mtDNA is depleted from a cell line and 
then replaced by donor mtDNA, have been used (83, 84). Cybrid 
approaches have revealed functional effects of certain mtDNA 
variants, but they are limited by the fact that other mtDNA vari-
ants are transferred to the parent cell line. To bypass problems with 
cybrids and mtDNA gene editing, overexpression or recombinant 
administration of mitochondrially encoded proteins has been con-
sidered. In cells that harbored mtATP6 mutations, overexpression 
of mtATP6 restored homeostasis (85). Similarly, a SNP in MOTS-c 
leading to a MOTS-c variant called K14Q raises the risk of T2D 
in Japanese men, and unlike WT MOTS-c, K14Q failed to protect 
from metabolic dysfunction in vivo, proving it to be a bioinactive 
form of the hormone (86). Moreover, a separate mtSNP within the 
humanin sORF associated with lower circulating humanin peptide 
and with more severe cognitive decline, suggesting that the vari-
ant affects translation of the humanin transcript (87), leading to 
decreased neuroprotection. In the coming years, precise mtDNA 

MOTS-c increased glucose uptake and stimulated glycolysis (67). 
These glycolysis-stimulated effects of MOTS-c were notably mut-
ed when AMPK and SIRT1 were knocked down, suggesting that 
AMPK and SIRT1 might be part of the action of MOTS-c (63) and 
might be involved in longevity.

Currently, mtDNA is annotated with 13 large mRNAs, 22 
tRNAs, and 2 rRNAs. Yet since the emergence of MDPs, long non-
coding RNAs, and small RNAs, mitochondrial genomic regulation 
appears much more complex. In their landmark paper, Mercer et 
al. found dozens of previously uncharacterized cleavage sites and 
small RNAs derived from tRNAs with unknown function (68). 
In another report, nearly 400 putative MDPs between 9 and 40 
amino acids in silico were annotated and considered putative (69). 
To characterize these putative orphan MDPs, existing technolo-
gy needs to be enhanced, especially ribosome profiling technol-
ogy. Specifically, a mitochondrial ribosome inhibitor that stalls  
ribosomes at the start codon could yield additional MDPs. Over-
all, technical advancement in mitochondrial ribosome profiling 
and small peptide enrichment mass spectrometry has potential 
for discovery of new MDPs.

Human mitochondrial genomics
Given that there are approximately 100 to 1000 copies of mtD-
NA per cell and 37 trillion cells in the human body, one human 
might contain nearly 2 × 1015 copies of mtDNA (70, 71). Howev-
er, existing genomic tools are primarily designed to study nucle-
ar DNA, as mtDNA does not undergo recombination or follow  

Figure 1. Overview of mitochondria-derived peptides. Mitochondria con-
tain DNA with small open reading frames (sORFs) that encode functional 
microproteins, called mitochondria-derived peptides (MDPs). These MDPs 
can stay inside mitochondria, enter the cytosol, translocate to the nucleus, 
or be secreted extracellularly to target tissues.
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fast-twitched fibers (92); and circulating MOTS-c levels predicted 
myostatin levels in men (93). These human associations were cor-
roborated in vivo when skeletal muscle atrophy was attenuated by 
MOTS-c during aging in mice fed a high-fat diet (65, 93).

Several studies suggest that MOTS-c and humanin are possible 
biomarkers for cardiovascular disease. People with endothelial dys-
function, a strong risk factor for cardiovascular events (94), displayed 
low MOTS-c and humanin levels. Likewise, circulating MOTS-c and 
humanin levels positively correlated with coronary endothelial func-
tion (95, 96). A follow-up study by Ikonomidis et al. demonstrated 
that T2D patients with low circulating MOTS-c levels (<167 ng/mL) 
exhibited a more than 3-fold higher risk of cardiac events than those 
with high MOTS-c levels (97). Similarly, Cai et al. demonstrated that 
circulating humanin levels at baseline were an independent risk fac-
tor for major adverse cardiac events in patients with angina (98). In 
vivo and in vitro experiments support these observations. Wei et al. 
reported that MOTS-c prevented vascular calcification by activating 
the AMPK signaling pathway and suppressing angiotensin II type 
I receptor (AT1) and endothelin B expression in rats treated with  

editing, whole-genome sequencing of large population cohorts, 
and functional mitochondrial gene annotation can all help vali-
date MiWAS associations.

MDPs in age-related diseases
MDPs have been extensively studied in the context of aging. 
Age-related diseases such as T2D, coronary endothelial dysfunc-
tion, and Alzheimer’s disease have been associated with lower 
MOTS-c or humanin levels in plasma (refs. 63, 88, 89, and Figure 2). 
In humans, circulating MOTS-c and humanin were downregulated 
in patients with T2D (90), and circulating MOTS-c levels were neg-
atively correlated with BMI, fasting insulin levels, and homeostatic 
model assessment of insulin resistance (91). T2D was also associat-
ed with the MOTS-c variant K14Q (mentioned above), a naturally 
occurring m.1382A>C polymorphism (rs111033358) that chang-
es the 14th amino acid of MOTS-c from lysine to glutamine (i.e., 
K14Q). In human skeletal muscle, MOTS-c expression correlated 
with slow-twitch muscle fiber gene expression (89); the C allele car-
riers of the m.1382A>C polymorphism were associated with more 

Table 1. Physiologically relevant roles of MDPs

MDP Length (aa) Physiological significance Refs.
Humanin 24 •	 Signals through trimeric gp130, WSX1, and CNTF receptor 

•	 Activates formyl peptide receptor 2 
•	 Binds amyloid-β, IGFBP3, and BAX 
•	 Induces autophagy 
•	 Reduces amyloid-β toxicity 
•	 Attenuates Alzheimer’s disease pathology in vivo 
•	 Preserves endothelial function 
•	 Contains mtDNA variation that associates with cognition and circulating humanin levels 
•	 High levels predict better cognition in humans and increase lifespan in model organisms
•	 Protects against myocardial ischemia/reperfusion–induced injury

56, 57, 87, 96, 100, 104, 113, 120–129

SHLP1 24 •	 Highly expressed in heart, kidney, and spleen 60

SHLP2 26 •	 Prevents IAPP seeding 
•	 Low levels associate with age in mice and prostate cancer in humans 
•	 Positively associated with android liver fat 
•	 Enhances mitochondrial oxygen consumption rate 
•	 Activates ERK and STAT3 
•	 Sensitizes insulin activity 
•	 Protects against amyloid-β toxicity 
•	 Protects cells from age-related macular degeneration 

61, 62, 105, 130, 131

SHLP3 38 •	 Enhances mitochondrial oxygen consumption rate 
•	 Activates ERK and STAT3

60

SHLP4 26 •	 Promotes proliferation in NIT-1 cells 60

SHLP5 24 •	 Promotes survival in β cells 60

SHLP6 20 •	 Increases apoptosis in NIT-1 and 22Rv1 cells 60

MOTS-c 16 •	 Acts as exercise mimetic 
•	 Reduces muscle atrophy and regulates skeletal muscle fiber type 
•	 Translocates to nucleus under nutrient deprivation 
•	 Prevents ovariectomy-induced obesity and osteoporosis 
•	 Improves survival in mice infected with methicillin-resistant Staphylococcus aureus 
•	 Contains mtDNA variation that associates with type 2 diabetes 
•	 Promotes homeostasis in aged human placenta–derived mesenchymal stem cells 
•	 Protects against H

2O2-induced inflammation and oxidative stress in H9c2 cells by inhibiting NF-κB and 
activating the NRF2/ARE pathway 

•	 Low levels in skeletal muscle and circulation associated with advanced chronic kidney disease 
•	 Positively associated with android liver fat 
•	 Regulates thermogenesis

63–66, 92, 93, 95, 130, 132–139
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of negligible senescence and healthy aging (104). Human offspring 
of centenarians, who have a greater chance of living to be 100 years 
old, even displayed elevated levels of circulating humanin compared 
with age-matched controls without family history of exceptional 
longevity (104). These associations have been studied intensively 
using two separate experimental paradigms. The first was to utilize 
the power of C. elegans to generate transgenic worms overexpress-
ing humanin. Humanin is the best-conserved MDP and is found in 
as diverse species as humans, naked mole rats, and nematodes (65, 
110). Overexpression of humanin sufficiently increased lifespan, and 
this was dependent on FOXO (104). These data supported our previ-
ous work that found that humanin is regulated by and also regulates 
the insulin/IGF pathway, the upstream signaling pathway of FOXO 
(111). Additionally, humanin has increased autophagy in cells, and 
this increase in autophagy was also required for the lifespan exten-
sion in the transgenic worms (112–114). The second approach was 
to initiate a longevity experiment in mice in which we injected mid-
dle-aged (18-month-old) female mice with humanin twice a week 
(104, 115). Although lifespan was not increased — likely because of 
humanin’s short half-life of approximately 20 minutes — healthspan 
measures such as memory and metabolic parameters improved 
(87, 104, 115). Thus, humanin is sufficient to increase lifespan and 
healthspan in model organisms, and an optimized dosing of hum-
anin may lead to increases in lifespan in more complex organisms.

Exercise has been shown to have many benefits preventing and 
attenuating age-related diseases such as sarcopenia and cognitive 
decline. MOTS-c — previously described as an exercise mimetic — 
may also show similar benefits (116). In humans, circulating MOTS-c 
levels decrease with age, as does humanin. But unlike humanin, 
MOTS-c has been shown to increase its levels in skeletal muscle 
(89). Moreover, MOTS-c was found to have effects on lifespan itself. 
Reynolds et al. found that intraperitoneal administration of 15 mg/kg 
MOTS-c three times a week starting at 23.5 months of age caused a 
trend toward increased lifespan that did not quite reach significance 
(65). As with the lifespan study in humanin-treated mice, this lack of 
significant increase may have been due to a suboptimal dosing for a 
lifespan study and relatively short half-life of circulating MOTS-c. On 
the other hand, these mice did have significant improvement in grip 

vitamin D3 and nicotine (99). Moreover, humanin has increased 
expression of KLF2, an essential transcriptional regulator of endo-
thelial function, and regulated endothelial nitric oxide synthase and 
endothelin-1 in vitro. Comparably, humanin has suppressed endothe-
lial dysfunction and atherosclerosis progression in vivo (100). These 
findings suggest that MOTS-c and humanin are associated with car-
diovascular disorders via endothelin and vasoactive regulation.

Since humanin was originally detected in the occipital lobe 
of a patient with Alzheimer’s disease, it has been tested as a thera-
peutic agent in several models of neurodegeneration. For example, 
humanin has prevented synaptic loss in hippocampal neurons and 
reduced astrocytic inflammation (101). In double- and triple-trans-
genic mouse models of Alzheimer’s disease, an analog of humanin 
called S14G-humanin (or S14G-HNG) improved cognition (102, 
103). In humans, patients with Alzheimer’s disease had lower hum-
anin levels in cerebrospinal fluid than controls (104), and humanin 
genetic variation was linked to cognition, as the naturally occurring 
m.2706A>G polymorphism (rs2854128) within the humanin sORF 
associated with accelerated cognitive aging in African Americans 
(87). Altogether, these observations suggest that humanin could be a 
potential biomarker and therapeutic target for cognitive decline and 
neurological disorders such as Alzheimer’s disease.

Studies have demonstrated associations between MDPs and 
cancer. Xiao et al. showed that prostate cancer (PCa) patients had 
low circulating SHLP2 levels (105). They suggested that circulating 
SHLP2 levels may be useful for predicting the risk of PCa in patients 
undergoing biopsy (105). Separately, several studies suggest that 
humanin ameliorates negative side effects of chemotherapy (106–
108). In addition, Lue et al. demonstrated that S14G-HNG treatment 
in mouse models not only decreased negative side effects of chemo-
therapy but also decreased metastasis of cancer cells (109).

MDPs in longevity
In addition to their ability to attenuate age-related diseases, MDPs 
have promoted lifespan and healthspan. In fact, circulating hum-
anin levels decreased with age in both mice and human plasma (88). 
Intriguingly, further studies found that this decrease also occurred in 
monkeys but not in the long-lived naked mole rat, which is a model 

Figure 2. Mitochondria-derived peptides in age-related disease. Three MDPs have been studied in the context of age-related diseases: humanin, MOTS-c, 
and SHLP2. Humanin has been shown to mitigate Alzheimer’s disease pathology in rodents, and its levels and genetic variation associate with age and 
cognition. MOTS-c has been described as an exercise mimetic and prevents muscle atrophy in mice, and its levels and genetic variation associate with age 
and type 2 diabetes (T2D). SHLP2 functions as a mitochondrial modulator and protein chaperone, and its levels associate with age and prostate cancer.
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strength, gait, and physical performance, demonstrating an increase 
in healthspan in MOTS-c–treated animals.

Although other MDPs have been discovered, they have not been 
examined in the context of general aging, except for SHLP2. Circu-
lating SHLP2 levels did decrease with age in both female and male 
mice, but no lifespan experiments have been conducted (60). Given 
SHLP2’s ability to protect against models of macular degeneration, 
its correlation with PCa risk, and its effect on senescent cells, it is easy 
to imagine that SHLP2 could also affect lifespan and healthspan sim-
ilarly to other MDPs (61, 105, 117). A complete list of the physiological 
significance of SHLP and other MDPs is shown in Table 1.

The future of MDP science
As technology improves, more MDPs and nuclear-encoded micro-
proteins will be discovered and functionalized. Technologies such 
as ribosome profiling and small peptide–enriched peptidomics rep-
resent enormous opportunities for microprotein discovery pipelines. 
Currently, there are no chemicals that stall mitochondrial ribosomes 
at their start codons, in contrast to harringtonine and lactimidomycin, 
which stall cytoplasmic ribosomes at their start codons (35). Despite 
the need to identify these mitochondria-specific start codon inhibi-
tors, there has still been high interest in mitochondrial ribosome pro-
filing and specific protocols described that might guide further devel-
opment (118). The capacity to stall mitochondrial ribosomes at their 
start codons would reveal MDPs that are preferentially translated by 
mitochondrial ribosomes. Moreover, enhancing the purity of existing 
ribosome profiling methods might also reveal mitochondrial tran-
scripts that undergo translation by cytoplasmic ribosomes.

Ribosome-centric technologies are nevertheless snapshots 
of translation. Peptide evidence of translation and stability in the 
form of mass spectrometry is crucial. While invaluable innovations 
in small peptide mass spectrometry have pushed the microprotein 
field forward over the last decade, there is still room for optimiza-
tion. Many microproteins possess intrinsically disordered regions 
or hydrophobicity that make their detection difficult for existing 
mass spectrometry methods. New methods to capture these diffi-
cult-to-detect MDPs and nuclear-encoded microproteins would 
greatly inform the field.

Moreover, innovative discovery methods might differentiate 
humanin-like sequences encoded by nuclear mtDNA segments 
(NUMTs). For instance, Eltermaa et al. reported that NUMT genetic 

variation within proximity of MTRNR2L2 (a humanin NUMT) and 
MTRNR2L13 (a separate humanin NUMT) nominally associated 
with coronary function, albeit these associations did not survive sta-
tistical correction (44). Whether these NUMTs functionally encode 
humanin-like sequences remains unknown, but if indeed they do, 
then their levels have implications for measuring humanin levels con-
sidering their sequence identity to mtDNA-encoded humanin.

The ability to sensitively detect microproteins will have enor-
mous clinical implications. Microproteins might serve as novel bio-
markers and diagnostics for diseases that lack such predictive mea-
sures. Targeted assays using immunological techniques (e.g., ELISA) 
are logical, but they lack the high throughput capacity for the omics 
boom. Measuring MDPs across biological tissues in large-scale tissue 
banks would also address the degree to which disease, mitochondri-
al copy number, and mitochondrial morphological dynamics affect 
MDP levels. Moreover, microprotein detection at the large-scale 
omics levels would promote interdisciplinary collaboration and data 
sharing, possibly leading to rapid clinical translation. Some micro-
proteins might even serve as therapeutic targets. In fact, the MOTS-c 
analog CB4211 has been posed as a therapeutic target in clinical trials 
for nonalcoholic steatohepatitis and obesity (NCT03998514; Clin-
icalTrials.gov). Information about this MOTS-c analog is publicly 
available. Its intellectual property was licensed by CohBar Inc. and 
used to develop potent analogs of MOTS-c, for which the US Patent 
and Trademark Office has granted a patent (US 11,111,271). As the 
field discovered the function of many miRNAs, it was suggested that 
a new therapeutic era was unfolding (119). Indeed, miRNAs have 
informed the field about biological processes that could very well lead 
to viable interventions. In the same vein, both nuclear-encoded and 
mitochondrially encoded microproteins might represent a new era of 
therapeutics, genomics, and proteomics.
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