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ABSTRACT Stenotrophomonas maltophilia is a Gram-negative pathogen causing severe
and often refractory illnesses such as pneumonia and bacteremia. We present the ge-
nome of phage Salva, a novel S. maltophilia phage that is not closely related to any
phages currently deposited in GenBank. The genome is 60,789bp, containing 102 puta-
tive protein-coding genes.

S tenotrophomonas maltophilia is an emerging, Gram-negative, pathogenic bacte-
rium that is often multidrug resistant and is found in environments like animal by-

products, food waste, and other water sources (1). Infections of S. maltophilia are nor-
mally acquired nosocomially, can cause significant life-threatening conditions like
pneumonia and bacteremia, and are associated with high mortality rates among cer-
tain populations of patients (2). Antibiotic-refractory S. maltophilia infections are diffi-
cult to treat, so further studies into alternative treatment options, such as phage ther-
apy, are necessary.

Phage Salva was isolated in 2019 from a wastewater sample collected in Cincinnati,
Ohio, by enriching the sample using a multidrug-resistant S. maltophilia clinical isolate
obtained from human sputum in Decatur, GA, as the host strain aerobically grown at
30°C in nutrient broth (BD), followed by plaque purification (3, 4). To purify the
genomic DNA, the modified Promega Wizard DNA cleanup kit protocol was used (5).
An Illumina TruSeq Nano low-throughput kit was used to prepare DNA libraries, which
were sequenced on an Illumina MiSeq instrument with paired-end 300-bp reads using
500-cycle v2 chemistry. A total of 788,720 raw reads were visualized using FastQC
v0.11.9 (www.bioinformatics.babraham.ac.uk/projects/fastqc) and then manually trimmed
using the FastX Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit). The genome was
closed by PCR (with 59-ATCGCATCTTCGTCCTTTCC-39 and 59-CTTGTGGCGAAGGTATTCCA-
39 as the primer set) and confirmed to be complete by Sanger sequencing. Structural
annotations were completed using GLIMMER v3 and MetaGeneAnnotator v1.0 (6, 7).
tRNAs were detected with ARAGORN v2.36 (8). To calculate genome-wide sequence
similarity, progressiveMauve v2.4 was used (9). Gene functions were predicted using
InterProScan v5.33, BLAST v2.9.0, and TMHMM v2.0 (10–12). The sequence similarity search
was set at an Evalue of,0.001 against the NCBI nonredundant and Swiss-Prot/TrEMBL data-
bases. All annotation tools were used with their default settings and hosted (except HHpred)
by the Center for Phage Technology (CPT) (https://cpt.tamu.edu/galaxy-pub) (13–15).

Phage Salva has a 60,789-bp genome with a GC content of 56.4%, in comparison to
its host genome, which has a GC content of 66.7% (16). A long terminal repeat region
(3,973 bp) is predicted by PhageTerm (17) analysis. Phage Salva has one tRNA and 102
putative protein-coding genes, of which 24 have predicted function. Genes that are
normally associated with the lysogenic life cycle were not identified in the Salva ge-
nome. Salva was predicted to be a siphovirus based on genomic analysis, which was
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confirmed visually by transmission electron micrography. Salva contains two predicted
tape measure chaperone genes, not linked by a programed transcriptional frameshift
as is common in many tailed phages (18, 19). A typical Gram-negative lysis cassette
was identified in the Salva genome, consisting of a class I holin, an antiholin, an endo-
peptidase endolysin, and a bimolecular spanin complex (20). Comparative genomic
analysis revealed that Salva is not closely related to any known phages or prophage
elements currently deposited in GenBank. The only phage that is related to phage Salva is
Stenotrophomonas phage vB_SmaS_BUCT548 (GenBank accession number MN937349.1),
which shares 74.3% nucleotide identity over 55% coverage (distributed across the Salva
genome), as determined by BLASTn.

Data availability. The Salva genome is deposited under GenBank accession num-
ber MW393850. The associated BioProject, SRA, and BioSample accession numbers are
PRJNA222858, SRR11558346, and SAMN14609643, respectively.
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