
Epidemic potential of Escherichia coli
ST131 and Klebsiella pneumoniae ST258:
a systematic review and meta-analysis

M J D Dautzenberg,1,2 M R Haverkate,1 M J M Bonten,1,2 M C J Bootsma1,3

To cite: Dautzenberg MJD,
Haverkate MR, Bonten MJM,
et al. Epidemic potential of
Escherichia coli ST131 and
Klebsiella pneumoniae
ST258: a systematic review
and meta-analysis. BMJ Open
2016;6:e009971.
doi:10.1136/bmjopen-2015-
009971

▸ Prepublication history and
additional material is
available. To view please visit
the journal (http://dx.doi.org/
10.1136/bmjopen-2015-
009971).

MJDD and MRH contributed
equally.

Received 16 September 2015
Revised 15 December 2015
Accepted 15 January 2016

1Julius Center for Health
Sciences and Primary Care,
University Medical Center
Utrecht, Utrecht,
The Netherlands
2Department of Medical
Microbiology, University
Medical Center Utrecht,
Utrecht, The Netherlands
3Faculty of Sciences,
Department of Mathematics,
Utrecht University, Utrecht,
The Netherlands

Correspondence to
MR Haverkate;
m.r.haverkate-2@umcutrecht.
nl

ABSTRACT
Objectives: Observational studies have suggested that
Escherichia coli sequence type (ST) 131 and Klebsiella
pneumoniae ST258 have hyperendemic properties.
This would be obvious from continuously high
incidence and/or prevalence of carriage or infection
with these bacteria in specific patient populations.
Hyperendemicity could result from increased
transmissibility, longer duration of infectiousness, and/
or higher pathogenic potential as compared with other
lineages of the same species. The aim of our research
is to quantitatively estimate these critical parameters
for E. coli ST131 and K. pneumoniae ST258, in order
to investigate whether E. coli ST131 and K.
pneumoniae ST258 are truly hyperendemic clones.
Primary outcome measures: A systematic literature
search was performed to assess the evidence of
transmissibility, duration of infectiousness, and
pathogenicity for E. coli ST131 and K. pneumoniae
ST258. Meta-regression was performed to quantify
these characteristics.
Results: The systematic literature search yielded 639
articles, of which 19 data sources provided information
on transmissibility (E. coli ST131 n=9; K. pneumoniae
ST258 n=10)), 2 on duration of infectiousness (E. coli
ST131 n=2), and 324 on pathogenicity (E. coli ST131
n=285; K. pneumoniae ST258 n=39). Available data on
duration of carriage and on transmissibility were
insufficient for quantitative assessment. In
multivariable meta-regression E. coli isolates causing
infection were associated with ST131, compared to
isolates only causing colonisation, suggesting that E.
coli ST131 can be considered more pathogenic than
non-ST131 isolates. Date of isolation, location and
resistance mechanism also influenced the prevalence
of ST131. E. coli ST131 was 3.2 (95% CI 2.0 to 5.0)
times more pathogenic than non-ST131. For K.
pneumoniae ST258 there were not enough data for
meta-regression assessing the influence of colonisation
versus infection on ST258 prevalence.
Conclusions: With the currently available data, it
cannot be confirmed nor rejected, that E. coli ST131 or
K. pneumoniae ST258 are hyperendemic clones.

INTRODUCTION
Infections caused by Escherichia coli and
Klebsiella pneumoniae producing extended-

spectrum β-lactamases (ESBL) or carbapene-
mases, are increasing worldwide. There is
growing evidence that certain clonal lineages
of these species, such as E. coli sequence type
(ST) 131 and K. pneumoniae ST258, have
more epidemic potential than other lineages
within their species group. E. coli ST131 was
first described in 20081 and K. pneumoniae
ST258 in 2009.2 E. coli ST131 is reported
from around the globe, both in healthcare
settings and in the community,3 4 and is
mostly associated with ESBL production and
fluoroquinolone resistance.3 5 K. pneumoniae
ST258 is mainly associated with K. pneumo-
niae carbapenemase (KPC) production, and
other resistance mechanisms,6 and is wide-
spread in the USA, and expanding in
Europe.6–8 In the scientific literature, E. coli
ST131 and K. pneumoniae ST258 are widely
considered hyperendemic clones.3 5 6 8 9 But
the evidence underlying these assumptions is
not that obvious.3 5 If E. coli ST131 or K.
pneumoniae ST258 are truly hyperendemic
clones, interventions may be targeted to
these specific clones.
From a simple model in which patients

can be susceptible, colonised or infected
(figure 1), the characteristics of hyperende-
micity follow as explained below. Susceptible
hosts can acquire colonisation through

Strengths and limitations of this study

▪ A comprehensive literature search combined with
meta-regression analyses was performed to
quantify evidence of hyperendemicity of
Escherichia coli ST131 and Klebsiella pneumo-
niae ST258 focusing on transmissibility, dura-
tions of infectiousness and pathogenicity.

▪ There is a large heterogeneity in reported preva-
lences and a limited amount of data available on
transmissibility and duration of infectiousness.

▪ With the currently available data, it can neither
be confirmed nor rejected, that E. coli ST131 or
K. pneumoniae ST258 are hyperendemic clones.
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transmission, either directly (from another colonised or
infected person) or indirectly (from the environment or
via the hands of healthcare workers). Both colonised
and infected patients contribute to transmission, as long
as they are infectious, which can be expressed with the
duration of colonisation. Duration of colonisation can
be influenced by fitness cost associated with resistance
or by antibiotic use. Colonisation can proceed to infec-
tion, which typically occurs in a fraction of colonised
patients,10 and the rate of this progression can be
expressed as the pathogenicity level. Decolonisation can
occur in both colonised and infected persons.
To be hyperendemic, a clone has to have advantages

over other clones in at least one of the traits: transmissi-
bility, duration of colonisation or pathogenicity.
Therefore, we define a hyperendemic clone as ‘a clone
that is more transmissible, has a longer duration of col-
onisation, and/or is more pathogenic than other clones
of the same species’. The presence of any or more of
these traits will then lead to a continuously high inci-
dence and/or prevalence of carriage or disease in a spe-
cific patient population. We performed a systematic
review to quantitatively estimate these critical parameters
for E. coli ST131 and K. pneumoniae ST258, in order to
investigate whether E. coli ST131 and K. pneumoniae
ST258 are truly hyperendemic clones.

METHODS
Search strategy
A PubMed and EMBASE search was performed to
retrieve relevant articles published until 1 January 2015.
The complete search string can be found in online sup-
plementary text 1. A cross-reference check was per-
formed to include relevant articles not found during the
search. Only English, full-text articles were included.
Articles unavailable online were requested from the
authors. The Meta-analysis Of Observational Studies in
Epidemiology statement11 was followed for reporting in
this paper.

Study selection
Titles and abstracts were independently reviewed by two
reviewers (MRH and MJDD) and selected for further
review if they met the inclusion criteria. Selections were
compared between the two reviewers, and if consensus
was not reached, a third reviewer (MCJB or MJMB) was
consulted.

The inclusion criteria for articles on transmissibility
were that possible transmissions should be described,
and the number of cases should be reported. Outbreak
reports were included. Articles focusing on duration of
colonisation should include at least two cultures per
patient taken at two different time points. Pathogenicity
was defined as the difference in the prevalence of ST131
or ST258 in infections (clinical isolates) compared to
colonisation. We considered a clone to be more patho-
genic when the relative abundance of this clone in iso-
lates causing infections is higher compared to isolates
associated with colonisation. Therefore, articles on
pathogenicity of E. coli ST131 or K. pneumoniae ST258
should report the prevalence or incidence of infections
among patients colonised with E. coli ST131 or K. pneu-
moniae ST258, the prevalence of E. coli ST131 or K. pneu-
moniae ST258 among patients colonised with E. coli or K.
pneumoniae, respectively, or the prevalence of E. coli
ST131 or K. pneumoniae ST258 among at least 10 clinical
isolates of E. coli or K. pneumoniae, respectively.
Articles were excluded if they did not contain original

data (such as reviews, commentaries, or articles reusing
existing data sets), if they considered E. coli or K. pneumo-
niae only in non-human sources, or if there was no clear
information on the isolate collection or selection.

Data extraction
Data were extracted by the same two reviewers inde-
pendently, and crosschecked using a standard form
developed by the researchers. Data were collected on
population and setting, recording if participants were
inpatients, outpatients/community residents, travellers
or from another/unknown group. The area/region
where the study took place was recorded and categorised
into (mainly) from Africa, Asia, Australia, Europe, North
America and South America. It was recorded whether
data collection took place during an outbreak
period, and if a selection on antibiotic susceptibility or
resistance was made, divided into selection on ESBL/
AmpC-producing isolates (including third-generation
cephalosporin-resistant isolates), carbapenem-resistant
or carbapenemase-producing Enterobacteriaceae (CRE/
CPE, eg, KPC, OXA-48), other resistance profiles (eg,
ciprofloxacin-resistant, fluoroquinolone-susceptible or
multidrug resistant), or no selection on resistance.
Furthermore, the method to detect sequence types was
documented, split up into multilocus sequence typing

Figure 1 Simple model.
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(MLST, when all isolates were typed by MLST), extrapo-
lation based on pulsed-field gel electrophoresis (PFGE,
when only selected isolates were typed with MLST and
the sequence types were inferred based on PFGE type),
(PCR, when all isolated underwent PCR-screening for
ST-specific alleles), extrapolation based on PCR (mainly
MLST for E. coli isolates that were positive for
O25b-ST131 by PCR), or other/unknown (such as
fumC/fimH typing). Also, the sample site of the
included isolates (percentage of isolates isolated from
blood, urine, gastrointestinal, respiratory, wound/abscess
or other sites), and time period of the study were
recorded. For the time period, the middle date was used
in the model if the study covered a longer time period.
For transmissibility, if available, information was gath-

ered on admission prevalence, number of cases, number
of uncolonised patients and transmission measure given.
For duration of colonisation, the number of cases and
duration of colonisation was recorded. For pathogenicity,
information was collected on the prevalence or inci-
dence of infections in patients colonised with E. coli
ST131 or K. pneumoniae ST258, the prevalence of E. coli
ST131 or K. pneumoniae ST258 in patients colonised with
E. coli or K. pneumoniae, respectively, and/or the preva-
lence of E. coli ST131 or K. pneumoniae ST258 in patients
infected with E. coli or K. pneumoniae, respectively.
Quality of the included articles was assured by only

including papers with a proper selection of isolates.
Furthermore, quality was implicitly incorporated in the
data that were collected on the detection method used,
the sample sites, whether data were collected during an

outbreak and the setting and time period in which data
were collected.
Several studies allowed splitting the data into multiple

‘data sources’. For example, if data was available per
year or per country, these were recorded separately.
Figure 2 shows a flow diagram with the included and
excluded articles. Since only 19 data sources were avail-
able on transmissibility (9 on E. coli ST131 and10 on K.
pneumoniae ST258), and two on duration of colonisation
(both on E. coli ST131), we could only describe these
without quantifying summary measures. For pathogen-
icity, enough data was available on E. coli to do a
meta-regression analysis and calculate summary
measures.

Meta-regression pathogenicity
In order to evaluate the pathogenicity of E. coli ST131
and K. pneumoniae ST258, and to assess which factors
influence this, meta-regression was performed using all
reported data on the prevalence of E. coli ST131 in clin-
ical (infection) or screening (colonisation) isolates of E.
coli, and for all reported data on the prevalence of K.
pneumoniae ST258 in clinical (infection) isolates of K.
pneumoniae. The prevalence estimates (calculated as the
number of ST131-positive or ST258-positive isolates
divided by the total number of E. coli or K. pneumoniae
isolates, respectively) and standard errors (SEs) were
logit transformed in the analysis. Heterogeneity
between studies was evaluated with Cochrans’s Q and
the I2 statistic.12 Because of high heterogeneity
(I2 >75%), a meta-analysis using a generalised linear

Figure 2 Flow chart of article selection.
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mixed-effect model with random effects per data source
was used to assess sources of variability in the overall
prevalence estimates. Univariate analyses were per-
formed to identify covariates associated with the overall
prevalence estimates. All covariates with a p value <0.20
were included in the multivariate model, and backward
selection was performed using the likelihood ratio test.
There, as we are performing an exploratory analysis, a
cut-off of p<0.10 was used to determine statistical signifi-
cance. The variable describing sample site was not
included in the models, because of great dependency
on the type of isolate (clinical or screening isolate, eg,
blood isolates representing infection), and the effect of
culture site, might not be comparable for isolates repre-
senting colonisation or infection. The estimated
between-study variance (τ2) was evaluated for the model
with and without explanatory parameters. The exponent
of the coefficient for colonisation/infection found in
the metaregression model is an OR, which can be inter-
preted as a risk ratio. This was taken as a measure of
how much more pathogenic E. coli ST131 was compared
to non-ST131, that is, a value of 2 would indicate that
per colonised day colonisation with ST131 leads two
times more often to an infection as compared to colon-
isation with non-ST131. All analyses were performed
in R V.3.0.3 (http://CRAN.R-project.org) using the
‘metafor’ package.

RESULTS
In all, 345 useful data sources were identified (see
figure 2 for the consecutive steps followed for identifi-
cation). For transmissibility, 19 data sources were identi-
fied; for duration of carriage, 2; and for pathogenicity,
324. Most studies (n=206, 72%) were performed in
Europe and North America, and 266 (93%) were per-
formed in a non-outbreak setting (table 1). E. coli iso-
lates were most selected on ESBL production or
resistance against third-generation cephalosporins, and
K. pneumoniae isolates on being CRE/CPE. Colonisation
isolates were most often from gastrointestinal origin
(85.2%), and infection isolates from urine (54.8%) or
blood (24.5%).

Transmissibility
There were 19 studies reporting transmissibility of E. coli
ST131 (n=9) and K. pneumoniae ST258 (n=10), some
being case reports or describing single possible transmis-
sion events (table 2). Transmission events for E. coli
ST131 have been described or suggested in household
(n=4), day care (n=1), nursing home (n=1) and hospital
settings (n=4). For K. pneumoniae ST258 all sources
reported on transmission events in hospital settings, and
all included CRE/CPE.
Transmissibility can be quantified by the number of

transmissions per patient, or patient-days at risk, which
requires information on the number of index cases,
number of transmissions, and number of days or

patients at risk. Yet, one or more of these aspects, espe-
cially time at risk, is missing in all studies but one. Most
studies are cross-sectional studies, in which transmission
cannot be proven.
Differences in transmission capacity between E. coli

ST131 and non-ST131, or between K. pneumoniae ST258
and non-ST258, have not been quantified, precluding
any conclusion on the relative transmissibility of E. coli
ST131 and K. pneumoniae ST258 compared to other
clonal lineages.

Duration of carriage
The duration of carriage of E. coli ST131 was investigated
in two studies. In one study, colonisation with E. coli was
still apparent after 12 months in 64% (n=9), and 40%
(n=14) of those carrying E. coli ST131 or other STs,
respectively (p=0.12).32 In another study, of two patients
acquiring colonisation with E. coli ST131 during travel,
one was a prolonged carrier with this strain. However,
the definition of prolonged carriage was not given.33

The duration of carriage of K. pneumoniae ST258 has not
been determined.

Pathogenicity
E. coli
From 285 data sources, we retrieved data from 34 253 E.
coli isolates (2041 associated with colonisation and
32 212 with infection). Prevalence of E. coli ST131 in
these studies ranged from 0% to 100% (see online
supplementary figure S1), with high statistical hetero-
geneity between studies (I²=96.9%).
In univariable meta-regression the E. coli ST131 preva-

lence in individual studies increased in time, and
appeared to be influenced by whether isolates were asso-
ciated with infection or colonisation, resistance patterns
used for isolate selection and location, where the study
was performed (p value <0.20; table 3). These variables
were included in the multivariable meta-regression
model, and time, location and selection remained
significantly associated with E. coli ST131 prevalence
(table 4). No significant effects were present for study
population, microbiological methods used to detect
ST131, or whether the study was performed in an out-
break situation or not.
The prevalence of ST131 was highest if E. coli isolates

were selected upon the presence of ESBL production,
or third-generation cephalosporin resistance, and lowest
if derived from non-selective media. Prevalence of E. coli
ST131 was highest in North America, and lowest in
South America. The estimated prevalence of ST131 in E.
coli, given particular values of the covariates, can be
derived from the regression equation (table 4). For
example, the estimated logit (prevalence ST131) for iso-
lates causing infection, selected on presence of ESBL, in
North America in January 2010 is given by 2.9668
+12×0.0140+1.1545+1.3826+0.4436=0.1819, which corre-
sponds to a prevalence of ST131 of exp(0.1819)/(1+exp
(0.1819))=54.5%. The estimated prevalence in the
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Table 1 Characteristics of included studies

EC

transmissibility

(n=9)

KP

transmissibility

(n=10)

EC

duration

(n=2)

EC

pathogenicity

colonisation

(n=35)

EC

pathogenicity

infection

(n=249)

KP

pathogenicity

colonisation

(n=3)

KP

pathogenicity

infection

(n=35)

KP

pathogenicity

colonisation

and infection

(n=1)

Number of isolates (mean, SD) 58 (67) 129 (357) 59 (69) 40 (64)

Number of isolates (median, IQR) 36 (21–62) 53 (20–115) 36 (20–87) 20 (14–41)

Population—inpatients 2 (22.2%) 8 (80.0%) 1 (50.0%) 11 (31.4%) 128 (51.4%) 3 (100.0%) 24 (68.6%) 0 (0.0%)

Population—outpatients/

community

6 (66.7%) 2 (20.0%) 0 (0.0%) 18 (51.4%) 25 (10.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Population—mixed 1 (11.1%) 0 (0.0%) 0 (0.0%) 2 (5.7%) 63 (25.3%) 0 (0.0%) 2 (5.7%) 1 (100.0%)

Population—travellers 0 (0.0%) 0 (0.0%) 1 (50.0%) 3 (8.6%) 3 (1.2%) 0 (0.0%) 1 (2.9%) 0 (0.0%)

Population—other/unknown 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 30 (12.0%) 0 (0.0%) 9 (25.7%) 0 (0.0%)

Continent—Africa 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (5.7%) 16 (6.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Continent—Asia 2 (22.2%) 0 (0.0%) 0 (0.0%) 9 (25.7%) 42 (16.9%) 0 (0.0%) 4 (11.4%) 0 (0.0%)

Continent—Australia 0 (0.0%) 0 (0.0%) 1 (50.0%) 3 (8.6%) 10 (4.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Continent—Europe 4 (44.4%) 7 (70.0%) 1 (50.0%) 14 (40.0%) 96 (38.6%) 2 (66.7%) 14 (40.0%) 0 (0.0%)

Continent—North America 3 (33.3%) 1 (10.0%) 0 (0.0%) 7 (20.0%) 79 (31.7%) 1 (33.3%) 11 (31.4%) 1 (100.0%)

Continent—South America 0 (0.0%) 2 (20.0%) 0 (0.0%) 0 (0.0%) 6 (2.4%) 0 (0.0%) 6 (17.1%) 0 (0.0%)

Outbreak setting 3 (33.3%) 10 (100.0%) 0 (0.0%) 1 (2.9%) 4 (1.6%) 1 (33.3%) 8 (22.9%) 0 (0.0%)

Selection—ESBL/3GC-R 8 (88.9%) 0 (0.0%) 1 (50.0%) 23 (65.7%) 182 (73.1%) 2 (66.7%) 0 (0.0%) 0 (0.0%)

Selection—CRE/CPE 0 (0.0%) 9 (90.0%) 0 (0.0%) 0 (0.0%) 8 (3.2%) 1 (33.3%) 29 (82.9%) 1 (100.0%)

Selection—other 1 (11.1%) 0 (0.0%) 1 (50.0%) 5 (14.3%) 31 (12.4%) 0 (0.0%) 5 (14.3%) 0 (0.0%)

Selection—none 0 (0.0%) 1 (10.0%) 0 (0.0%) 7 (20.0%) 28 (11.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Detection—MLST 6 (66.7%) 4 (40.0%) 0 (0.0%) 10 (28.6%) 134 (53.8%) 1 (33.3%) 25 (71.4%) 0 (0.0%)

Detection—extrapolation based

on PFGE

1 (11.1%) 3 (30.0%) 0 (0.0%) 3 (8.6%) 15 (6.0%) 1 (33.3%) 9 (25.7%) 1 (100.0%)

Detection—extrapolation based

on PCR

2 (22.2%) 0 (0.0%) 2 (100.0%) 21 (60.0%) 83 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Detection—CH 0 (0.0%) 1 (10.0%) 0 (0.0%) 0 (0.0%) 13 (5.2%) 1 (33.3%) 0 (0.0%) 0 (0.0%)

Detection—other/unknown 0 (0.0%) 2 (20.0%) 0 (0.0%) 1 (2.9%) 4 (1.6%) 0 (0.0%) 1 (2.9%) 0 (0.0%)

Site—blood 1 (11.1%) 3 (30.0%) 0 (0.0%) 0 (0.0%) 64 (25.7%) 0 (0.0%) 7 (20.0%) 0 (0.0%)

Site—urine 2 (22.2%) 3 (30.0%) 1 (50.0%) 2 (5.7%) 143 (57.4%) 1 (33.3%) 12 (34.3%) 1 (100.0%)

Site—gastrointestinal tract 6 (66.7%) 3 (30.0%) 1 (50.0%) 32 (91.4%) 5 (2.0%) 1 (33.3%) 7 (20.0%) 0 (0.0%)

Site—respiratory tract 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (2.9%) 3 (1.2%) 1 (33.3%) 3 (8.6%) 0 (0.0%)

Site—wound 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Site—other/unknown 0 (0.0%) 1 (10.0%) 0 (0.0%) 0 (0.0%) 33 (13.3%) 0 (0.0%) 6 (17.1%) 0 (0.0%)

CH, fumC/fimH typing; CPE, carbapenemase-producing Enterobacteriaceae; CRE, carbapenem-resistant Enterobacteriaceae; EC, Escherichia coli; ESBL, extended-spectrum beta-lactamase;
KP, Klebsiella pneumoniae; KPC, Klebsiella pneumoniae carbapenemase; MLST, multilocus sequence typing; PFGE, pulsed-field gel electrophoresis; Site, site from which most isolates were
identified.

Dautzenberg
M
JD,etal.BM

J
Open

2016;6:e009971.doi:10.1136/bm
jopen-2015-009971

5

O
p
e
n
A
c
c
e
s
s



Table 2 Summary of articles describing transmissibility of Escherichia coli ST131 and Klebsiella pneumoniae ST258

Author (year) Country Year Setting Organism

Resistance

mechanism

Index

cases

(n)

Secondary

cases (n) Uncolonised Exposure time

Veenemans

(2014)13
The

Netherlands

2013 Nursing homes E. coli ST131 ESBL 5 and 3

Kojima

(2014)14
Japan 2009–2010 Household E. coli ST131 ESBL 1 2

Blanc (2014)15 France 2012 Day care centers E. coli ST131 ESBL 7

Giuffrè

(2013)16
Italy 2012 Neonatal intensive

care unit

E. coli ST131 ESBL 15 88

Adler (2012)17 Israel 2008–2009 Geriatric rehabilitation

wards

E. coli ST131 ESBL 21 23 367

E. coli non-ST131 ESBL 31 36 367

Hilty (2012)18 Switzerland 2008–2010 University hospital E. coli ST131 ESBL 13 2 36 48 index

inpatients for a

total of 400 000

patient-days

E. coli non-ST131 ESBL 27 2 48

Household E. coli ST131 ESBL 15 7 19

E. coli non-ST131 ESBL 42 13 49

Owens

(2011)19
USA Before 2011 Household E. coli ST131 ESBL 2

Johnson

(2010)20
USA Before 2010 Household E. coli ST131 Fluoro-quinolone

resistance

1 1 1

Ender (2009)21 USA Before 2009 Hospital E. coli ST131 ESBL 1 1

Marquez

(2014)22
Uruguay 2011 Intensive care unit K. pneumoniae ST258 KPC 1 1 3

Garza-Ramos

(2014)23
Mexico 2012–2013 2 Hospitals K. pneumoniae ST258 KPC 15 and 3

Gaibani

(2014)24
Italy 2010 Hospital K. pneumoniae ST258 KPC 11

Giuffrè

(2013)25
Italy 2012 Neonatal intensive

care unit

K. pneumoniae ST258 KPC 10 44

Tofteland

(2013)26
Norway 2010 Intensive care unit K. pneumoniae ST258 KPC 6

Morris

(2012)27
Ireland 2011 2 Hospitals K. pneumoniae ST258 KPC 11

Agodi (2011)28 Italy 2009 Hospital K. pneumoniae ST258 KPC 16

Won (2011)29 USA 2008 Acute care hospitals

and long-term acute

care hospitals

K. pneumoniae ST258 KPC 33 (+7 presumed

cases)

Marchese

(2010)30
Italy 2009 Neuro-rehabilitation

unit

K. pneumoniae ST258 KPC 4 (+3 at time of

publication)

Mammina

(2010)31
Italy 2009 Intensive care unit K. pneumoniae ST258 KPC 13
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reference category ( January 2009, colonisation, no selec-
tion on resistant profile, Europe) is exp(−2.9668)/(1
+exp(−2.9668))=4.9%.
In the multivariable meta-regression model, E. coli

ST131 was significantly associated with infection com-
pared to colonisation, suggesting that ST131 isolates are
more pathogenic than non-ST131 isolates. From the
infection/colonisation coefficient, we can calculate the
relative pathogenicity of E. coli ST131 compared to
non-ST131. We found that E. coli ST131 is 3.2 (95% CI
2.0 to 5.0) times more pathogenic than non-ST131.
Online supplementary figure S2 shows the proportion of
ST131 found in infection isolates compared to colonisa-
tion isolates as estimated by the meta-regression model.
The estimated between-study variance (τ2) reduced

from 1.68 in the model without parameters to 1.1 in the
final model, implying that a high level of heterogeneity
remained.

K. pneumoniae
There were 35 and three data sources providing infor-
mation on the prevalence of ST258 K. pneumoniae in
clinical and colonising isolates, respectively (see online
supplementary figure S3). Because of limited data on
colonisation, quantitative analyses were performed for
clinical isolates only.
In the univariable meta-regression model, outbreak

setting yes/no, selection of isolates based on resistance
pattern, study population and geographic location were
all associated with a higher prevalence of ST258 with a p
value <0.20 and were, thus, included in the multivariable
model (table 5). If data were collected during an out-
break of K. pneumoniae, this was associated with a higher
prevalence of ST258 (table 6). Furthermore, the model
yielded a significant effect of resistance patterns on the
prevalence of ST258 in K. pneumoniae. ST258 prevalence
was associated with selection of isolates on
CRE-positivity, but the number of data sources describ-
ing isolates that are not CRE/CPE is low and varied
(n=5). Furthermore, study population characteristics
also appeared to influence ST258 prevalence in K. pneu-
moniae, with higher prevalence of ST258 in inpatients,
compared to ‘other’ populations. Yet, the ‘other’ group
is not defined accurately, precluding firm conclusions.
Only one data source was available for outpatients or
persons residing in the community. Finally, the reported
ST258 prevalence was lower in Asia and Australia than
in other continents.

Table 3 Effect of covariates on prevalence of ST131 in

Escherichia coli (univariable random effects

meta-regression models)

p Value

Study period (per month*) 0.0011

Infection or colonisation 0.0002

Colonisation

Infection

Outbreak setting 0.9112

Selection of isolates based on resistance

pattern

<0.0001

No selection on resistance profile

ESBL/3GC-R

CRE/CPE

Other

Study population 0.6219

Inpatients

Outpatients/community

Mixed

Travellers

Other/unknown

Location <0.0001

Europe

North America

South America

Australia

Asia

Africa

Method used to detect ST131 0.3598

MLST

Extrapolation based on PFGE

PCR

Extrapolation based on PCR

Other/unknown

*Reference date: 1 January 2009.
CRE/CPE, carbapenem-resistant Enterobacteriaceae/
carbapenemase-producing Enterobacteriaceae; ESBL/3GC-R,
extended-spectrum β-lactamases/third-generation cephalosporin
resistance; MLST, multi-locus sequence typing; PFGE.
pulsed-field gel electrophoresis.

Table 4 Effect of covariates on prevalence of ST131 in

Escherichia coli (multivariable random effects

meta-regression model)

Estimate (SE*) p Value

Intercept −2.9668 (0.2959)

Study period (per month†) 0.0140 (0.0023) <0.0001

Infection or colonisation <0.0001

Colonisation Reference

Infection 1.1545 (0.2281)

Selection of isolates based

on resistance pattern

<0.0001

No selection on resistance

profile

Reference

ESBL/3GC-R 1.3826 (0.2207)

CRE/CPE 0.5994 (0.4879)

Other 0.9058 (0.2709)

Location <0.0001

Europe Reference

North America 0.4436 (0.1675)

South America −2.2868 (0.6101)

Australia −0.4209 (0.3407)

Asia −0.3657 (0.1927)

Africa −0.2246 (0.3154)

*Parameter estimates (SEs) are presented on a logit scale.
†Reference date: 1 January 2009.
CRE/CPE, carbapenem-resistant Enterobacteriaceae/
carbapenemase-producing Enterobacteriaceae; ESBL/3GC-R,
extended-spectrum β-lactamases/third-generation cephalosporin
resistance.
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The estimated prevalence of ST258 in K. pneumoniae,
given particular values of the covariates, can be derived
from the regression equation. For example, the esti-
mated logit (prevalence of ST258) for isolates selected
on presence of CRE in hospital inpatients in North
America during an outbreak is given by −0.0.0320

+2.8038+0.3332=3.1050, which corresponds to a preva-
lence of ST258 of exp(3.1050)/(1+exp(3.1050)=95.7%.
The estimated prevalence in the reference category
(during an outbreak, non CRE/CPE, hospital inpatients,
Europe) is exp(−0.0320)/(1+exp(−0.0320))=50.8%.
The estimated between-study variance (τ2) reduced

from 6.43 in the model without parameters to 2.25 in
the final model, indicating a considerable improvement,
but still a high level of heterogeneity.
ST258 was not detected in two studies reporting on

colonisation with K. pneumoniae, that included 36 and 4
isolates, respectively.184 219 Only from the study of van
Duin et al224 can we deduce a prevalence of ST258 in K.
pneumoniae of 31% in colonising isolates. This precludes
any quantification of the pathogenicity of K. pneumoniae
ST258.
The only study in which both colonisation and infec-

tion with K. pneumoniae ST258 were investigated
included a set of seven KPC-producing K. pneumoniae
ST258 isolates collected from a long-term acute-care
facility in South Florida.245 Three patients were colo-
nised, and four had both colonisation and infection.
Again, the sample size is too small for drawing
conclusions.

DISCUSSION
Based on published information, we conclude that there
is evidence that E. coli ST131 is more pathogenic than E.
coli non-ST131, but not for increased transmissibility or
prolonged duration of carriage. Because of the hetero-
geneity in the data, it cannot be concluded (nor
rejected) that E. coli ST131 is a hyperendemic clone. For
K. pneumoniae ST258, the published data precluded any
conclusion on increased transmissibility, longer duration
of carriage or increased pathogenicity.
Several limitations in our study should be acknowl-

edged. Because of our search strategy, the prevalence of
E. coli ST131 and K. pneumoniae ST258 that were
retrieved are likely overestimations of the real preva-
lence. We required the articles to report ST131/ST258
in their title and/or abstract, and therefore, articles that
did not report this, or that did not detect ST131/ST258
in their study, may have been missed. Since the preva-
lence is dependent on factors including time, location,
resistance pattern, population studied and possibly vari-
ables not included in this review (eg, patient-specific
details like age, gender), we deemed it not meaningful
to estimate an overall prevalence of ST131 in E. coli or
ST258 in K. pneumoniae.
We also did not create a funnel plot to assess publica-

tion bias, as such an analysis also assumes that there is
one overall effect or prevalence. Thus, publication bias
cannot be excluded. It is possible that identification of
E. coli ST131 or K. pneumoniae ST258 stimulates publica-
tion because of the current interest in these clones.
However, this will most likely equally influence studies
reporting infection and colonisation isolates, which

Table 5 Effect of covariates on prevalence of ST258 in

clinical isolates of Klebsiella pneumoniae (univariable

random effects meta-regression models)

p Value

Study period (per month*) 0.6109

Outbreak setting 0.0052

Selection of isolates based on resistance pattern 0.0543

Non-CRE/CPE

CRE/CPE

Study population 0.0265

Inpatients

Mixed

Other/unknown

Location 0.1013

Europe

North America

South America

Asia (including Australia)

Method used to detect ST258 0.2253

MLST

Extrapolation based on PFGE

*Reference date: 1 January 2009.
CRE/CPE, carbapenem-resistant Enterobacteriaceae/
carbapenemase-producing Enterobacteriaceae; MLST, multi-locus
sequence typing; PFGE, pulsed-field gel electrophoresis.

Table 6 Effect of covariates on prevalence of ST258 in

clinical isolates of Klebsiella pneumoniae (multivariable

random effects meta-regression model)

Estimate (SE*) p Value

Intercept −0.0320 (1.0008) 0.9745

Outbreak setting <0.05

Yes Reference

No −1.7725 (0.7833)

Selection of isolates based

on resistance pattern

<0.01

Non-CRE/CPE Reference

CRE/CPE 2.8038 (0.9445)

Study population <0.01

Inpatients Reference

Mixed −3.8232 (1.5480)

Other/unknown −2.2908 (0.7255)

Location <0.05

Europe Reference

North America 0.3332 (0.7607)

South America 0.4213 (0.9038)

Asia (including Australia) −2.0716 (0.7833)

*Parameter estimates (SEs) are presented on a logit scale.
CRE/CPE, carbapenem-resistant Enterobacteriaceae/
carbapenemase-producing Enterobacteriaceae.
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would not influence our conclusions. Also, the finding
of ESBL or KPC might instigate investigation of
sequence types. As 70% of the included studies on E. coli
selected isolates based on the presence of ESBL or
3GC-R, our findings might be more applicable to
ESBL-producing E. coli ST131 than all E. coli ST131 in
general. The same holds for K. pneumoniae, for which
around 90% of included studies selected isolates based
on the presence of carbapenemase production of carba-
penem resistance, mainly corresponding to KPC produc-
tion. In our analysis, we used grouped variables (eg,
continent instead of country), as there are limitations to
the number of variables that can be studied.
There could also be differences in detecting infection

and colonisation-associated isolates. Infection isolates
are mainly collected retrospectively, when a pattern or
outbreak is recognised, whereas, colonisation isolates
are more often collected prospectively. Yet, since deter-
mination of sequence types is unambiguous, it is
unlikely that such differences have affected our
conclusions.
Our analysis clearly demonstrates that more—and

better designed—studies are needed to determine
whether E. coli ST131 and K. pneumoniae ST258 are truly
hyperendemic clones. This would be possible with a pro-
spective cohort study of a population (eg, the general
population or hospitalised patients) with a certain
contact structure, in which carriage with E. coli or K.
pneumoniae is regularly (eg, weekly or monthly) deter-
mined. As K. pneumoniae ST258 is mainly a
healthcare-associated pathogen, choice of study popula-
tion might be different than for E. coli ST131, that is also
a community-associated pathogen. For determination of
transmissibility, genotyping should be performed, prefer-
ably with highly discriminatory methods, and preferably
with inclusion of multiple isolates per patient.246 The
duration of exposure to persons colonised or infected
with E. coli ST131/K. pneumoniae ST258 should be deter-
mined to calculate the number of acquisitions per unit
of time. Carriers could be studied in more detail to
determine the duration of carriage and the infection
rate (and duration until infection), preferably with inclu-
sion of the effects of antibiotic use on these parameters.
There should be a sufficient duration of follow-up, and
isolates should be characterised to determine whether
multiple isolates represent persistent carriage or recol-
onisation with different strains.
In conclusion, current evidence does not allow the

conclusion that E. coli ST131 and K. pneumoniae ST258
are hyperendemic clones.
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