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Abstract
Senescent cells develop a pro-inflammatory response termed the senescence-associated

secretory phenotype (SASP). As many SASP components affect surrounding cells and

alter their microenvironment, SASP may be a key phenomenon in linking cellular sene-

sence with individual aging and age-related diseases. We herein demonstrated that the ex-

pression of Sirtuin1 (SIRT1) was decreased and the expression of SASP components was

reciprocally increased during cellular senescence. The mRNAs and proteins of SASP com-

ponents, such as IL-6 and IL-8, quickly accumulated in SIRT1-depleted cells, and the levels

of these factors were also higher than those in control cells, indicating that SIRT1 negatively

regulated the expression of SASP factors at the transcriptional level. SIRT1 bound to the

promoter regions of IL-8 and IL-6, but dissociated from them during cellular senescence.

The acetylation of Histone H3 (K9) and H4 (K16) of the IL-8 and IL-6 promoter regions grad-

ually increased during cellular senescence. In SIRT1-depleted cells, the acetylation levels

of these regions were already higher than those in control cells in the pre-senescent stage.

Moreover, these acetylation levels in SIRT1-depleted cells were significantly higher than

those in control cells during cellular senescence. These results suggest that SIRT1 re-

pressed the expression of SASP factors through the deacetylation of histones in their pro-

moter regions.

Introduction
Cellular senescence is a state of irreversible cell cycle arrest that is caused by various cellular
stresses, such as telomere shortening, oxidative stress, DNA damage, and the aberrant activa-
tion of oncogenes [1,2]. Senescent cells have been shown to accumulate in several diverse
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precancerous tissues from both humans and mice and are progressively lost during cancer
progression [3–7], thereby revealing senescence as a potent initial barrier to cancer progres-
sion. Senescence also prevents fibrosis and other diseases caused by hyperproliferation in a cell
autonomous manner [8,9]. In addition to this cell autonomous function, senescent cells secrete
a number of soluble factors associated with inflammation, growth, and modulation of the ex-
tracellular matrix as a cell non-autonomous function, a phenotype termed the senescence asso-
ciated secretory phenotype (SASP) or senescence messaging secretome (SMS) [2,10]. IL-6 and
IL-8, key components of SASP, reinforce senescence in neighboring cells, committing them to
either malignant transformation or senescence in order to facilitate the suppression of tumors
[11,12]. Moreover, some SASP components, such as IL-1b, can induce senescence in normal
neighboring cells in a paracrine manner [13,14]. However, some SASP components are also
known to stimulate phenotypes associated with aggressive cancer cells [15]. Furthermore,
some SASP components, including matrix metalloprotease, may modulate tissue architecture
by cleaving extracellular matrix proteins or other components in the tissue microenvironment
[16]. Thus, SASP affects neighboring and surrounding cells in autocrine and paracrine man-
ners, thereby altering their microenvironment. As senescent cells accumulate with age, SASP
may be a key phenomenon linking cellular senescence with functional decline in tissues and or-
gans, individual aging, and age-associated diseases.

The persistent DNA damage response (DDR) is crucial for the induction and maintenance
of SASP [10]. Many SASP components are regulated by the transcription factors, nuclear factor
kB (NF-kB) and CCAAT/enhancer-binding protein (C/EBP) b, at the transcriptional level
[2,11,17,18]. Moreover, the DDR-mediated proteasome-dependent degradation of the methyl-
transferases, G9a and GLP, through the activation of APC/C-Cdh1 promotes the expression
of SASP components, indicating that SASP is also regulated by DDR-mediated epigenetic gene
regulation [19]. However, the precise regulatory mechanism responsible for SASP currently re-
mains unknown.

Sirtuin1 (SIRT1) is an NAD+-dependent protein deacetylase, which regulates a diverse set of
biological processes by deacetylating transcription factors, histones, repair enzymes, and other
cellular proteins. SIRT1 plays a pivotal role in protection against various age-related diseases
such as neurodegenerative diseases, cardiovascular diseases, cancer, and metabolic syndromes
in mammals [20,21]. Although previous studies reported that overexpression of the SIRT1
ortholog in the yeast, Caenorhabditis elegans, Drosophila melanogaster and mouse extended
their lifespans, its effects on longevity per se remain controversial [22–26]. SIRT1 regulates gene
expression by deacetylating transcription factors, including p53, Forkhead box-O (FOXO), and
NF-kB, thereby modifying their activity directly [27–31]. SIRT1 has also been shown to repress
gene expression by silencing the chromatin structure through its histone deacetylation activity
[32]. SIRT1 represses repetitive DNA and several sets of genes that cross the whole genome by
binding to and deacetylating histones. During aging or in response to DNA damage, SIRT1
relocalizes to DNA damage sites, thereby derepressing the genes of SIRT1-mediated silencing
loci [32]. This DNA damage-induced redistribution of SIRT1 results in changes to the tran-
scriptome through epigenetic modifications that parallel those in the mouse brain during aging.

In the present study, we showed that the depletion of SIRT1, but not its overexpression, ac-
celerated and enhanced the expression of SASP components at the transcriptional level. SIRT1
bound to the promoter regions of SASP components, but dissociated from these regions in re-
sponse to DNA damage, a key senescence stimulus. The depletion of SIRT1, but not its overex-
pression, enhanced the acetylation levels of histone H3 and H4 on the promoter regions of
SASP components even in cells at the pre-senescence stage and those undergoing senescence.
These results demonstrated that SIRT1 regulated the expression of SASP components through
epigenetic gene regulation.
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Materials and Methods

Cell culture
The primary human embryonic lung fibroblast, MRC-5, was purchased from ATCC. MRC-5/
TERT were immortalized by introducing the human telomerase reverse transcriptase
(hTERT). The human skin fibroblast BJ/TERT cell lines were kindly provided by Hahn WC
[33]. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum, 1 mM sodium pyruvate, 0.1 mM nonessential amino acids, 2 mM
L-glutamine, penicillin (100 U/ml), streptomycin (100 mg/ml), and 50 mM 2-mercaptoethanol.

Transfection and infection
The siRNA targeting human SIRT1 (SIRT1VHS50608 [VALIDATED], 50609 [VALIDATED])
and non-targeting siRNA pool siControl (siGENOME siRNA pool #1, D-001206–13) were
purchased from Invitrogen and ThermoScientific.

Cells were transfected with siRNA using Lipofectamine RNAi/MAX according to the manu-
facturer’s instructions (Invitrogen). The culture medium was changed to normal medium
2 hours after transfection.

The retrovirus vectors containing the shRNA sequence against SIRT1 (pSuper-Retro-Puro-
shSIRT1-HS11) or hSIRT1 (pBabe-INeo-hSIRT1) [34], and Plat-A retroviral packaging cells
[35] were kindly provided by Vaziri H and Kitamura T, respectively. To produce retroviruses,
we transfected Plat-A cells with pSuper or pBabe using FuGENE 6 (Promega). The resulting
retroviruses were used to infect fibroblasts, were then selected in medium containing puromy-
cin (2mg/ml) or G418 (1mg/ml), which results in SIRT1-knockdown (MRC5-shSIRT1, MRC-
5/TERT-shSIRT1, BJ/TERT-shSIRT1) or SIRT1-overexpressing cells (MRC-5-SIRT1, MRC-5/
TERT-SIRT1, BJ/TERT-SIRT1) being obtained.

Immunoblot analysis
Cells were lysed in a solution containing 50 mM Tris-HCl (pH 7.5), 125 mM NaCl, 1.0% Noni-
det P-40 (Nacalai Tesque), a mixture of protease inhibitors (Complete mini, Roche), and a mix-
ture of phosphatase inhibitors (PhosSTOP, Roche). The protein concentration of the lysate was
determined with the BCA protein assay reagent (Pierce), after which samples were subjected to
SDS–polyacrylamide gel electrophoresis and immunoblot analysis with mouse monoclonal an-
tibodies to human SIRT1 (1:1000; Cell Signaling Technology), mouse polyclonal antibodies to
human IL-8 (1:1000; R&D), rabbit polyclonal antibodies to human IL-6 (1:1000; Abcam),
mouse polyclonal antibodies to human g-tubulin (1:1000; Sigma Aldrich). Immunocomplexes
were visualized with horseradish peroxidase-conjugated secondary antibodies (BIO-RAD) and
the ECL prime system (GE Healthcare), and were then detected using ImageQuant LAS 4000
(GE Healthcare).

Quantitative RT-PCR analysis
Total RNA was extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s
instructions, and portions of RNA (1 mg) were subjected to reverse transcription (RT) with the
QuantiTect Reverse Transcription Kit (QIAGEN). The cDNA synthesized was subjected to
real-time polymerase chain reaction (PCR) analysis using the THUNDERBIRD SYBR qPCR
Mix (TOYOBO) in the CFX96 real-time PCR system (BIO-RAD). PCR was performed using
the following primers.

IL-8; Forward: 50-TTGGCAGCCTTCCTGATTTC-30 and Reverse: 50-TCTTTAG-
CACTCCTTGGCAAAAC-30, IL-6; Forward: 50-CCAGGAGCCCAGCTATGAAC-30 and
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Reverse: 50-CCCAGGGAGAAGGCAACTG-30, IL-1b; Forward: 50-GGCCCTAAACAGAT-
GAAGTGCT-30 and Reverse: 50-TGCCGCCATCCAGAGG-30, Growth-related oncogene
(GRO)-a: Forward: 50-TTCACCCCAAGAACATCCAA-30 and Reverse: 50-CTCCTAAG-
CATGCTCAAACAC-30, GAPDH; Forward: 50-GAAGGTGAAGGTCGGAGTC-30 and Re-
verse: 50-GAAGATGGTGATGGGATTTC-30

Chromatin immunoprecipitation (ChIP) assay
ChIP analysis was performed using the simpleChIP Enzymatic Chromatin IP Kit (Cell Signal-
ing Technology). Briefly, cells were crosslinked with 1% formaldehyde and nuclear DNA was
then digested with micrococcal nuclease. The chromatin fractions were extracted. The resulting
samples were subjected to immunoprecipitation using polyclonal antibodies to Acetyl-histone
H3 (5ml/assay, millipore), Acetyl-histone H4 (5ml/assay; millipore), or SIRT1 (5ml/assay, Cell
Signaling Technology). The immunoprecipitated DNAs were quantified by real-time RT-PCR
analysis. PCR was performed using the following primers.

IL-8 promoter region; Forward: 50-GGTTTGCCCTGAGGGGATG-30 and Reverse: 50-
ACAGAGCTGCAGAAATCAGGAAGGCT-30, IL-6 promoter region; Forward: 50-
AATGTGGGATTTTCCCATGA-30 and Reverse: 50-GCTCCTGGAGGGGAGATAGA-30.

Results

The reduction of SIRT1 preceded the expression of SASP components
We used human fibroblasts, cells that had been characterized in detail, in the senescence study
in order to observe SASP. IL-8 mRNA, one of the SASP components, was highly induced in se-
nescent MRC-5 cells that had exposed to x-radiation.Consistent with previous reports [12,36–
39], the hTERT-mediated immortalized MRC-5 (MRC-5/TERT) and BJ (BJ/TERT) cell lines
underwent senescence and the induction of IL-8 mRNA was also observed upon x-radiation
(Fig. 1A). To elucidate the regulatory mechanism of SASP during cellular senescence, we first
monitored the expression of several proteins involved in regulating the aging process or age-
related diseases. We found that the expression of the SIRT1 protein was reciprocally decreased
in senescent MRC-5 cells (Fig. 1A). The down-regulation of the SIRT1 protein was also ob-
served in senescent MRC-5/TERT and BJ/TERT cells, indicating that these reductions did not
depend on the expression of hTERT (Fig. 1A). The expression of IL-8 and IL-6 mRNAs and
proteins was increased after the induction of senescence (Fig. 1B and C). In contrast, expres-
sion of the SIRT1 protein was decreased 3 days after the induction of senescence (Fig. 1B).
These results indicated that the reduction in the SIRT1 protein preceded the induction of SASP
components, regardless of the expression of hTERT.

The depletion of SIRT1 accelerated and enhanced SASP
The reciprocal expression of SIRT1 and SASP components revealed that SIRT1 regulated
SASP. To examine this in more detail, we first investigated the expression of SASP components
during cellular senescence in SIRT1 knockdown cells. We established SIRT1 depleted and con-
trol cells that stably express shRNA as a result of infection with a recombinant retrovirus. The
depletion of SIRT1 in MRC-5, MRC-5/TERT, and BJ/TERT cells was confirmed by western
blot analysis (Fig. 2A). The expression of the SIRT1 protein was decreased in control MRC-5
cells from 2 days and sustained during senescence. No significant differences were observed in
the expression of the SIRT1 protein between SIRT1-depleted MRC-5 cells and senescent con-
trol cells (at 10 days); however, further reductions were noted during senescence (Fig. 2B). We
then monitored the expression of the SASP components, the IL-8 and IL-6 proteins. Although
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the expression of the IL-8 and IL-6 proteins was increased, starting from day 8 in control
MRC-5 cells, the induction of these proteins was already observed 4 or 6 days after the induc-
tion of senescence in SIRT1-depleted MRC-5 cells. Furthermore, the expression of the IL-8 and
IL-6 proteins was markedly increased in SIRT1-depleted MRC-5 cells (Fig. 2B). Similar results
were noted in SIRT1-depleted MRC-5/TERT and BJ/TERT cells (Fig. 2C and D). Thus, these
results suggested that the depletion of SIRT1 accelerated and enhanced the induction of SASP
components.

Figure 1. The expression of SASP components and SIRT1 during cellular senescence. A, The indicated cells were exposed (or not) to 10 Gy of X-
radiation, cultured for 10 days, and then total RNA and cell lysates were extracted. IL-8 and IL-6 mRNA levels were determined by quantitative RT-PCR
analysis with normalization to GAPHDmRNA levels and expressed as fold induction by x-radiation. Data are means� s.d. of triplicates from experiments
that were repeated at least twice with similar results. Cell lysates were subjected to immunoblot analysis using antibodies to SIRT1 and γ-tubulin.B and C,
MRC-5 human fibroblast cells were treated as inA, Total RNA and cell lysates were extracted at indicated days. IL-8 and IL-6 mRNA levels were then
determined by quantitative RT-PCR analysis (B). The levels of the indicated mRNAwere normalized to that of GAPDHmRNA and shown as fold induction by
0h. Data are means� s.d. of triplicates from experiments that were repeated at least twice with similar results. Cell lysates were subjected to immunoblot
analysis using antibodies to IL-8, IL-6, SIRT1, and γ-tubulin. γ-Tubulin was used as a loading control (C).

doi:10.1371/journal.pone.0116480.g001
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Figure 2. Effects of stable SIRT1 knockdown on protein expression of SASP components. A, MRC-5, MRC-5/TERT, and BJ/TERT cells were infected
with a control retrovirus or the retrovirus expressing shSIRT1 and then selected for 4 days. The resulting cells were lysed and then subjected to immunoblot
analysis with antibodies to SIRT1 and γ-tubulin (loading control). B, C, andD, SIRT1 knockdown and control cells (B: MRC-5C: MRC-5/TERT D: BJ/TERT)
were exposed (or not) to 10Gy of X-irradiation. Cell were lysed on the indicated days after irradiation, and then subjected to immunoblot analysis using
antibodies to IL-8, IL-6, SIRT1, and γ-tubulin. γ-Tubulin was used as a loading control.

doi:10.1371/journal.pone.0116480.g002
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The depletion of SIRT1 accelerated and enhanced the expression of
SASP components at the transcriptional level
A previous study reported that the protein expression of SASP components was not always di-
rectly related to its mRNA expression [16]. Therefore, we examined the mRNA levels of the
SASP components, IL-8, IL-6, IL-1b and GRO-a, in these cells using real time quantitative-
PCR. Consistent with the results for protein expression, although the mRNA levels of IL-8,
IL-6, IL-1b, and GRO-a increased starting from 6 days in control MRC-5 cells, the induction
of these mRNAs could already be detected by 4 days after the induction of senescence in
SIRT1-depleted MRC-5 cells. Furthermore, the levels of these mRNAs were markedly in-
creased in SIRT1-depleted MRC-5 cells (Fig. 3A). These phenomena were also observed in
SIRT1-depleted MRC-5/TERT and BJ/TERT cells (Fig. 3B and C). Taken together, these results
indicated that the depletion of SIRT1 accelerated and enhanced the expression of SASP compo-
nents at the transcription level.

Transient knockdown of SIRT1 was sufficient to promote SASP
In the above experiments using stably SIRT1-depleted cells, marked differences were observed
in SIRT1 protein expression levels between control and SIRT1-depleted cells in untreated, pre-
senescent stage cells, suggesting that SIRT1 may play a role at the pre-senescent stage. To ex-
amine this possibility, we introduced siRNA against SIRT1 (siSIRT-8 and siSIRT1–9) and the
non-targeting siRNA pool (siControl) into MRC-5 cells. Both sets of siSIRT1 significantly de-
pleted the expression of SIRT1 (Fig. 4A). In accordance with stable SIRT1-depleted MRC-5
cells, IL-8 and IL-6 protein levels were markedly increased in temporal SIRT1-knockdown
MRC-5 cells. Furthermore, IL-8, IL-6, IL-1b and GRO-amRNA levels were also markedly in-
creased with accelerated kinetics in temporal SIRT1-knockdown MRC-5 cells (Fig. 4B). These

Figure 3. Effects of stable SIRT1 knockdown onmRNA expression of SASP components. A, B, andC, The indicated cells were exposed (or not) to
10Gy of X-irradiation. Total RNA was extracted on the indicated days after irradiation. I IL-8, IL-6, IL-1β, and GRO-αmRNA levels were then determined by
quantitative RT-PCR analysis. The levels of the indicated mRNA were normalized to that of GAPDHmRNA and shown as fold induction by 0h. Data are
means� s.d. of triplicates from experiments that were repeated at least twice with similar results.

doi:10.1371/journal.pone.0116480.g003
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results revealed that a deficit in SIRT1 at untreated, pre-senescent stage cells, i.e., when cells
were subjected to senescence stimuli, was sufficient to promote SASP.

Ectopic expression of SIRT1 did not suppress SASP
We determined whether the ectopic expression of SIRT1 could suppress SASP. We established
BJ/TERT cells that stably expressed SIRT1 as a result of infection with a recombinant retrovirus.

Figure 4. Effects of transient SIRT1 knockdown on expression of SASP components. A, MRC-5 cells were transfected with siRNA against SIRT1
(siSIRT1–8 and siSIRT1–9) or control (siControl), and then lysed 2 days after transfection. Cell lysates were subjected to immunoblot analysis using
antibodies to SIRT1 and γ-tubulin (loading control).B, MRC-5 cells were transfected as in A and cultured for 2 days. The resulting cells were exposed (or not)
to 10Gy of X-radiation. Cells were lysed on the indicated days after irradiation and subjected to immunoblot analysis using antibodies to IL-8, IL-6, and γ-
tubulin. γ-Tubulin was used as a loading control.C, SIRT1 knockdown and control cells were exposed (or not) to 10Gy of X-irradiation. Total RNA was
extracted on the indicated days after irradiation. IL-8, IL-6, IL-1β, and GRO-αmRNA levels were then determined by quantitative RT-PCR analysis. The
levels of the indicated mRNA were normalized to that of GAPDHmRNA and shown as fold induction by 0h. Data are means� s.d. of triplicates from
experiments that were repeated at least twice with similar results.

doi:10.1371/journal.pone.0116480.g004
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A significantly higher level of the SIRT1 protein was observed in SIRT1-expressing BJ/TERT
cells than in control cells (Fig. 5A). Although SIRT1 protein levels were decreased in control
cells, the expression of SIRT1 was sustained at a higher level during the induction of senescence
in SIRT1-expressing BJ/TERT cells (Fig. 5B). IL-8 and IL-6 protein levels in SIRT1-expressing
BJ/TERT cells were similar to those in control cells during the induction of senescence
(Fig. 5B). Consistent with the results for protein expression, IL-8, IL-6, IL-1b, and GRO-a
mRNA levels were also equal to those in control cells (Fig. 5C). These results showed that the

Figure 5. Effects of SIRT1 overexpression on expression of SASP components. A, BJ/TERT cells were infected with a control retrovirus or the
retrovirus expressing SIRT1 and then selected for 4 days. The resulting cells were lysed and then subjected to immunoblot analysis with antibodies to SIRT1
and γ-tubulin (loading control).B, SIRT1-overexpressing and control cells were exposed (or not) to 10Gy of X-irradiation. Cell were lysed on the indicated
days after irradiation, and then subjected to immunoblot analysis using antibodies to IL-8, IL-6, SIRT1, and γ-tubulin. γ-Tubulin was used as a loading control.
C, SIRT1-overexpressing and control cells were exposed (or not) to 10Gy of X-irradiation. Total RNA was extracted on the indicated days after irradiation. IL-
8, IL-6, IL-1β, and GRO-αmRNA levels were then determined by quantitative RT-PCR analysis. The levels of the indicated mRNAwere normalized to that of
GAPDHmRNA and shown as fold induction by 0h. Data are means� s.d. of triplicates from experiments that were repeated at least twice with similar results.

doi:10.1371/journal.pone.0116480.g005
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ectopic expression of SIRT1 was not sufficient to suppress SASP in spite of the sustained expres-
sion of ectopic SIRT1 during the induction of senescence.

SIRT1 repressed SASP components in an epigenetic manner
SIRT1 was previously shown to repress several genes by regulating the chromatin structure
through its histone deacetylase activity [32]. Although SIRT1 is known to bind to promoter re-
gions to repress gene expression by SIRT1-repressing genes, it has also been shown to relocalize
into DNA damage sites in response to DNA damage, thereby derepressing and inducing the ex-
pression of SIRT1-repressing genes [32]. These findings suggested that SIRT1 repressed the ex-
pression of SASP components by epigenetically modifying their promoter regions. To examine
this possibility in more detail, we monitored the binding of SIRT1 to and histone acetylation
status of the promoter regions of IL-8 and IL-6 genes by chromatin immunoprecipitation. Al-
though SIRT1 bound to the promoter regions of the IL-8 and IL-6 genes, SIRT1 dissociated
from those regions upon the induction of senescence in control cells (Fig. 6A). In accordance
with SIRT1 binding, the acetylation levels of histone H3 (K9) and H4 (K16) on the promoter
regions of IL-8 and IL-6 genes were markedly increased during the induction of senescence
(Fig. 6B). The binding of SIRT1 to these regions was markedly lower in SIRT1-depleted cells
than in control cells. However, the amount of SIRT1 on these regions in SIRT1-depleted cells
was similar to that in control cells when senescence was induced (Fig. 6A). Even at the untreat-
ed, pre-senescence stage, the acetylation levels of histone H3 (K9) and H4 (K16) on the pro-
moter regions of IL-8 and IL-6 genes in SIRT1-depleted cells were already significantly higher
than those in control cells. These acetylation levels were also higher than those in control cells
with the induction of senescence (Fig. 6B). These results showed that SIRT1 bound to and re-
pressed the promoter regions of SASP components, and also that SIRT1 dissociated from these
regions with the induction of senescence, thereby inducing the expression of SASP
components.

Ectopic SIRT1 dissociated from promoter regions during the induction of
senescence
We examined whether the ectopic expression of SIRT1 markedly repressed the promoter re-
gions of SASP components. The amount of SIRT1 binding to the promoter regions of IL-8 and
IL-6 genes was markedly higher in SIRT1-expressing cells than in control cells (Fig. 7A). In
spite of the enriched binding of SIRT1, the acetylation levels of histone H3 (K9) and H4 (K16)
on the promoter regions of IL-8 and IL-6 genes in SIRT1-expressing cells were similar to those
in control cells (Fig. 7B). Upon the induction of senescence, SIRT1 binding to these regions in
SIRT1-expressing cells was markedly decreased and became almost equal to that in senescent
control cell (Fig. 7A). Although the acetylation levels of histone H3 (K9) and H4 (K16) on
these regions in SIRT1-expressing cells also increased, no significant differences were observed
from those in control cells (Fig. 7B). These results demonstrated that ectopic SIRT1 did not
modify histone acetylation levels on the promoter regions of SASP components because SIRT1
dissociated from those regions during the induction of senescence.

Discussion
SASP exhibits some beneficial functions including tumor suppression, the regulation of tissue
repair, such as wound healing, and fibrosis, but also induces tumor progression, inflammation,
and tissue degeneration, which promotes cancer, several age-related diseases, and organism
aging [40–42]. In the present study, we showed that SIRT1, a well-known regulator of age-
related diseases, regulated the expression of SASP components by silencing their promoter
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regions through epigenetic gene regulation. Although SIRT1 has been shown to repress repeti-
tive DNA and several sets of genes that cross the whole genome by epigenetic regulation,
SIRT1 dissociated the chromatin structure, thereby derepressing SIRT1-mediated genes during
aging and in response to DNA damage [32]. We herein demonstrated that SIRT1 bound to the

Figure 6. SIRT1 binding and histone acetylation on promoter regions of SASP component genes in SIRT1-depleted cells. A, SIRT1 knockdown and
control BJ/TERT cells were subjected (or not) to 10 Gy of X-radiation. On the indicated days after irradiation, cells were processed for ChIP analysis using
antibodies to SIRT1. The levels of the promoter regions of IL-8 (left) and IL-6 (right) were determined by quantitative RT-PCR analysis and shown as fold
enrichment by 0h. Data are means� s.d. of triplicates from experiments that were repeated at least twice with similar results. �, p<0.05 Student’s t-test. B
and C, Cells were treated as in A and processed for ChIP analysis using antibodies to H3-K9ac (left) or H4-K16ac (right). The levels of the promoter regions
of IL-8 (B) and IL-6 (C) were determined by quantitative RT-PCR analysis and shown as fold enrichment by 0h. Data are means� s.d. of triplicates from
experiments that were repeated at least twice with similar results. �, p<0.05 Student’s t-test.

doi:10.1371/journal.pone.0116480.g006
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promoter regions of IL-8 and IL-6, major components of SASP, while SIRT1 dissociated from
these regions in response to the induction of senescence. The acetylation of Histone H3 (K9)
and H4 (K16) in the IL-8 and IL-6 promoter regions gradually increased during cellular senes-
cence (Fig. 6A). The acetylation levels of these regions were already higher in SIRT1-depleted

Figure 7. SIRT1 binding and histone acetylation on promoter regions of SASP component genes in SIRT1-overexpressing cells. A, SIRT1-
overexpressing and control BJ/TERT cells were subjected (or not) to 10 Gy of X-radiation. On the indicated days after irradiation, cells were processed for
ChIP analysis using antibodies to SIRT1. The levels of the promoter regions of IL-8 (left) and IL-6 (right) were determined by quantitative RT-PCR analysis
and shown as fold enrichment by 0h. Data are means� s.d. of triplicates from experiments that were repeated at least twice with similar results. �, p<0.05
Student’s t-test.B and C, Cells were treated as in A and were processed for ChIP analysis using antibodies to H3-K9ac (left) or H4-K16ac (right). The levels
of the promoter regions of IL-8 (B) and IL-6 (C) were determined by quantitative RT-PCR analysis and shown as fold enrichment by 0h. Data are means� s.
d. of triplicates from experiments that were repeated at least twice with similar results. �, p<0.05 Student’s t-test.

doi:10.1371/journal.pone.0116480.g007
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cells than in control cells in the pre-senescent stage. These acetylation levels were also signifi-
cantly higher in SIRT1-depleted cells than in control cells during cellular senescence (Fig. 6B
and C). In SIRT1-overexpressing cells, the binding of SIRT1 to the promoter regions was
markedly increased in the pre-senescent stage, while the acetylation levels of promoter regions
were similar to those in control cells (Fig. 7A). In response to the induction of senescence,
SIRT1 binding was decreased to almost the same level as that in control cells due to the DNA
damage-mediated dissociation of SIRT1. The acelylation levels of promoter regions were also
simiular to those in control cells (Fig. 7B and C). Therefore, the induction of IL-8 and IL-6
mRNAs was almost the same as that in control cells (Fig. 5). These results suggested that
SIRT1 repressed the expression of SASP factors through the deacetylation of histones in their
promoter regions. A previous study reported the epigenetic gene regulation of SASP compo-
nents [19]. The DNA damage response provoked by the induction of senescence leads to the
degradation of the methyltransferases, G9a and GLP, which reduces the levels of H3K9me2
around the IL-6 and IL-8 promoters, thereby inducing the expression of these factors. Taken
together, these findings and the present results showed that DNA damage-mediated epigenetic
gene regulation through the dissociation of histone deacetylase SIRT1 and degradation of the
methyltransferases, G9a and GLP, play a pivotal role in the expression of SASP components
during cellular senescence.

The expression of some SASP components such as IL-8 and IL-6 is known to be required
for the sustained DDR-mediated activation of NF-kB [11–13,43,44]. A previous study reported
that SIRT1 deacetylated and inactivated NF-kB [31]. Since SIRT1 protein levels were found to
be markedly reduced during senescence (Figs. 1 and 2), SIRT1 may not be involved in the regu-
lation of NF-kB activity under these conditions. The activity of SIRT1 is required for NAD+, an
essential co-factor [45]. NAD+ concentrations were shown to be reduced by the activation of
poly-ADP-ribose polymerases (PARPs), NAD+-consuming enzymes, in response to DNA
damage. NAD+ levels were found to be systemically elevated in both PARP knockout mice and
mice treated with PARP inhibitors [46]. Although SIRT1 protein levels were maintained during
senescence in SIRT1 overexpressing cells, SIRT1 may not be active due to reductions in NAD+

concentrations during the induction of senescence. In support of this result, the induction of
SASP components in SIRT1-overexpressing cells was similar to that in control cells (Fig. 5).
Taken together, these results showed that SIRT1 activity was markedly decreased during the in-
duction of senescence due to the degradation of SIRT1 and reductions in NAD+ levels; there-
fore, SIRT1 may not be involved in NF-kB activity in senescent cells.

DNA damage was recently reported to promote organism aging. DNA damage accumulated
in stem cells from several tissues including hematopoietic stem cells and satellite cells, leading
to their functional inability [47–52]. DNA damage also stimulated the DNA damage response
and DNA repair machinery that activates the repair enzymes, PARPs, leading to a decline in
NAD+ levels. Consistent with these findings, PARP activity was shown to be increased in aged
worms and mice [53]. Thus, the chronic activation of PARPs induced a decline of NAD+ levels
in elderly individuals. Previous studies reported that NAD+ levels were approximately two-fold
lower in old worms and in multiple tissues, including the liver and skeletal muscle, in aged
mice [53–55]. Thus, reductions in the level and activity of SIRT1 during aging and the DNA
damage-initiated induction of senescence may promote increases in the levels of systemic in-
flammatory cytokines and chemokines, leading to the expansion of senescent cells. This may
account for the low level chronic inflammation observed in elderly individuals, thereby increas-
ing susceptibility to age-related diseases and promoting individual aging. Therefore, SIRT1
may protect against aging and age-related diseases by suppressing SASP through epigenetic
gene regulation.
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