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Solute Carrier Family 26 (SLC26) is a conserved anion transporter family with 10

members in human (SLC26A1-A11, A10 being a pseudogene). All SLC26 genes except

for SLC26A5 (prestin) are versatile anion exchangers with notable ability to transport a

variety of anions. SLC26A6 has the most extensive exchange functions in the SLC26

family and is widely expressed in various organs and tissues of mammals. SLC26A6 has

some special properties that make it play a particularly important role in ion homeostasis

and acid-base balance. In the past few years, the function of SLC26A6 in the diseases

has received increasing attention. SLC26A6 not only participates in the development

of intestinal and pancreatic diseases but also serves a significant role in mediating

nephrolithiasis, fetal skeletal dysplasia and arrhythmia. This review aims to explore the

role of SLC26A6 in physiology and pathophysiology of relative mammalian organs to

guide in-depth studies about related diseases of human.
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INTRODUCTION

Transmembrane transport of anionic substrates is of crucially important for human-body water
and electrolyte homeostasis, CO2 transport, pH modulation and buffering, absorption of nutrient
and vitamin, absorption and secretion of fluid, osmoregulation of cells, neurotransmission,
and metabolic processes. SLC4 family and SLC26 family have been reported to mediate the
transport of cellular anions, and the SLC26 family serves as a more vital role in mediating the
exchange of Cl−/HCO−

3 in the epithelial tissues. SLC26 family members are multifunctional
transporters which transport monovalent and divalent anions in the body. Among the 10 members
of this family, mutations and polymorphisms of several members have been correlated with
human diseases (Table 1) (1–7). In addition, pathological phenotypes have been reported in
knockout mice deficient in expression of other SLC26 isoforms for which human mutations
have not yet been associated with diseases (Table 1) (8–11). As the member which has the most
extensive transport functions in the family, SLC26A6 can mediate the transport of Cl−/HCO−

3 as

well as other anions which include Cl−/formate, Cl−/oxalate, Cl−/nitrate, SO2−
4 /oxalate and

Cl−/OH− (12, 13). However, in non-epithelial tissues, SLC26A6 functions predominantly as
Cl−/HCO−

3 and OH− exchangers (14). SLC26A6 is strongly expressed in the intercalated ducts of
pancreas (15, 16), proximal tubules of kidney, and proximal small intestine (17, 18). The expression
has also been found in the heart (19), reproductive system (20), placenta (21), parotid gland
(22), esophagus (23), stomach (24), and even teeth (25, 26) of mammals. Systematic study on the
distribution of SLC26A6 in human tissues is lacking, and it may be difficult to detect by Western
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TABLE 1 | SLC26A6 deletion related diseases.

Members Human diseases Members Animal models

diseases

SLC26A2 Chondrodysplasia SLC26A1−/−,

SLC26A6−/−
Hyperoxaluria,

Nephrolithiasis

SLC26A3 Chloride diarrhea

SLC26A4 Pendred’s syndrome SLC26A7−/−,

SLC26A9−/−
Gastric

achlorhydria

SLC26A8 Male infertility SLC26A9−/− Distal renal

tubular acidosis

SLC26A9 Cystic fibrosis-associated

meconium ileus

Diabetes

SLC26A11 Cytotoxic brain edema

blot and immunohistochemistry because the members of SLC26
family are heavily glycosylated and SLC26A6 band size varies
in the analysis of Western blot (27), especially in other species
than mouse, in which comparison with knockout tissue is
beneficial. However, there have been reports confirming the
expression of SLC26A6 mRNA in human pancreas (28, 29),
duodenum (30), kidney (29, 31), and placenta (32). Recently,
animal model studies have found that SLC26A6 is crucial
significance for the physiology and normal functions of several
organs (such as pancreas, intestine, heart, and kidney). However,
the mechanism of SLC26A6 exerts in transport process still
needs to be elucidated and little is known about the function
and dysregulation of SLC26A6 contributes to the manifestations
of commonly diagnosed human diseases. This review offers a
glimpse into the function of SLC26A6 associated with anions
transport and related diseases of mammalian relative organs.

STRUCTURAL FEATURES OF SLC26A6

SLC26A6 is a transmembrane secondary transporter (symporters
and exchangers) with a molecular mass of 83 kDa and consists
of 759 amino acids, which is located on chromosome 3. The
membrane-inserted domain of SLC26A6 consists of 14 variable-
length α-helices, including two short helices (the 3rd and
10th helices) which do not span the entire width of the lipid
bilayer (33). The 14 transmembrane segments are divided into
two intertwined inverted repeats parts and 7 transmembrane
segments each (33). The core domain contributes a pair of
pseudosymmetry-related helices (α-helices 3 and 10) at the top
of the cavity that point from opposite directions toward the
hydrophobic center of the bilayer (33). There is a STAS (sulfate
transporter and anti-sigma factor antagonist) domain at the C-
terminus of SLC26A6 (14). The STAS domain is compact and
contains a core which consists of just three α-helices and four β-
strands (33) and is relevant for intracellular trafficking (34, 35)
as well as protein–protein interactions (36, 37). Its deletion
impairs substrate transport by the membrane domain (33). In
addition, the C-terminus of SLC26A6 contains a consensus
PDZ (PSD-95/Disc-large/ZO-1) interaction motif identical to

that of the cystic fibrosis transmembrane conductance regulator
(CFTR) (38) and the PDZ domains provide places for protein-
protein interaction that plays an essential role in the assembly
of multiprotein complexes and ultimately involves in regulation
of membrane proteins, determining cell polarity, and plasma
membrane targeting (39) (Figure 1). There are four isoforms of
SLC26A6 have been demonstrated. SLC26A6A and SLC26A6B
were cloned from the total RNA of the mouse intestine (13).
SLC26A6A is a longer isoform, consisting of 758 amino acids, and
SLC26A6B is the shorter isoform with 735 amino acids (28, 29).
There are different opinions about which of these two isoforms
correspond to the human isoform (28, 29). SLC26A6C lacks 38
amino acids by missing exon 6 and lacks 1 amino acid by using
an alternative splice donor and acceptor site at the beginning of
exon 17. SLC26A6D had unspliced intron after exon 16 resulting
in frame-shift and early termination (38).

ELECTROGENIC PROPERTY OF SLC26A6

There is controversy about whether Cl−/HCO−

3 exchange
mediated by SC26A6 is electrogenic. Initially, Ko et al. detected
Cl− and HCO−

3 transport in Xenopus oocytes expressed
SLC26A6 and they demonstrated that the transporter is
electrogenic, with unique property (40). Then they expressed
SLC26A6 in Xenopus oocytes and HEK293 cells again to confirm
that SLC26A6 behaves as an electrogenic transporter based on
electrophysiological and pH fluorescence experiments (41). Xie et
al. thought that both SLC26A6 and SLC26A3 are electrogenic, but
with opposite polarities. SLC26A6 appears to have a Cl−:HCO−

3
stoichiometry of 1:2, while the ratio for SLC26A3 is 2:1 (13). In
the case of SLC26A3 depletion, the inward current may originate
from the SLC26A6. The expression of two members in the same
cells (to be precise in the case of epithelia and in the same
membrane domain), one with the Cl−/HCO−

3 stoichiometry of
SLC26A6 and one with that of SLC26A3, results in electroneutral
Cl−/HCO−

3 exchanges apparently (40). This indicates that the
stoichiometry of the two transporting Cl−/HCO−

3 is opposite,
which may lead to the formation of reverse current. The opposite
is that Chernova et al. expressed the homolog of SLC26A6 in
Xenopus oocytes and concluded that both human and mouse
SLC26A6 mediate the electroneutral Cl−/HCO−

3 exchange (42).
In addition, SLC26A6-null mouse intestinal transepithelial
studies also show that Cl−/HCO−

3 exchange by SLC26A6 is
electroneutral. Similarly, the current electricity generation and
transport stoichiometry of human and mouse SLC26A3 are also
controversial and most studies agree that not only human but
also mouse SLC26A3 Cl−/HCO−

3 exchanges are electroneutral
(stoichiometry 1Cl−/1HCO−

3 ) exchange (43–45). Interestingly,
Chernova et al. considered that mouse SLC26A6 mediated
Cl−/oxalate exchange was apparently electrogenic, whereas
that mediated by human SLC26A6 appeared electroneutral at
the same time (42). However, Cl−/oxalate exchange in the
apical membrane vesicles of rat mediated by SLC26A6 is also
thought to be electrogenic in another study (46). On the
contrary, unlike Cl−/oxalate exchange, Cl−/formate exchange is
electroneutral (47).
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FIGURE 1 | The structure of SLC26A6. The blue box is the STAS domain.

SLC26A6 AND THE PANCREAS

Physiological Role of SLC26A6 in the
Pancreas
The secretion of HCO−

3 and fluid is an essential function of

pancreatic ductal epithelium and is critical for maintaining the

integrality of the tissue. The pancreas of human secretes 1–2 L

isotonic alkaline fluid every day, in which the concentration of

bicarbonate may exceed 140mM under stimulation (48). Under

stimulating conditions, HCO−

3 secretion depends critically upon

the activity of CFTR anion channel (49) which is a cAMP-

dependent anion channel located on the apical membrane.

This HCO−

3 rich liquid removes digestive enzymes in the duct

branches, facilitates solubilization of macromolecular substances,
neutralizes the protons secretion of acinar cells, inhabits
premature activation of trypsinogen, and neutralizes gastric acid
in the duodenum to provide the optimal pH environment for
digestive enzymes. Guinea pigs could secrete pancreatic juice
containing 140mM HCO−

3 under stimulation by secretin or
cAMP, which is similar to the concentration of human pancreatic
juice HCO−

3 (50). Interestingly, Steward et al. explored the

HCO−

3 secretion mechanism of pancreatic ducts by isolating the
pancreatic interlobular ducts in guinea pigs, and concluded that
only one third of HCO−

3 is secreted via the apical Cl−/HCO−

3
exchangers, and the other two thirds by CFTR (50). The
Cl−/HCO−

3 exchangers of ductal epithelium have three, two
are members of the SLC26 family distributed on the apical
membrane and one is AE2 of the SLC4 family which distributed
on the basolateral membrane (51–53). Interestingly, when the
concentration of HCO−

3 in the lumen reached the highest value
(140mM), Cl−/HCO−

3 exchange mediated by SLC26A3 and AE2
would be reversed, which reabsorbs HCO−

3 instead of secretion
(50). The function of SLC26A6 to secrete HCO−

3 into the lumen
is inhibited and the continuing secretion of HCO−

3 will be
mediated almost entirely (90%) by CFTR (49) (Figure 2). Ko
et al. demonstrated that binding the highly conserved STAS
domains of SLC26A6 to the regulatory (R) domains of CFTR
can enhance the activity of both SLC26A6 and CFTR (36).
Therefore, SLC26A6 has synergistic interactions with CFTR
in the HCO−

3 secretion of pancreatic ductal epithelium, and
SLC26A6 deletion results in dis-regulation of CFTR in the
pancreatic duct (54). Most people may think that SLC26A6
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FIGURE 2 | SLC26A6 participates in the maintenance of normal organ function in the pancreas, kidneys, heart, and small intestine.

deletion could upregulate the ability of CFTR in a compensatory
way to secrete HCO−

3 , but there is no evidence to confirm
this hypothesis. The explanation given by Wang et al. is that
the activity of CFTR is always inhibited by SLC26A6 in the
resting state, and SLC26A6 regulates the activity of CFTR by
reducing the rate of CFTR activation in the stimulated state
at physiological stimulus intensity (54). Therefore, SLC26A6
deletion could remove tonic inhibition of CFTR by SLC26A6
in the resting ducts and by reducing activation of CFTR by
SLC26A6 in the stimulated ducts. Conversely, Ishiguro et al.
(55) revealed that there was no change of SLC26A6 deletion
on neither spontaneous nor stimulated secretion in isolated
ducts or in vivo. However, reverse transcription (RT)-PCR
showed an apparent upregulation of SLC26A3 mRNA, which
may be a compensatory upregulation of SLC26A6 deletion to
maintain bicarbonate secretion and pancreatic juice volume.
Since SLC26A6 is predominantly distributed in the proximal
portion of pancreas duct and SLC26A3 is distributed in the
distal portion (36, 40), they are activated by different ion
gradients (Figure 3).

SLC26A6 and Pancreatic Diseases
The distribution and role of SLC26A6 in human pancreatic ducts
is still unclear. The pathological significance of SLC26A6 in
the pancreas is little known. Deterioration of Pancreatic ductal
HCO−

3 secretion is observed in chronic pancreatitis. Therefore,
SLC26A6 is a reasonable candidate for a chronic pancreatitis
susceptibility gene. But the study from Balazs et al. verified the

SLC26A6 is not related to mutations associated with chronic
pancreatitis (56). Unfortunately, there is no more study on
human pancreatic diseases. Further studies on the role of the
anion exchanger in the human pancreas may clarify the role
of HCO−

3 secretion disorders in acute pancreatitis, chronic
pancreatitis and related pancreatic diseases.

SLC26A6 AND THE INTESTINE

Physiologic Role of SLC26A6 in the
Intestine
SLC26A6 and Intestinal Cl–/HCO–

3 Exchange

It is known that intestinal HCO−

3 secretion is stimulated by
cAMP (57–59). There are at least two secretion mechanisms
of HCO−

3 , one is Cl−-dependent and the other is Cl−-
independent. The apical membrane Cl−-independent HCO−

3
secretion stimulated by cAMP is considered to be mediated by
the Cl− channel. CFTR is one of the Cl− channels responsible
for HCO−

3 secretion (60–62). Under stimulation, CFTR is still
the most important conduction pathway for intestinal secretion
of HCO−

3 (63). On the country, the apical membrane Cl−-
dependent HCO−

3 secretion is mediated by the Cl−/HCO−

3
exchangers (60, 62). SLC26A6 and SLC26A3 are considered to
play vital roles in Cl−-dependent HCO−

3 secretion, primarily
responsible for basal HCO−

3 secretion related strongly to
blood HCO−

3 concentration (64). In addition, there are three
mechanisms involved in intestinal acid-base transport (Figure 3),
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FIGURE 3 | In pancreas, SLC26A6 and SLC26A3 perform their functions at different ion concentrations. SLC26A6 is predominantly responsible for the excretion of

basal HCO−

3 and CFTR is primarily responsible for Cl− secretion from the proximal duct. Close to the distal tubule, the concentration of HCO−

3 increases, SLC26A3

plays a major role in the secretion of basal HCO−

3 . When the concentration of HCO−

3 in the distal tubule reaches a maximum of 140 uM, the secretion of HCO−

3 mainly

depends on CFTR.

a DIDS-sensitive Na+/HCO−

3 co-transporter (NBC) and an
amiloride-sensitive Na+/H+ exchanger (NHE1) present on the
basolateral membranes and a Cl− /HCO−

3 (AE4) exchanger
located on the apical membranes of entrocyte (60, 65, 66).
SLC26A3 and SLC26A6 are both expressed in the small intestine
and large intestine. The difference is that SLC26A6 expression
is very high in the small intestine (especially in the duodenum)
but low in the colon (17) and SLC26A3 is expressed primarily in
the colon and moderately in the small intestine (44). Therefore,
SLC26A6 is particularly vital in mediating the increase of
duodenal HCO−

3 secretion with the raising blood HCO−

3 (64).
Also, in vitro studies have shown that its presence enhances the
secretory rate of HCO−

3 in the basal state (18, 67). The role
of SLC26A6 in duodenal HCO−

3 secretion crucially depends on
the acid/base status under in vivo conditions, with very crucial

contribution to basal secretory rates at high, but not at low, blood
HCO−

3 concentrations (64). In addition, SLC26A6 mediates
HCO−

3 secretion strongly dependent on carbonic anhydrase,
while the Cl−-independent and cAMP-activatedHCO−

3 secretion
are both largely independent of the enzyme (68). Based on
SLC26A6-null mice, it was found that SLC26A6 is responsible
for <30% of the basal HCO−

3 secretion and had no respondence
to cAMP and forskolin simulation, while prostaglandin E2-
stimulated HCO−

3 secretion is mediated via a Ca2+-dependent
pathway (18, 67). The SLC26A3-mediated Cl−/HCO−

3 exchange
contributes to the rest of ∼60% of basal HCO−

3 secretion
(69). The mouse small intestine was further measured which
revealed that the level of SLC26A6 and SLC26A3 expression
reciprocates along the villus axis with SLC26A6 greatest in the
upper villus in the lower villus/crypt and SLC26A3 greatest
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in the lower villus/crypt (Figure 4), but both exchangers are
well-represented throughout the villus length (69, 70). And
microfluorimetry studies of the upper villus epithelium found
that SLC26A6 provides 70% of the total Cl−/HCO−

3 exchange,
while SLC26A3 provides nearly all of the apical membrane
Cl−/HCO−

3 exchange of the lower villus epithelium (71).
SLC26A6 has been demonstrated to also participate in the
transport of Cl−/HCO−

3 in the lower villi, but since SLC26A6
is an electrogenic transporter, cell acidification or membrane
depolarization during glucose transport could mask the activity
of SLC26A6 (72). Moreover, SLC26A6 may primarily serve other
significant functions, such as the absorption of salt, nutrient-
associated anion absorption (73) and regulating the pH of the
intestinal lumen fluid. Studies demonstrated that compared with
wild-type, SLC26A6-null mice show a decreased basal duodenal
HCO−

3 secretory rate (18). But the effects of SLC26A6-null mice
on intestine and tubular functions are not profound at the steady
state (18). This does not rule out that SLC26A6 deletion may
lead to the compensatory upregulation of other Cl−-absorption
transporters in the intestinal lumen to maintain homeostasis.

SLC26A6 and Intestinal Cl–/Oxalate Exchange
Another function of SLC26A6 in the small intestine is to mediate
oxalate excretion by the duodenum (9) and distal ileum (74),
which plays an important role in oxalate homeostasis. Oxalate
is indeed an obdurate anion and exists as a monovalent or
divalent anion. It is not metabolized in the human body, but
it is easily produced through enormous metabolic pathways
(75). It is usually present in minute amounts related to other
anions, yet small changes in its concentration in the existence
of calcium can result in the deposition of calcium oxalate. The
concentration of oxalate in plasma depends on dietary load,
intestinal absorption, metabolic production and renal excretion.
The transport of oxalate in intestine is bidirectional and net
transport (76, 77). Transport methods include transcellular
pathway and paracellular pathway. Studies demonstrated that
intestinal oxalate secretion relies on a SLC26A6-dependent
transcellular mechanism, while the oxalate absorption takes place
by a paracellular channel (78). In general, in contrast to this
phenomenon of basal net oxalate secretion in the small bowel
and proximal colons, the distal colons of animals typically exhibit
basal net absorption of oxalate (79, 80). SLC26A6 in the mouse
ileum mediates apical secretion of oxalate in exchange for Cl−

and is an important component of the transcellular serosal-to-
mucosal unidirectional oxalate flux (74). The vectorial oxalate
transport mediated by SLC26A6 appears to be more dependent
on the direction and magnitude of counterion driver gradients
than the intrinsic property of the protein (81). Although
SLC26A6 is also expressed in the apical membranes of mouse
colon (17), its role in colonic oxalate transport awaits further
studies. In addition, SLC26A1, SLC26A2, and SLC26A3 also
participate in the transport of intestinal oxalate (Figure 5).
SLC26A1 is considered to a SO2−

4 /oxalate transporter. It may

mediate SO2−
4 /oxalate exchange in parallel with the Cl−/oxalate

exchange, again leading to the recycling of oxalate with minimal
net oxalate transport (8, 74). SLC26A2 participates in the
secretion of intestinal oxalate with trans-SO2−

4 , Cl−, or oxalate

itself (82). SLC26A3 mediates oxalate transport by absorbing
oxalate and Cl− in the large and small intestines (83). AE1 is also
detected to express in the apical membranes of ileum (84) and
surface cells of the distal colon (85), which may also play a role in
oxalate transport.

SLC26A6 and Intestinal Diseases
Duodenal mucosal HCO−

3 secretion plays important role in
protecting duodenal mucosa against gastric-induced injure (86,
87). Clinical study found that duodenal mucosal HCO−

3 secretion
was found to be markedly diminished in Helicobacter pylori-
associated duodenal ulcer patients (61). Helicobacter pylori
infection impaired the expressions and functional activities of
duodenal mucosal CFTR and SLC26A6 via TGFβ-mediated
P38 MAPK signaling pathway, which contributed to the
development of duodenal ulcer (88, 89). The studies showed that
inflammatory bowel disease (IBD) patients usually accompanied
with hyperoxaluria and kidney stones (90, 91), which might
be due to the lack of oxalate transporters. Also, hyperoxaluria
is a major complication after malabsorptive bariatric surgery
of obesity (92, 93) and more than 50% of patients would be
complicated. Previous studies demonstrated that SLC26A6-null
mice have serious defects in the intestinal secretion of oxalate
which could lead to enhanced net oxalate absorption and result
in a high incidence of hyperoxemia, hyperuricemia and calcium
oxalate urolithiasis (9, 74). And nephrolithiasis in the SLC26A6-
null mouse is accompanied by 50–75% reduction in intestinal
oxalate secretion with increased intestinal oxalate absorption
(82). It has been shown that the activation of PKA signaling
pathway can enhance SLC26A6 surface protein expression and
increase the intrinsic activity of preexisting SLC26A6 surface
membrane transporters to stimulate oxalate transport (94).
Therefore, SLC26A6may be used as one of the therapeutic targets
for hyperoxaluria caused by various reasons.

SLC26A6 AND THE KIDNEY

Physiological Role of SLC26A6 in the
Kidney
There are two ways for the body to excrete oxalate, one is via
the intestinal tract as mentioned above, and the other is by
the kidneys. The majority of oxalate excretion in the human
body though the kidneys where 90–95% of circulating oxalate
is removed via the urine (95, 96), and the rest is secreted into
the intestine. When intestinal or kidney oxalate metabolism is
defective, it can lead to hyperoxaluria which is the main risk
factor for kidney stone formation (97). Calcium oxalate is the
primary element in 70–80% of kidney stones (98), and the
risk of stone formation was also affected by small changes in
urinary oxalate concentration (99). The expression of SLC26A6
can be detected on the apical membrane of the proximal duct
epithelium of the kidney (12), and the pivotal function of the
proximal tubule is to retrieve the majority of NaCl and water
filtered by the kidney. Previous studies have shown that oxalate
cloud stimulate the reabsorption of Cl− in the proximal tubule,
which means that the apical membrane Cl−/oxalate exchange
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FIGURE 4 | In the small intestinal villi epithelium, SLC26A6 is predominantly responsible for the basal HCO−

3 secretion of the upper villi, while SLC26A3 is responsible

for the lower villi.

mediates Cl− absorption as well as oxalate secretion (100–
102). Moreover, microperfusion studies found that SLC26A6 was
also the major apical Cl−/HCO−

3 exchangers in the proximal
tubule straight segments. Wang et al. proposed that the NaCl
reabsorption mediated by the Cl−/oxalate exchange in the
proximal tubule was entirely contributed by SLC26A6, and the
apical membrane Cl−/HCO−

3 exchange mediated by SLC26A6
was not a contributing factor to transtubular NaCl absorption
(18). The Cl−/oxalate exchange mediated by SLC26A6 in the
proximal tubule is essential for oxalate homeostasis (74). In
addition, AE1 and SLC26A7 distributed on the basolateral
membrane might participate in the transport of oxalate in the
tubule epithelium (46, 103). SLC26A1 is considered to mediate
basolateral oxalate-SO2−

4 /HCO−

3 exchange in the proximal
tubule (46). The function of SLC26A7 in the transport of oxalate
is unclear. In addition to mediate oxalate secretion, SLC26A6
also can form a complex with the succinate transporter NaDC-1
and strongly inhibit NaDC-1 activity and interact with NaDC-
1 to control absorption of citrate from the urinary lumen
(104). Urinary citrate can chelate free Ca2+ to protect against

Ca2+ oxalate crystallization. However, whether this mechanism
can prevent the occurrence of kidney stones remains to be
further studied.

SLC26A6 and Renal Diseases
Studies have indicated that SLC26A6-null mice have a 4-fold
increase in urine oxalate excretion (9, 74), but serum oxalate
levels were not apparently different between KO and WT mice,
although there was a tendency toward hyperoxalemia in the KO
mice (74). The high concentration of oxalate in the urine makes
the kidney stones appear high frequency in SLC26A6-null mice,
and the occurrence rate of male mice is higher than that of female
mice (9). In SLC26A6-null mice, histological examination of the
kidney demonstrated that the stones mainly comprise of calcium
oxalate, and are primarily found in the lumen of cortical tubules
and in the urinary space (9). Although a number of studies have
shown a close relationship between the expression of SLC26A6
and kidney stone formation, but its precise role in the human
diseases remain unknown (104–107). Studies have demonstrated
that SLC26A6 has fundamental roles not only in proximal tubule
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FIGURE 5 | In the small intestinal villi epithelium, SLC26A6 and other transports participate in the oxalate transport.

NaCl transport but also in the prevention of hyperoxaluria as well
as calcium oxalate nephrolithiasis. Therefore, further studies to
explore the metabolism of oxalate, absorption and excretion in
clinic is vital importance, and it may enhance oxalate excretion
in pharmacology to provide new therapeutic targets.

SLC26A6 AND THE HEART

Physiological Role of SLC26A6 in the Heart
The homeostasis of cardiomyocytes depends on cytoplasmic
buffer and membrane ion transporter, thus the regulation of
pH in cardiomyocytes is extremely complicated. pH is a vital
regulator of cardiac excitation and contraction (108), which
is an adverse contributing factor of electric arrhythmia and
cardiac hypertrophy (109). An uncompensated decrease in
cytoplasmic pH leads to abnormal electrical activities, reducing
Ca2+ transient and contraction in cardiomyocytes by potentially
decreasing the binding of Ca2+ to troponin C as well as
by affecting cross-bridges action resulting in maximal force
reduction (108, 110), which would trigger arrhythmia (111).
Inversely, twitch tension, resting tonic tension, voltage dependent
tonic tension, and after-contraction contractile parameters can
be enhanced with intracellular alkalosis in sheep cardiac fibers
(112). H+ equivalent transporters Na+/H+ exchanger (NHE)
and Na+-HCO−

3 co-transporter (NBC) mediate acid extrusion,
while Cl−/HCO−

3 exchangers and Cl−/OH− exchangers extrude
excess base (113, 114). Also, sarcolemmal lactic acid transporter
is recruited in response to increased anaerobic metabolism
(115). Under normal physiological state, the regulating system
can maintain the pH at a steady state value of 7.2. When

coupled with a Na+-dependent acid excretion mechanism,
Na+ loading increased Cl−/HCO−

3 exchange which can affect
myocardial contractility and promote cardiac hypertrophy (116).
Another function of Cl−/HCO−

3 exchange in the heart is to
counter the alkalinizing effects of Na+/H+ exchange (116, 117),
which can reduce the occurrence of cardiac hypertrophy (118,
119). SLC26A6, SLC26A3, and AEs (especially AE3) have been
found to mediate Cl−/HCO−

3 exchange in the myocardium (19,
120) (Figure 3). Immunohistochemistry showed that SLC26A6,
SLC26A3, and AE3 exist in the plasma membrane of ventricular
myocytes (19). The expression level of SLC26A6 is lower in the
atrium than in the ventricle, while AE3 is only detected in the
ventricle (19). SLC26A6 is the major anion exchanger in the heart
because the heart-dependent acid load is primarily mediated by
SLC26A6 and its expression in the myocardial cell membrane
is much higher than that of AE and SLC26A3 (19, 121).
Furthermore, recovery from alkalinization induced by acetate
is severely impaired in SLC26A6-null mice cardiomyocytes
(121). Of note that SLC26A6 is a dual Cl−/HCO−

3 , Cl
−/OH−

exchanger with unique implications for myocardial intracellular
pH regulation (19). Also, SLC26A6 is the most important
Cl−/HCO−

3 and Cl−/OH− exchanger for the myocardium
maintaining normal activity. However, SLC26A6 mediates the
physiological relevance of the Cl−/OH− exchange in the heart
is not clear yet. In addition, SLC26A6 and SLC26A3 are the only
Cl−/HCO−

3 exchangers of the SLC26 family that are expressed in
the heart (19). The cardiac SLC26A6 not only regulates the pH,
but also plays a unique role in regulating cardiac excitability and
function of heart. The study of Sirish et al. demonstrated that
SLC26A6 deletion resulted in the shortening of cardiac action
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potential (AP), cardiomyocyte Ca2+ transient and sarcoplasmic
reticulum Ca2+ loading decrease, cardiomyocyte diminution of
sarcomeric shortening, and cardiomyocyte pH elevation (121).
In SLC26A6-null mice, these factors lead to a decrease of cardiac
fractional shortening and cardiac contractility responses and
alter cardiac conduction system, as seen in sinus bradycardia
and fragmentation of the QRS electrocardiographic-recorded
complex (121).

SLC26A6 and Heart Diseases
SLC26A6 is considered to be a primary transporter in the heart
ventricle. Although the regulation mechanism of various ion
transporters is complicated (19), studies have demonstrated that
the expression of SLC26A6 and Cl− transporting activity are
upregulated in the type 2 diabetic heart model, which reveals
that effective SLC26A6 blockers may be efficient in regulating
pH of type 2 diabetic hearts (122). Additionally, Cl− influx
and HCO−

3 efflux mediated by SLC26A6 may be beneficial
to intracellular acidification in diabetic myocardium during
cardioplegia-induced arrest (122). Evidences reveal that protein
kinase C (PKC) can inhibit the transport activity of SLC26A6
(19, 123). The inhibitory effect of PKC is attributed to PKC-
mediated displacement owing to the combination of carbonic
anhydrase II and SLC26A6, and thus destroys the HCO−

3
transport metabolites (123). Therefore, in order to prevent
myocardial hypertrophy, attention should be paid to regulate
the function of myocardial SLC26A6 to ensure the acid-base
homeostasis of myocardial tissue. In the state of anesthesia and
intensive care, patients with basic heart diseases should minimize
the use of vasoactive drugs that stimulate α1-adrenergic receptors
to avoid insufficient myocardial contraction.

SLC26A6 AND THE PLACENTA

Sulfate is significant for human growth and development and
human usually get it from metabolism of sulfur-containing
amino acids and the diet in the body. Also, sulfate is an essential
nutrient for the growth and development of fetus (124). However,
the developing fetus have negligible capacity to generate sulfate
from methionine and cysteine (125, 126) and depends on
sulfate supplied from maternal circulation via placental sulfate
transporters (127). For human, several SO2−

4 transporters have
been detected in the placenta, which include SLC26A6 (21).

During the period of pregnancy, the level of maternal circulating
sulfate increases by nearly 2-fold (128), and the increased plasma
sulfate levels are associated with elevated sulfate reabsorption of
kidney (129). In the kidney, sulfate is filtered in the glomerulus
and then reabsorbed via epithelial cells of the proximal tubule,
firstly across the apical membrane where SLC13A1, SLC26A2,
and SLC26A6 are expressed and secondly via SLC26A1 on the
basolateral membrane (31, 46, 130). Therefore, maintaining the
normal function of SO2−

4 transporters, such as SLC26A6 in
the placenta is essential for fetal growth and development. In
future clinical applications, monitoring the function of placental
SO2−

4 transporters may be used to predict and evaluate neonatal
cartilage development.

CONCLUSION

In summary, SLC26A6 transporter mediates the exchange
of anions in mammalian cells, thereby participating in the
maintenance of normal physiological functions of various organs.
However, there are still many problems on SLC26A6 need to
be solved. Firstly, the transport base of SLC26A6 has not yet
been illuminated at the molecular level. Secondly, the cellular
mechanism that regulates and fine-tune the activity of SLC26A6
transporter has not been elucidated. Finally, it is about the
influence of the normal function and dysfunction of SLC26A6
on human related diseases. The connection and role of SLC26A6
with the body may become a research hotspot and may become
a new molecular marker for the diagnosis and treatment of
human-related diseases. The development of drugs targeting
SLC26A6 will provide new treatment directions for human-
related diseases.
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