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Antigen presentation by cells of the vessel wall may initiate rapid and localized memory 
immune responses in peripheral tissues. Peptide antigens displayed on major histo-
compatibility complex (MHC) molecules on the surface of endothelial cells (ECs) can 
be recognized by T cell receptors on circulating effector memory T cells (TEM), triggering 
both transendothelial migration and activation. The array of co-stimulatory receptors, 
adhesion molecules, and cytokines expressed by ECs serves to modulate T cell acti-
vation responses. While the effects of these interactions vary among species, vascular 
beds, and vascular segments within the same tissue, they are capable of triggering 
allograft rejection without direct involvement of professional antigen-presenting cells and 
may play a similar role in host defense against infections and in autoimmunity. Once 
across the endothelium, extravasating TEM then contact mural cells of the vessel wall, 
including pericytes or vascular smooth muscle cells, which may also present antigens 
and provide signals that further regulate T cell responses. Collectively, these interactions 
provide an unexplored opportunity in which targeting of vascular cells can be used to 
modulate immune responses. In organ transplantation, targeting ECs with siRNA to 
reduce expression of MHC molecules may additionally mitigate perioperative injuries by 
preformed alloantibodies, further reducing the risk of graft rejection. Similarly, genetic 
manipulation of vascular cells to minimize antigen-dependent responses can be used to 
increase perfusion of tissue engineered organs without triggering rejection.

Keywords: endothelial cells, pericytes, smooth muscle cells, effector memory T  cells, regulatory T  cells, 
transendothelial migration

inTRODUCTiOn

Primary adaptive immune responses are initiated when foreign antigens are presented to naïve 
T cells by “professional” myeloid antigen-presenting cells (APCs), such as dendritic cells (DCs) 
residing in secondary lymphoid organs. In response to antigen recognition, naïve T cells both expand 
and differentiate into effector T cells and various memory T cell subsets. Memory T cells persist 
long after antigen clearance, and in response to reappearance of the same antigen, rapidly initiate 
secondary (memory) responses directly at sites where antigen has reappeared (1). Memory T cells 
may reside within the tissues (TRM) or circulate as effector memory T cells (TEM) that are recruited 
to peripheral tissues following “activation” of the local microvasculature induced by inflammatory 
cytokines, pathogen-associated or damage-associated molecular patterns (2). Activated endothelial 
cells (ECs) lining the local vasculature express adhesion molecules and elaborate chemokines that 
capture and promote transmigration of TEM (3, 4). Alternatively, TEM may be directly recruited 
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TAble 1 | Cell surface proteins mediating antigen presentation by endothelial 
cells (ECs) to TEM.

eC molecule TeM 
counter-receptor

Function Reference

Major histocompatibility 
complex (MHC) class I

T cell receptor 
(TCR), CD8

Activation (9)

MHC class II TCR, CD4 Activation (10)
B7.1 (CD80), B7.2 (CD86)a CD28 Costimulation (22–27)
LFA-3 (CD58) CD2 Costimulation (33)
ICOS-L (CD275) ICOS (CD278), 

CD28b

Costimulation (33)

Ox40-L (CD252) Ox40 (CD134) Costimulation (33)
4-1BB-L (CD137L) 4-1BB (CD137) Costimulation (33)
CD40L (CD154) CD40 Costimulation (33)
CD40 CD40L (CD154) Unknown (23)
PD-L1 (CD274), PD-L2 
(CD273)

PD-1 Inhibition (35)

B7.1 (CD80), B7.2 (CD86)a CTLA-4 Inhibition (22–27)
CD155 TIGIT Inhibition? (36)
Galectin-9, CEACAM-1 TIM3 Inhibition? (37, 38)
Unknown LAG3 (CD223) Inhibition? (37)
E-Selectin (CD62E) ESL-1, ESL-2, 

CLA-1
Tethering and 
rolling

(3)

P-Selectin (CD62P) PSGL-1 Tethering and 
rolling

(39)

ICAM-1 LFA-1 (CD11a/
CD18)

Firm adhesion, 
diapedesis, 
costimulation

(3, 40, 41)

VCAM-1 VLA-4 Rolling, firm 
adhesion, 
diapedesisc

(42)

PECAM-1 (CD31)c Unknown Diapedesis (43)
MIC2 (CD99)c MIC2 (CD99) Diapedesis (4)
PVR (CD155), Nectin-2 
(CD112)c

Tactile (CD96), 
DNAM (CD226)

Diapedesis (4)

aNot consistently found on human ECs.
bHumans only.
cCD4 TEM only.
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by antigens presented by ECs (5). Extravasating TEM must then 
interact with the mural cells that support the ECs, namely 
pericytes (PCs) in microvessels or vascular smooth muscle cells 
(VSMCs) in larger vessels, that may also present antigens that 
modulate TEM responses (6, 7). Here, we review the topic of 
antigen presentation by these vascular cell types.

AnTiGen PReSenTATiOn bY eCs

Major Histocompatibility Complex  
(MHC) Molecules
The capacity of cells to form and display peptide antigens com-
plexed to MHC molecules, class I to CD8+ T lymphocytes and 
class II to CD4+ T lymphocytes, is a prerequisite for antigen pres-
entation. Peptide antigens presented by ECs may be self-derived, 
though the same peptide–MHC complex may be tolerogenic or 
pro-inflammatory in response to the milieu in which lymphocyte 
encounter occurs (8). Microvascular ECs in humans and most 
other mammals basally express both class I and class II MHC 
molecules in  vivo (9, 10). However, the abundance of MHC 
expression by ECs differs among vascular segments and can vary 
in response to environmental signals (11). Unlike other mam-
mals, mouse and rat ECs do not basally express class II molecules 
in vivo (12, 13), a significant consideration when extrapolating 
results from murine models to human pathology.

Human ECs reduce their level of class I and ablate class 
II MHC expression in cell culture. Class I MHC expression 
can be restored by type 1 interferons (IFN-α or -β), type 2 
interferon (IFN-γ), or tumor necrosis factors (both TNF-α 
or lymphotoxin-α), whereas class II MHC is induced only by 
IFN-γ (14, 15). In vivo, basal expression of class I MHC is lost 
on arterial ECs in knockout mice lacking IFN-γ or the IFN-γ 
receptor (16). In canines, treatment with cyclosporine to inhibit 
cytokine production similarly results in loss of basal class II 
MHC molecule expression on arterial ECs (17). The expression 
of both classes of MHC molecules requires concomitant expres-
sion of several proteins required for peptide generation and 
loading. In cultured human ECs, these proteins are coordinately 
regulated by the same cytokines that induce class I and class II 
MHC (18, 19).

Co-stimulatory Signals
Effective antigen presentation to T cells by an APC additionally 
requires antigen-independent signals delivered by cell surface 
co-stimulators that engage T cell counter-receptors and signal to 
augment and complement T cell receptor (TCR) signals (20, 21). 
The specific co-stimulators required for effective T cell activation 
differ for naïve and memory T cells and among memory T cell 
subsets. The co-stimulators B7.1 (CD80) and B7.2 (CD86) that 
engage T cell CD28 appear indispensable for activation of naïve 
T  cells though expression of these molecules on ECs has been 
controversial. While some reports note the presence of B7.1 and 
B7.2 in human EC cultures (22–27), several other reports were 
unable to produce these findings (28–32). The absence of these 
molecules is consistent with the inability of human ECs to acti-
vate allogeneic naïve T cells (30, 33). However, cultured human 

ECs can activate allogeneic memory T  cells using other co-
stimulators and may do so with comparable or greater proficiency 
than professional myeloid APCs (30, 33, 34). The most potent 
co-stimulator of memory T cells on human ECs is lymphocyte 
function-associated antigen (LFA)-3 (CD58), which engages 
CD2, a counter-receptor expressed more highly on TEM than on 
naïve T  cells (33). Other important co-stimulators expressed 
basally or inducibly on human ECs which engage cognate recep-
tors on activated memory T cells are summarized in Table 1.

Endothelial cells may also display signals that dampen TEM 
activation, referred to as negative co-stimulators or checkpoint 
inhibitors (Table 1). Counter-receptors for negative co-stimula-
tory are expressed predominantly on activated T cells. CTLA-4 
(CD152), the first described inhibitory receptor, binds B7.1 and 
B7.2 with higher affinity than does CD28 (44, 45), but as noted 
above, these proteins have not been consistently observed on 
human ECs. IFN-γ induces mouse ECs to express PD-L1 (CD274) 
and human ECs to express both PD-L1 and PD-L2 (CD273) (35, 
46), negative co-stimulators that engage PD-1 (CD279) expressed 
on activated TEM. Other T cell inhibitory receptors include TIGIT, 
TIM3, and LAG3 (37), but it is not yet known if any EC proteins 
deliver negative co-stimulatory signals through these molecules.
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Adhesion Molecules
In addition to peptide–MHC and co-stimulatory recognition, 
effective activation of T  cells requires stable attachment to the 
APCs for several minutes. Molecules that contribute to T  cell 
adhesion to ECs are summarized in Table 1. At sites of inflam-
mation, initial tethering and subsequent rolling (propelled by 
flowing blood) of T cells is largely mediated by interactions of 
selectins expressed on activated ECs with glycosylated ligands 
on T  lymphocytes. T  cell recognition of chemokines displayed 
on the EC lumen triggers T cell spreading, firm attachment and 
migration to EC junctions. These higher affinity interactions are 
mediated by T cell integrins (47). Notably, TEM express high levels 
of LFA-1 (CD11a/CD18) and very late activation antigen (VLA)-4 
(CD49d/CD29), two key integrins that specifically bind to pro-
teins that are highly expressed on cytokine-activated human ECs, 
namely intercellular adhesion molecule (ICAM)-1 and vascular 
cell adhesion molecule (VCAM)-1, respectively (48). High affin-
ity integrin binding requires both TCR signals and “tugging” of 
the integrin as the T cell is being pushed by flowing blood (49). 
In their high affinity state, these integrins enable TEM to firmly 
attach to activated microvascular ECs resisting detachment by 
blood flow. Engagement of LFA-1 integrin on T lymphocytes can 
stabilize mRNA transcripts of pro-inflammatory genes, implicat-
ing a dual role for these molecules in both T cell activation and 
adhesion (40, 41). Other human EC proteins engage counter 
receptors on TEM during the process of transendothelial migra-
tion (diapedesis), though whether these molecules influence TCR 
signaling is currently unknown.

Cytokine Signals
Cytokines produced by an activated T cell, by its APC, or by a 
bystander cell, provide a third class of signal that can influence 
the magnitude of a T cell response (50). ECs can be stimulated 
to release a number of active cytokines, but secreted molecules 
will be rapidly removed by blood flow. The effects of flow may 
be overcome by displaying cytokines bound to the EC surface. 
Many chemokines bound to the EC surface via the glycocalyx 
or via non-signaling receptors can activate attached leukocytes 
(51, 52). Although its method of attachment is unknown, inter-
leukin (IL)-1α can be displayed on the plasma membrane of 
human ECs and signal to T cells to increase their activation (53).

Mechanisms of Allopresentation
Because TEM specific for a given protein antigen are rare, even 
after expansion from naïve precursors, human responses are 
typically evaluated in vitro shortly after vaccination or by using 
polyclonal activators, superantigens, or non-self alloantigens. 
Alloantigen responses arise from cross-reacting TEM generated 
from naïve T cells activated in response to prior infections (54). 
Cultured human ECs can activate resting alloreactive CD8+ 
TEM, measured as cytokine production or proliferation (34), and 
the latter response is enhanced by addition of exogenous IL-2, 
normally provided in vivo by activated CD4+ TEM (55). Although 
exogenous protein antigens are typically presented to CD4+ 
T  cells as peptides bound to class II MHC molecules, profes-
sional APCs can “cross-present” to CD8+ T cells by loading such 

peptides on to class I MHC molecules. Mouse ECs also “cross-
present” antigen (56–58), but this has not been demonstrated in 
humans. However, human ECs may acquire intact class I MHC 
peptide complexes from other cells and then present these to 
T cells, a pathway of alloantigen presentation referred to as “cross-
dressing” or “semi-direct presentation” (59).

Cultured human ECs can stimulate alloreactive CD8+ TCM or 
TEM, but not naïve T cells, to differentiate into cytotoxic T lym-
phocytes (CTL) (60). Interestingly, many of these CTL appear 
specific for ECs that share class I MHC alleles with the ECs 
used for stimulation but will not lyse B cells expressing the same 
alleles (61). This may represent a requirement for EC-derived 
peptides, differences in peptide processing, or a requirement of 
EC-specific adhesive ligands or co-stimulators. Cultured human 
ECs, induced to express class II MHC molecules by pretreat-
ment with IFN-γ, effectively activate CD4+ TCM and TEM (34). 
In contrast, cultured mouse ECs, similarly induced to express 
class II MHC molecules, cannot activate resting CD4+ T cells 
to exhibit effector functions, but have been reported to activate 
(or induce) CD4+ T cells with regulatory functions (62). These 
differences are unexplained, but again raise caution when 
extrapolating observations from mouse experiments to human 
settings. In contrast, mouse ECs, which typically express B7.1, 
can activate naïve allogeneic CD8+ T cells in culture (63) and 
initiate allograft rejection in vivo in the absence of graft-derived 
professional APCs (64). In the case of allografts, TRM are graft-
derived so antigen presentation to circulating host T cells by graft 
ECs or DCs is required to initiate chemokine-mediated T  cell 
recruitment and vigorous rejection (65).

lymphocyte Transendothelial Migration
Cell culture experiments using superantigen have revealed 
that both CD4+ and CD8+ TEM that recognize antigens on 
the apical surface of human microvascular ECs are induced to 
transmigrate through the EC barrier (66). Morphologically, the 
initial T  cell response to antigen recognition on ECs appears 
similar to that which occurs during antigen presentation by 
professional APCs. TEM “round up,” move their microtubule 
organizing center (MTOC) and cytosolic granules to the region 
between the nucleus and the EC surface (67). Despite flow, TCR-
engaged TEM remain attached to the EC for 30 min or more, i.e., 
sufficiently long enough for activation to occur. The attached 
TEM then extend a blunt cytosolic protrusion between adjacent 
ECs. Granules and the MTOC move into the protruding lead-
ing edge and the nucleus follows. Events in TCR-triggered 
transendothelial migration of human TEM are distinct from 
chemokine-mediated transendothelial migration in which TEM 
initially flatten out rather than rounding up and in which the 
MTOC and granules follow the nucleus between adjacent ECs 
in a trailing uropod rather than preceding the nucleus in a blunt 
protrusion. During TCR-triggered transendothelial migration, 
CD4+ TEM discharge granules, releasing granzyme A, the pro-
teolytic activity of which is required for effective transmigration 
(67). In contrast, CD8+ TEM transits through the EC monolayer 
without discharging their granules, which contain granzyme 
B and perforin in addition to granzyme A (66). The basis for 
this difference in granule release is unknown but protects EC 
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from lysis. During transendothelial migration, CD4+ TEM also 
mobilize and interact with EC junctional proteins present in 
the lateral border recycling compartment, including PECAM-1 
(CD31), CD99, polio virus receptor (CD155), and nectin-2 
(CD112) (4), whereas CD8+ TEM bypass this requirement. 
Interestingly, mice lacking endothelial PECAM-1 are still able 
to recruit CD8+ TEM and actually appear to do so more effi-
ciently than wild-type mice (68). It is unclear if mouse ECs use 
antigen presentation to recruit CD4+ TEM. TCR-induced human 
TEM migration also involves reorganization of the actomyosin 
cytoskeleton, which is activated by TCR signaling through Vav 
and Rac, whereas chemokine-induced transmigration bypasses 
Vav and uses cdc42 instead of Rac to activate the cytoskeleton 
(69). While it is difficult to confirm that the same processes occur 
during human immune response in vivo, experiments in mice 
have demonstrated Vav-dependent TCR-based recruitment (70) 
as well as a distinction between TCR-and chemokine-initiated 
T  cell recruitment based on only the latter showing pertussis 
toxin sensitivity (65).

Activation of Regulatory T Cells
Presentation of self-antigen linked to class II MHC molecules by 
ECs may be involved in the recruitment of CD4+ T regulatory 
cells (TREG) to peripheral tissues (71). Under certain conditions, 
antigen presentation by human ECs may directly favor TREG 
activation. Specifically, unlike TEM activation, TREG proliferation 
is not inhibited by pretreatment of human EC with the mTOR 
inhibitor, rapamycin, thereby favoring TREG expansion (72). 
Blockade of endothelial secreted IL-6 may promote the con-
version of TH17 memory cells into TREG (73). It is unknown if 
recruitment of the recently described CD4+ T peripheral helper 
cell (TPH) subset that can activate B cell responses in peripheral 
tissues can be recruited by EC antigen presentation (74). Finally, 
some specialized ECs may use antigen presentation to specifi-
cally tolerize T cells and inhibit immune responses. This has been 
described both for hepatic sinusoidal ECs and for lymphatic ECs 
in the mouse (75–77). However, the mechanisms of tolerance 
induction employed by these cells are not well understood, nor 
is it clear if the same mechanisms apply to human ECs lining 
such vessels.

AnTiGen PReSenTATiOn bY PCs  
AnD vSMCs

Antigen Presentation by vSMCs
TEM that enter tissues or the vessel wall (in the case of large blood 
vessels), will then encounter mural cells: PCs in microvessels 
or VSMCs in larger vessels. VSMCs express low levels of class I 
but not class II MHC molecules in situ; the abundance of MHC 
molecule expression by PCs in  situ is unclear as resolving ECs 
and PCs by light microscopy is challenging. Under culture condi-
tions human PCs or VSMCs, like cultured human ECs, similarly 
express low levels of class I and no detectable class II MHC but 
readily upregulate both class I and class II MHC molecules to 
levels comparable to those expressed on ECs in response to 
IFN-γ (6, 78). Moreover, following IFN-γ treatment, both mural 

cell types appear able to present non-self alleles of class II MHC 
molecules to resting allogeneic CD4+ T cells, inducing expres-
sion of activation antigens on the T cell, such as CD69 and CD25. 
CD4+ T  cells already activated by culture with IFN-γ-treated 
ECs, derived from the same donor as the VSMCs, can prolifer-
ate in response to IFN-γ-treated VSMCs (78). However, resting 
TEM directly isolated from peripheral blood will not proliferate 
in these cultures, but, such T  cells cultured with VSMCs can 
be subsequently activated by culture with ECs from the same 
donor (i.e., they are not anergized). Failure of resting T cells to 
proliferate in response to allogeneic VSMCs may be attributed 
both to the expression of indolamine 2,3-dioxygenase (IDO), an 
enzyme that degrades tryptophan required for T cell anabolism 
and cell proliferation, and to the absence of ICOS-L, a critical 
co-stimulator (79, 80). In contrast, ECs readily express ICOS-L 
and significantly less IDO than VSMCs.

Antigen Presentation by PCs
Less has been reported about immunoregulation by human PCs. 
IFN-γ-treated PCs express negative co-stimulatory receptors 
PD-L1 and PD-L2 at a higher level than do ECs. The role of 
PD-L1 or PD-L2 in inhibiting the activation of resting T cells, 
which typically lack PD-1, is largely unknown. Like VSMCs, 
IFN-γ-treated PCs express high levels of IDO that contributes 
to T cell inhibition (6). Importantly, CD4+ T cells cultured with 
allogeneic PCs do become clonally anergic, i.e., they are unable to 
subsequently respond to ECs from the same donor as the PCs. It is 
unknown how much of the inhibitory activities of PCs or VSMCs 
are induced by IFN-γ, utilized in these experiments to upregulate 
class II MHC molecules on the mural cells. There are likely to be 
differences among PCs (and VSMCs) from different species and 
among the mural cells found in different vascular beds within the 
same species. Cultured mouse PCs can express PD-L1 and are 
also immunoregulatory (81), but it has not been shown if mouse 
PCs present antigen. Despite the limited number of studies, the 
general conclusion is that mural cells present antigens in a man-
ner that dampens (“regulate”) T cell responses that are initiated 
by EC antigen presentation.

THeRAPeUTiC TARGeTinG OF AnTiGen 
PReSenTATiOn bY vASCUlAR CellS

The most compelling data regarding the antigen-presenting 
function of ECs has come from transplantation. As noted earlier, 
this may be explained by the fact that the TRM population within 
an allograft is derived from the donor and will, therefore, not 
respond to donor antigens as non-self. Consequently, the most 
relevant memory T  cell population in transplant immunology 
is TEM which preferentially respond to antigens presented in the 
vascular lumen. While genetic manipulation of human organs for 
transplantation is not an immediate prospect, transient knock-
down of gene expression by siRNA or anti-sense oligonucleotides 
in graft cells is much closer to clinical application, and a particu-
larly attractive approach is to deliver a sustained source of siRNA 
to graft vessels ex vivo, prior to implantation, using hydrolyzable 
nanoparticle carriers (81). Relevant targets could include MHC 
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molecules or co-stimulators such as LFA-3 that promote T cell 
activation or alternatively induction of negative co-stimulatory 
molecules in ECs or mural cells. Interestingly, rapamycin, which 
also could be delivered in nanoparticle carriers ex vivo, has been 
found to induce both PD-L1 and PD-L2 on ECs independently 
of IFN-γ, abrogating their capacity to activate TEM while retain-
ing the capacity to activate TREG (72). The roles that vascular cells 
perform as APCs represent a largely untapped therapeutic target 
in these pathologic settings.

Human ECs have been implicated as APCs in other chronic 
disease states. For example, in type I diabetes, EC antigen presen-
tation triggers T cell homing leading to islet cell destruction (27, 
56), and in cerebral malaria, presentation of parasite antigens may 
activate CD8 effector cells leading to local edema and inflamma-
tion in the central nervous system (82). In both autoimmunity 

and infection, however, the role of TEM may be redundant with 
that of TRM, and may potentially limit the effects of blocking anti-
gen presentation by ECs, though the effects of doing so remain 
to be investigated.
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