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Background: Non–small cell lung cancer (NSCLC) is among the major health problems
around the world. Reliable biomarkers for NSCLC are still needed in clinical practice. We
aimed to develop a novel ferroptosis- and immune-based index for NSCLC.

Methods: The training and testing datasets were obtained from TCGA and GEO
databases, respectively. Immune- and ferroptosis-related genes were identified and
used to establish a prognostic model. Then, the prognostic and therapeutic potential
of the established index was evaluated.

Results: Intimate interaction of immune genes with ferroptosis genes was observed. A
total of 32 prognosis-related signatures were selected to develop a predictive model for
NSCLC using LASSO Cox regression. Patients were classified into the high- and low-risk
group based on the risk score. Patients in the low-risk group have better OS in contrast
with that in the high-risk group in independent verification datasets. Besides, patients with
a high risk score have shorter OS in all subgroups (T, N, and M0 subgroups) and
pathological stages (stage I, II, and III). The risk score was positively associated with
Immune Score, Stromal Score, and Ferroptosis Score in TCGA and GEO cohorts. A
differential immune cell infiltration between the high-risk and the low-risk groups was also
observed. Finally, we explored the significance of our model in tumor-related pathways,
and different enrichment levels in the therapeutic pathway were observed between the
high- and low-risk groups.

Conclusion: The present study developed an immune and ferroptosis-combined index
for the prognosis of NSCLC.

Keywords: NSCLC, biomarkers, bioinformatics analysis, microenvironment non–small cell lung cancer, immune,
prognosis

INTRODUCTION

According to cancer statistics 2020, lung cancer accounts for almost one-fourth of all cancer fatalities
(Siegel et al., 2020). Non–small cell lung cancer (NSCLC) is the most frequent type of lung cancers
with high morbidity along with mortality, which remains a major public health problem. Despite the
current progression of NSCLC treatment, the diagnosis and treatment for NSCLC is still limited.
Therefore, a better understanding of the NSCLC and identifying novel biomarkers are still needed.
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The immune microenvironment constitutes an important
element of cancer. For example, hepatocellular carcinoma
(HCC) patients with a high immune status were associated
with poorly differentiated HCC. The immune status has
histological and molecular classification potential for HCC
(Kurebayashi et al., 2018). The microenvironment is also
considered an important integral component of NSCLC (Chae
et al., 2018). Our previous study identified some immune-related
genes that possessed prognostic potential for NSCLC and
identified an immune gene–based risk model to predict overall
survival (OS) of individuals with NSCLC (Mi et al., 2020).

Ferroptosis is a kind of iron-dependent cell death caused by
unrestricted lipid peroxidation (Dixon et al., 2012). Plenty of studies
have been conducted to reveal its prognostic and therapeutic
potential for cancer. Ribonucleotide reductase regulatory subunit
M2 (RRM2) is elevated in liver cancer tissues and cells, which could
protect against ferroptosis of liver cancer cells (Yang et al., 2020). The
expression of a major target of ferroptosis Xc-complex was elevated
in gemcitabine-resistant pancreatic cancer cells (Tang et al., 2020),
and the regulators of ferroptosis play an indispensable role in
estimating the survival of individuals with pancreatic cancer
(Tang et al., 2020). Increased sensitivity to ferroptosis was
identified to be correlated with higher scores of CD8+ T cells and
immune checkpoints (Tang et al., 2020). Siramesine (lysosome-
disrupting agent) and lapatinib (tyrosine kinase inhibitor)
synergistically induced the ferroptosis of breast cancer cells. This
process was inhibited by ferrastatin-1, a potent inhibitor of
ferroptosis (Ma et al., 2016). Acetaminophen and erastin exert a
synergistic effect in inducing ferroptosis in NSCLC (Gai et al., 2020).

The interaction between ferroptosis and immunity has aroused the
attention of researchers. The enhanced function of CD8+ T cells in the
cancer microenvironment is a dominant mechanism of cancer
immunotherapy. Wang et al. found that immunotherapy could
activate CD8+ T cells and subsequently induce ferroptosis of cancer
cells (WangW. et al., 2019). On the contrary, ferroptosis-induced lipid
metabolite release by cancer cells could modulate the function of
immune cells and induce immune response (Luo et al., 2021).
Therefore, the combined therapy with the ferroptosis enhancer and
checkpoint blockade would be a potential cancer therapeutic approach.

However, little is known about the comprehensive status of
ferroptosis and the immune response in NSCLC. Herein, we aim
to analysis the association between ferroptosis and immune
response in NSCLC.

METHODS AND MATERIALS

Gene Expression Datasets of Lung Cancer
In this study, we incorporated NSCLC data from two publicly
available databases. For the TCGA, the gene expression data along
with the matching clinical data of lung adenocarcinoma (LUAD), as
well as lung squamous cell carcinoma (LUSC)were obtained from the
Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/). We
combined LUAD samples and LUSC samples as training cohorts,
which were called “TCGA” cohort, including 1129 samples.

The gene expression microarray of NSCLC (GSE37745 and
GSE50081) with matching clinical data was abstracted from Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo).
We integrated GSE37745 and GSE50081 samples as validation
cohort, which were called “GEO” cohort, including 377 samples.
Gene expression data of both the datasets were normalized using the
Robust Multichip Average (RMA) approach from R package “affy”.

Immune and Ferroptosis Gene Set
A total of 1793 immune-related genes were abstracted from
immunology databases, as well as Analysis Portal (ImmPort)
data resource (https://www.immport.org/home). A total of
103 ferroptosis-related genes were abstracted from the study
by Luo H et al (Luo and Ma, 2021).

The protein–protein interaction (PPI) network of immune-
related genes and ferroptosis-related genes was constructed and
visualized using Cytoscape (https://cytoscape.org/). PPI data were
obtained from the STRING (https://string-db.org/) database.

Determination of Prognosis-Linked
Signatures and Establishment of the
Prognostic Model
A univariate Cox proportional regression model was adopted to
select OS-linked genes from both immune and ferroptosis gene
sets in TCGA training data set. Overall, 42 prognosis-linked
signatures were screened with p < 0.05, including 38 immune
genes and five ferroptosis-related genes, among which NEDD4
was both the immune- and ferroptosis-related gene.

Next, the least absolute shrinkage and selection operator
(LASSO) regression model was constructed to identify
significant prognostic genes. A risk score was computed via
considering the expression of optimized 32 signatures and
correlation: Risk score � (exp gene1 * coef gene1) + (exp
gene2 * coef gene2) + . . . + (exp gene32 * coef gene32).
Patients with lung cancer were stratified into the high-risk
group or low-risk group by the median of the risk score.

Evaluation of Predictive Efficacy of
Prognostic Model
Principal component analysis (PCA) was used according to the
expression profile of 32 prognosis-related signatures of the
prognostic model in the training (TCGA cohort) and validation
sets (GEO cohort). The log-rank test was adopted to assess the
difference of the survival time between high-risk patients and low-
risk patients. Kaplan–Meier plots were used to present the results.

Clinical Features Relationship Analysis for
Risk Score
A one-sided Wilcoxon rank sum test was adopted to explore the
difference in the risk score between patients with various clinical
characteristics, including sex, patient status, lymph node, tumor
recurrence, and clinical pathological stage (TNM categorization of
malignant tumors) in TCGA or GEO cohorts.

A chi-square test was implemented to evaluate the relationship
of the clinical pathological stage group with the risk score group
in TCGA dataset (Table 1).
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A multivariable Cox proportional regression model was
performed based on the risk score and clinical characteristics.
Adjusted p < 0.05 signified statistical significance (Table 2).

Correlation Analysis of the Risk Score With
Immune Infiltration and
Ferroptosis-Related Score
We explored tumor immune invasion of TCGA and GEO cohorts
using the ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) approach by R
software with the package “estimate” (Yoshihara et al., 2013). The
ESTIMATE method assesses the number of stromal cells along

with the invasion level of immune cells in samples. Single-sample
GSEA (ssGSEA) in R package gsva was used to calculate the
ferroptosis-related enrichment score which we called Ferroptosis
Score for each sample based on ferroptosis-related gene sets.

The fraction of 22 tumor-invading immune cells was
calculated based on CIBERSORT (https://cibersort.stanford.
edu/index.php) (Newman et al., 2015) for TCGA and GEO
cohorts. The one-sided Wilcoxon rank sum test was adopted
to analyze the differences of infiltrative degree for immune cells,
and p < 0.05 denoted statistical significance.

After that, we conducted expression assessment of five immune
checkpoint–linked genes consisting of PDCD1 (code PD-1), BTLA
and, CD274 (code PD-L1), along withCTLA-4 andCD47. The one-
sided Wilcoxon rank sum test was carried out for exploring the
differences of the expression of five immune checkpoint–related
genes in the high-risk group and low-risk group in TCGA and
GEO cohorts, and p < 0.05 denoted statistical significance.

Correlation Analysis of the Risk Score and
Cancer Therapeutic Signatures
A total of 23 cancer therapeutic-predicted signature sets that
we used were obtained from several studies, including
“Basal_differentiation”, “EMT_differentiation”,
“Immune_differentiation”, “Mismatch_repair”,
“Nucleotide_excision_repair”, “p53_signaling_cascade”,
“Oocyte_meiosis”, “Proteasome”, “Spliceosome”,
“Pyrimidine_metabolism”, “DNA_replication”
“Systemic_lupus_erythematosus”, “EGFR_ligands”,
“Viral_carcinogenesis”, “FGFR3-coexpressed_genes”,
“PPARG_network”, “IDH1”, “KDM6B”, “WNT-
β-catenin_network”, “VEGFA”, “Hypoxia”, “Cell_cycle”,
and “Progesterone-mediated_oocyte_maturation” (Motz
et al., 2014; Peng et al., 2015; Sweis et al., 2016;
Mariathasan et al., 2018; Spranger and Gajewski, 2018;
Seiler et al., 2019; Kamoun et al., 2020; Necchi et al.,
2020). ssGSEA was adopted to calculate the enrichment
score of the abovementioned therapeutic signature gene
sets. The one-sided Wilcoxon rank sum test was adopted

TABLE 1 | Baseline features of patients in TCGA cohort.

Characteristics Whole cohort Low risk High risk p

TCGA cohort (n � 1,057) (n � 528) (n � 529) —

Gender — — — <0.001
Male 624 (59.04%) 284 (53.79%) 340 (64.27%) —

Female 433 (40.97%) 244 (46.21%) 189 (35.72%) —

Age — — — 0.687
<65 years 416 (39.36%) 211 (39.96%) 205 (38.75%) —

≥65 years 641 (60.64%) 317 (60.04%) 324 (61.25%) —

T-stage — — — 0.001
T1 302 (28.57%) 177 (33.52%) 125 (23.63%) —

T2 593 (56.10%) 283 (53.60%) 310 (58.60%) —

T3 117 (11.07%) 46 (8.71%) 71 (13.42%) —

T4 42 (3.97%) 20 (3.79%) 22 (4.16%) —

N-stage — — — 0.107
N0 673 (63.67%) 346 (65.53%) 327 (61.81%) —

N1 234 (22.14%) 110 (20.83%) 124 (23.44%) —

N2 122 (11.54%) 55 (10.42%) 67 (12.67%) —

N3 7 (0.66%) 6 (1.14%) 1 (0.19%) —

M-stage — — — 0.981
M0 781 (73.89%) 377 (71.40%) 404 (76.37%)
M1 33 (3.12%) 16 (3.03%) 17 (3.21%)

Stage — — — 0.096
I 543 (51.37%) 292 (55.30%) 251 (47.45%) —

II 291 (27.53%) 133 (25.19%) 158 (29.87%) —

III 176 (16.65%) 81 (15.34%) 95 (17.96%) —

IV 34 (3.22%) 17 (3.22%) 17 (3.21%) —

TABLE 2 | Multivariate Cox regression analyses of risk factors for OS.

Adjusted hazard ratio 95% confidence interval Adjusted p

Risk group (High vs low) 3.79 2.98–4.81 <0.001
T-stage

T1 vs T2 1.29 1.01–1.64 0.044
T1 vs T3 2.00 1.43–2.80 <0.001
T1 vs T4 2.04 1.31–3.20 0.002

N-stage
N0 vs N1 1.41 1.12–1.77 0.003
N0 vs N2 1.85 1.41–2.44 <0.001
N0 vs N3 1.85 0.46–7.47 0.385

M-stage
M0 vs M1 2.46 1.59–3.81 <0.001

Stage
I vs II 1.48 1.17–1.87 0.001
I vs III 2.03 1.57-2.61 <0.001
I vs IV 3.15 2.03-4.88 <0.001
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to explore the differences of the enrichment score between
high- and low-risk groups.

Prediction of Immunotherapy Response
IMvigor210 was used to predict immunotherapy response
(http://research-pub.gene.com/IMvigor210CoreBiologies). It

is a study to investigate the anti–PD-L1 antibody
atezolizumab in patients with metastatic urothelial cancer
(mUCC) (Mariathasan et al., 2018). We evaluated the
difference of the risk score between responsive groups [PD
(progressive disease), SD (stable disease), PR (partial
response), and CR (complete response)].

FIGURE 1 | Interactions between immune genes and ferroptosis-related genes. (A,B) Circos plots illustrating the annotation and cross-talk of immune genes and
ferroptosis-linked genes, respectively, in the genome of TCGA dataset. Outer circle illustrates individual genes’ positions on chromosomes. Scatter plots in the second
circle designate the genes. Third circle demonstrates the relative levels of expressions of the genes in TCGA cohort. Central lines designate the possible cross-talks
between genes forecasted by the STRING data resource. (C) PPI network of immune genes and ferroptosis-linked genes predicted by the STRING database.
Purple nodes designate ferroptosis-linked genes, blue nodes indicate immune genes, and brown nodes are both ferroptosis-related and immune-related genes. (D)
Venn diagram indicating ferroptosis-related and immune-related genes identified in TCGA cohort.
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RESULTS

Intimate Interaction Between Immune
Genes and Ferroptosis-Linked Genes
The transcriptome data in TCGA cohort were used to create a
comprehensive indicator from immune- and ferroptosis-related
profiling (Figures 1A,B). We constructed PPI networks of
immune genes and ferroptosis-related genes. Most immune
genes directly interacted with the ferroptosis-related genes
according to the STRING database (Figure 1C). After data

processing, 1294 immune genes and 94 ferroptosis-related
genes were used for subsequent model construction (Figure 1D).

Identification of Prognosis-Linked
Signatures and Constructing the Prognostic
Model
A univariate Cox proportional regression model was used to
explore the prognostic value of both immune- and ferroptosis-
linked genes. Screened with p < 0.05, 42 prognosis-related genes

FIGURE 2 | Establishment of the prognostic model. (A) According to univariate Cox proportional regression, 40 prognosis-related immune and ferroptosis-related
genes were identified based on TCGA cohort. (B) Profiles of LASSO coefficients of 40 immune- and ferroptosis-linked genes. (C)Cross-confirmation for tuning selection
of parameters in the LASSO model.
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were obtained (Figure 2A), including 38 immune-related genes
and five ferroptosis-related genes, among which, NEDD4 was both
an immune- and ferroptosis-related gene (Figure 2A). NEDD4 is
an oncogene, which encodes E3 ubiquitin ligase. Next, a LASSO
analysis was used to construct a prognostic model with 32
signatures: ACSL3, ACTG1, ANGPTL4, APOD, CD1E, CRHR2,
CTF1, DEFB103B, DKK1, EREG, FGA, FGF4, HLA-DOB, IL2,
INSL4, ITGA6, LCN1, NEDD4, PDGFB, PF4V1, PTX3, RFXAP,
SEMA3C, SEMA7A, SHC1, SLC11A2, STC2, TNFRSF6B,
UMODL1, VDAC1, VEGFC, and XCR1 (Figures 2B,C). Then,
based on the expression of the optimized 32 signatures and
correlation in TCGA cohort, we established a predictive model.

Verification of the Prognostic Model
Every patient’ risk score in TCGA and GEO data sets was
computed. For analyzing the accuracy of the signatures used
for constructing the module, we visualized the expression of 32
genes and found that a majority of 32 genes were differentially
expressed between the high-risk and low-risk groups (Figure 3A).

Then, PCA was performed to investigate whether lung cancer
patients could be distinguished according to the expression of the
32 signatures in TCGA and GEO data sets (Figures 3B,C).

Next, patients were categorized into the high- and low-risk
group using the median risk score as the cutoff value. In TCGA
data set, patients in the high-risk group had a remarkably worse
OS (Figure 3D; p < 0.0001; log-rank test), and the number of alive
patients in the low-risk group were more relative to those in the
high-risk group (Figures 3E–G). In the independent validation
set (GEO dataset), patients in the high-risk group also exhibited a
remarkably worse OS (Figure 3H; p � 0.00042 log-rank test), and
the alive patients in low-risk group were more than those in the
high-risk group (Figures 3I–K).

Risk Score Connected With Clinical
Pathological Characteristics
We next explored the capacity of the prognostic model in clinical
pathological characteristics. We first investigated the difference of

FIGURE 3 | Dividing power of prognostic models. (A) Heatmap showed the expression of 32 signatures we used for constructing the model. (B,C) Principal
component analysis for TCGA andGEO cohorts based on the expression of the 32 signatures. (D)Kaplan–Meier plot was adopted to show the difference in OS between
high- and low-risk groups in TCGA dataset. (E)–(G) Survival time and risk score distributions on the basis of the prognostic model in TCGA dataset. (H) Difference in OS
between high- and low-risk groups in the independent validation set (GEO cohort). (I–K) Survival time, as well as risk score distributions in the GEO cohort. p < 0.05
denoted statistical significance.
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clinical characteristics between the high-risk and low-risk groups
(Table 1). Then, we evaluated the differences of the risk score
between patients with different clinical characteristics (dead vs.
alive), sex groups (female vs. male), tumor size groups (T1 vs.
T2 vs. T3 vs. T4), lymph node (N0 vs. N1-N3), and pathological

stage (Stage I vs. Stage II-Stage IV) in TCGA cohort. The risk
score in dead patients was remarkably higher in contrast with
alive patients (Figure 4A; p < 2.22e-16), and male patients were
remarkably higher than female patients (Figure 4B; p � 0.00015).
The risk score in stage T2, T3, and T4 was remarkably higher

FIGURE 4 |Risk score discrepancy between the subgroup of clinical characteristics. (A–E)One-sidedWilcoxon rank sum test was used to evaluate the differences
in the risk score between patient status groups, sex groups, tumor size groups, lymph node groups, and pathological stage groups in TCGA cohort. (F–I) One-sided
Wilcoxon rank sum test was used to evaluate the differences in the risk score between patient status groups, sex groups, pathological stage groups, and recurrence
groups in the GEO cohort. p < 0.05 denoted statistical significance.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7648697

Teng et al. Identification Immune and Ferroptosis NSCLC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 5 | Performance of our prognostic model in patients with different clinical characteristics. (A–J) Difference in OS between the high-risk and low-risk
samples of T subgroups (T1, T2, and T3), N subgroups (N0, N1, and N2), M0 subgroups, and pathological stage (stage I, stage II, and stage III) of TCGA cohort. (K,L)
Difference in OS between high-risk and low-risk samples in pathological stage (stage I and stage II) of the GEO cohort. p < 0.05 was regarded remarkable.
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relative to stage T1, and the risk score in stage T3 was remarkably
higher than stage T2 (Figure 4C; p < 0.05). Besides, the risk score
in stage N1–N3 was remarkably higher in contrast with stage N0
(Figure 4D; p � 0.003), and stage II–stage IV was remarkably

higher than stage I (Figure 4E; p � 2.7e-06). Moreover, the risk
score of dead patients was remarkably higher relative to alive
patients (Figure 4F; p � 0.00094), and male patients were
remarkably higher than female patients (Figure 4G;

FIGURE 6 | Associations of the risk score with immune invasion and ferroptosis. (A,B)Distribution of Immune Score, Stromal Score, and Ferroptosis Score with the
increase of risk score in both TCGA and GEO datasets. (C,H) Pearson’s correlation analysis was proceeded to discern the relation of Immune Score, Stromal Score, and
Ferroptosis Score with the risk score in both TCGA and GEO cohorts. p < 0.05 was regarded remarkable.
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p � 0.012). Stage II–Stage IV was remarkably higher than stage I
(Figure 4H; p � 0.022), and recurrent patients were remarkably
higher than non-recurrence patients (Figure 4I; p � 0.022) in the
GEO cohort.

Further assessment was conducted to explore whether the risk
score reveals prognosis in diverse subgroups of clinical features.
In the T subgroups (T1, T2, and T3), N subgroups (N0, N1, and
N2), M0 subgroup, and pathological stage (stage I, stage II, and
stage III) of TCGA cohort, patients in the high-risk group
exhibited a poor OS (Figures 5A–J; p < 0.05; log-rank test). In
the pathological stage (stage I and stage II) of the GEO cohort,
remarkably poorer OS was found in patients in the high-risk
group (Figures 5K,L; p < 0.05; log-rank test).

A multivariable Cox proportional regression model was built
in TCGA cohort using the risk score and clinical pathological

stage groups to verify the prognostic potential and independence
of the prognostic model from other clinico-pathologic
characteristics. The result suggested that our prognostic model
has a potential in clinical application (Table 2).

The discrepancy of immune infiltration and ferroptosis
between different risk groups.

To investigate the relationship between the risk score and
immune infiltration as well as ferroptosis, we analyzed the
distribution of the ESTIMATE score (consists of Immune
Score and Stromal Score) and Ferroptosis Score (enrichment
score of ferroptosis-related genes) in each sample. Immune Score,
Stromal Score, and Ferroptosis Score tended to increase with the
escalation of the risk score in both TCGA and GEO cohorts
(Figures 6A,B). To further confirm this trend, Pearson’s
correlation analysis was calculated between the risk score and

FIGURE 7 | Associations of the risk score with the tumor immune microenvironment and cancer therapeutic score. (A,B) Differences in the expressions of five
immune checkpoint–linked genes between high- and low-risk groups in TCGA and GEO cohorts. (C,D) Differences in 22 immune cell infiltration between high- and low-
risk groups in TCGA and GEO datasets. (E,F) Differences in the cancer therapeutic enrichment score in high- and low-risk groups in TCGA and GEO datasets. p < 0.05
was regarded statistically significant.
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Immune Score, Stromal Score, and Ferroptosis Score,
respectively. The results showed that they were positively
related with the risk score in both TCGA and GEO cohorts
(Figures 6C–H; p < 0.05; Pearson’s correlation analysis).

Next, we investigated the difference in the expression of five
immune checkpoint–linked genes between high- and low-risk
groups. The expression of PD-L1 in the high-risk group was
remarkably greater than that in the low-risk group in TCGA and
GEO cohorts (Figures 7A,B; p � 0.021, p � 0.0064). Besides,
CTLA-4 and PD-1 expressions in the high-risk group were
greater than those in the low-risk group in the GEO cohort
(Figure 7B; p � 0.0198, p � 0.0297).

To explore immune cell infiltration of tumor samples, we
calculated 22 immune cell abundances among TCGA and GEO
cohorts by CIBERSORT. Next, we explored the difference of 22
immune cell invasion between high- and low-risk groups. The
invasion of M0 Macrophages in the high-risk group was
remarkably greater in contrast with that in the low-risk group
in TCGA cohort (Figure 7C; p < 0.0001). The infiltration of
resting NK cells in the high-risk group was remarkably higher
than that in the low risk group in TCGA and GEO cohorts
(Figures 7C,D; p < 0.01). Also, significantly greater infiltration of
CD8 T cells was observed in the high-risk group relative to that in
the low-risk group in TCGA and GEO data sets (Figures 7C,D;
p < 0.01).

We next investigated the potential role of the prognostic
model in the prediction of response to immunotherapy using
the IMvigor210 cohort. We found that the risk score in non-
responsive patients [stable disease (SD) and progressive
disease (PD)] was significantly higher than responsive
patients [complete response (CR) and partial response
(PR)] (Supplementary Figure S1A; p < 0.05; one-sided
Wilcoxon rank sum test). The number of non-responsive
patients in the high-risk group was more than that in the low-
risk group (Supplementary Figure S1B). The distribution of
CR, PR, SD, and PD patients between the high-risk and low-
risk groups was significant (Supplementary Figure S1C; p <
0.05; chi-square test). Besides, patients in the high-risk group
had significantly poorer OS (Supplementary Figure S1D;
p < 0.01).

Correlation of Risk Score and Cancer
Therapeutic Potential
For investigating the guiding role of the risk score in cancer
treatment, we calculated the enrichment score for each sample
according to 23 cancer therapeutic–predicted signature sets by
ssGSEA. Next, we analyzed the differences of these scores in the
high-risk and low-risk groups in TCGA andGEO cohorts. In TCGA
cohort, the enrichment score of the high-risk group was higher
relative to the low-risk group in 73.91% (17/23) of cancer therapeutic
prediction signature sets, including “Basal_differentiation”,
“Cell_cycle”, “DNA_replication”, “EGFR_ligands”,
“EMT_differentiation”, “Hypoxia”, “Immune_differentiation”,
“Mismatch_repair”, “Nucleotide_excision_repair”,
“Oocyte_meiosis”, “p53_signaling_casacde”, “Progesterone-
mediated_oocyte_maturation”, “Proteasome”, “Spliceosome”,

“Pyrimidine_metabolism”, “Systemic_lupus_erythematosus”, and
“Viral_carcinogenesis” (Figure 7E; p < 0.05). In the GEO cohort,
the elevated score of “Basal_differentiation”, “EGFR_ligands”,
“EMT_differentiation”, “Hypoxia”, “Immune_differentiation”, and
“Proteasome” was observed in the high-risk group in contrast with
those in the low-risk group (Figure 7F; p < 0.05).

DISCUSSION

Immune status and ferroptosis are both important in NSCLC.
Tumor immune microenvironment–related signature could
estimate the prognosis of NSCLC patients, which may also be
indicators for immunotherapy (Ojlert et al., 2019; Li et al., 2020).
Recently, a ferroptosis-linked gene-based prognostic model was
constructed by Han et al. They found that the ferroptosis-related
risk score was linked to immune status (Han et al., 2021).
Although clinical indicators regarding immune response and
ferroptosis have been established, few investigations focused
on their combined effect and their clinical application capacity
have been performed. Herein, we explored the potential role of a
combined immune and ferroptosis model for NSCLC.

Gene expression data were obtained from TCGA and GEO
databases, which served as training and testing datasets,
respectively. Immune- and ferroptosis-related genes were
identified through databases and publications. After data
processing, we collected 1294 immune genes and
94 ferroptosis-related genes (Figure 1).

A univariate Cox proportional regression model was used to
identify immune- and ferroptosis-linked genes that have
prognostic potential of NSCLC in the TCGA dataset. Overall,
genes were analyzed, including 1294 immune-related genes and
94 ferroptosis-related genes, and 12 of these genes are related to
both immune response and ferroptosis. Screened with p < 0.05,
42 prognosis-related genes were obtained, including
38 immune-related genes and 5 ferroptosis-related genes,
among which, NEDD4 was both an immune- and ferroptosis-
related gene (Figure 2). NEDD4 is an oncogene, which encodes
E3 ubiquitin ligase. NEDD4 is remarkably correlated with the
migration of NSCLC cells (Shao et al., 2018). Knockdown of
NEDD4 could inhibit the migration of NSCLC cells (Shao et al.,
2018). NEDD4 is also related to drug resistance of NSCLC cells.
The downregulation of NEDD4 could elevate the effect of
afatinib in afatinib-resistant H1975 clones (Booth et al.,
2018). NEDD4 was also associated with the erlotinib
resistance of NSCLC by inhibiting PTEN expression (Sun
et al., 2017). Moreover, NEDD4 could be the therapeutic
target for NSCLC. The anticancerous effect of nitidine
chloride was evaluated through the inhibition of NEDD4 in
NSCLC H1299 cells, which was abrogated by the overexpression
of NEDD4 (Zhang et al., 2020).

Of these 42 genes, 32 of themwere selected to compute the risk
of NSCLC. On the basis of the LASSO Cox regression model, the
samples were stratified into high-risk and low-risk groups. Then,
we analyzed the OS in TCGA and GEO cohorts. Patients in the
low-risk group have better OS in contrast with those in the high-
risk group in both the cohorts (Figure 3).
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We then evaluated the differences of the risk score among the
clinical pathological subgroups. The higher risk score was
observed in dead samples, larger tumor size, higher cancer
stage, and recurrence cohorts, respectively (Figure 4).
Especially, we found that the risk score was lower in early
stages than in later stages, but there was no difference in each
stage (Figure 4;Table 1). The prognosis potential of the risk score
was investigated in different subgroups and pathological stages of
NSCLC. The results showed that patients exhibiting a high risk
score have shorter OS in all subgroups (T, N, and M0 subgroups)
and pathological stages (stage I, II, and III) (Figure 5).

Subsequently, we assessed the relationship of the risk score
and immune invasion with ferroptosis. Our developed risk score
was found to be positively correlated with Immune Score, Stromal
Score, and Ferroptosis Score in TCGA and GEO cohorts
(Figure 6). This result was in accordance with the previous
findings that Immune Score, Stromal Score, and Ferroptosis
Score were all prognosis indicators for cancer (Shen et al.,
2019; Wang H. et al., 2019; Liang et al., 2020). The
relationship of the risk score with the immune
checkpoint–linked genes (BTLA, PD-L1, CD47, CTLA-4, and
PD-1) was evaluated. PD-L1 expression was elevated in the high-
risk score group relative to that in the low-risk score group in both
cohorts (Figures 7A,B). It is widely accepted that
immunotherapies are effective for NSCLC patients with high
PD-L1 expression. Regardless of histologic type, atezolizumab
treatment remarkably prolonged the OS of NSCLC with high PD-
L1 expression than platinum-based chemotherapy (Herbst et al.,
2020). NSCLC harboring EGFRmutations exhibited an immune-
inert phenotype, which was characterized by low expression of
PD-L1, low tumor mutational burden, low cytotoxic T-cell
number, and low T-cell receptor clonality. This kind of
NSCLC lacks clinical response to immune checkpoint blockade
therapy (Le et al., 2021).

Next, the immune cell infiltration between the high-risk and
the low-risk groups was analyzed. The infiltration of CD8+ T cells
was lower in the high-risk group in contrast with the low-risk
group in TCGA along with GEO cohorts (Figures 7C,D). CD8+

T-cell infiltration is considered an independent predictive factor
for NSCLC (Donnem et al., 2015). Hurkmans et al. suggested that
the combination of PD-L1 expression, TML, CD8+ T-cell
infiltration, and HLA class-I functions could be used to
predict the efficiency of immunotherapy in NSCLC patients
(Hurkmans et al., 2020). Combined with the results of Figures
7A,B, in which PD-L1 expression was higher in the high-risk
score group than in the low-risk score group, we concluded that
our prognostic model integrating ferroptosis and immune
infiltration could be used as a potentially predictive biomarker
for response to immunotherapy. Furthermore, we investigated
the potential role of the prognostic model in the prediction of
response to immunotherapy using the IMvigor210 cohort. We
found that the risk score in non-responsive patients was
significantly higher than in responsive patients
(Supplementary Figure S1A) and the patients in the high-risk
group had significantly poorer OS (Supplementary Figure S1D),
suggesting the potential use of the prognostic model in
immunotherapy.

Finally, the guiding role of the risk score in cancer treatment
was evaluated. “EGFR_ligands”, “EMT_differentiation”
“Hypoxia”, “Immune_differentiation”, and “Proteasome”
were positively associated with the risk score in TCGA and
GEO cohorts. These factors are all important prognosis
biomarkers and therapeutic targets for NSCLC. For
example, hypoxia is linked to poor prognosis and could
induce resistance of NSCLC (Salem et al., 2018; Shi et al.,
2019; Hua et al., 2020; Lu et al., 2020). EGFR and proteasomes
play a pivotal role in NSCLC development, and their inhibitors
could be used in NSCLC treatment (Li et al., 2009; Liu et al.,
2014; Floc’h et al., 2018; Tanimoto et al., 2021). Whereas,
“PPARG_network” was inversely related with the risk score in
TCGA and GEO datasets. It is reported that PPARG
c.1347C>T polymorphism was correlated with the risk of
NSCLC (Ding et al., 2017). PPARG was downregulated in
NSCLC samples, and the enhanced expression of PPARG may
inhibit the development and progression of NSCLC (Shi et al.,
2020).

CONCLUSION

In conclusion, by analyzing a total of 1376 immune- and/or
ferroptosis-related genes, we developed a ferroptosis and
immune-combined index with 32 genes for NSCLC
prognosis. The integrated predictor may help distinguish the
heterogeneity of NSCLC and effectively improve the prognostic
value. However, the study cohorts we used only included LUAD
and LUSC. This limitation will be greatly alleviated by the
development of cancer big-data. Also, sufficient experimental
verification is needed to explore the potential mechanisms of
ferroptosis in NSCLC.
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SUPPLEMENTARY FIGURE 1 | Predictive value of the risk score in
immunotherapy response. (A) Distribution of the risk score between responsive
patients [complete response (CR) and partial response (PR)] and non-responsive
patients [stable disease (SD) and progressive disease (PD)] in the IMvigor210 cohort.
P value was provided by the one-sided Wilcoxon rank sum test. (B) Distribution of

responsive and non-responsive patients between the high-risk and low-risk groups.
P-value was provided by the chi-square test. (C) Distribution of CR, PR, SD, and PD
patients between the high-risk and low-risk groups. P-value was calculated based
on the chi-square test. (D) Kaplan–Meier curves of high-risk and low-risk groups in
the IMvigor210 cohort. P-value was provided based on the log-rank test.
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