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a b s t r a c t

The speed by which the COVID-19 pandemic spread throughout the world makes the emergency
services unprepared to answer all the patients’ requests. The Tunisian ministry of health established
a protocol planning the sample collection from the patients at their location. A triage score is first
assigned to each patient according to the symptoms he is showing, and his health conditions. Then,
given the limited number of the available ambulances in each area, the location of the patients and the
capacity of the nearby hospitals for receiving the testing samples, an ambulance scheduling and routing
plan needs to be established so that specimens can be transferred to hospitals in short time. In this
paper, we propose to model this problem as a Multi-Origin–Destination Team Orienteering Problem
(MODTOP). The objective is to find the optimal one day tour plan for the available ambulances that
maximizes the collected scores of visited patients while respecting duration and capacity constraints.
To solve this NP-hard problem, two highly effective approaches are proposed which are Hybrid Genetic
Algorithm (HGA) and Memetic Algorithm (MA). The HGA combines (i) a k-means construction method
for initial population generation and (ii) a one point crossover operator for solution recombination.
The MA is an improvement of HGA that integrates an effective local search based on three different
neighborhood structures. Computational experiments, supported by a statistical analysis on benchmark
data sets, illustrate the efficiency of the proposed approaches. HGA and MA reached the best known
solutions in 54.7% and 73.5% of instances, respectively. Likewise, MA reached a relative error of 0.0675%
and performed better than four existing approaches. Real-case instances derived from the city of Tunis
were also solved and compared with the results of an exact solver Cplex to validate the effectiveness
of our algorithm.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the emergence of the COVID-19 pandemic, many health-
are facilities found themselves overwhelmed by the number
f patients. The hospitals were not an exception as they were
truggling to deal with the outbreak of the fast-moving pandemic
pread. Several logistic management problems were raised due to
imited resources and unusual time pressure. We herein cite some
ecent researches carried to tackle routing problems related to the
andemic. For instance, Pacheco et al. [1] studied the problem of
ehicle routing for the urgent delivery of face shields during the
OVID-19 pandemic in Spain. The problem was modeled as a pick
p and delivery Vehicle Routing Problem (VRP) variant, where
ifferent drivers volunteers to pick up face shields from makers,
eliver material to face shield makers and deliver face shields
o demand points. A heuristic based on a multi-start insertion
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algorithm was implemented. Recently, Singgih [2] considered the
problem of deployment of mobile laboratories that are equipped
with the testing capability to handle the over-demand situation
in Indonesia during COVID-19 pandemic. The author presented a
heuristic method to define the optimal location of a single mobile
laboratory. Zhang et al. [3] studied the problem of transport of
high-risk individuals being transferred for medical isolation in
epidemic areas in China where the number of available quaran-
tine vehicles is limited. The problem was solved using a water
wave optimization metaheuristic. Chen et al. [4] designed a multi-
vehicle multi-trip routing problem to model the contactless food
distribution for closed gated communities.

In this paper, we consider another major issue encountered
during the pandemic: how to manage the logistics associated
with the collection of patients’ specimens at their places. We
should first highlight the fact that at-home testing of suspect
COVID-19 cases could ease pressure on hospitals and emergency
services and prevent the spread of infection. Hence, the trans-
portation of specimens in a reliable and efficient manner is essen-
tial for effective patient care, allowing faster diagnosis and patient
treatment.
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Exploring the Tunisian case, at the early stage of the pandemic,
a special hotline was deployed to answer the requests of patients.
The first step of the protocol consists in receiving the patient calls
notifying the facility that they are seeking care due to COVID-
19 symptoms (e.g. fever, cough, fatigue, headache, shortness of
breath, loss of smell or taste, sore throat or other). The severity
of COVID-19 symptoms can range from very mild to severe. For
instance, people who are older have a higher risk of enduring
severe conditions from COVID-19, and the risk increases with
age. People who have existing chronic medical conditions also
may have a higher risk of serious illness. Another important
information, is about the social circle of people the patient met
lately, if they had a close contact with someone who has COVID-
19 or if they have traveled to/from hot-spots areas. According to
the different information, a first triage of the demands in done to
assign scores to the different requests. Given the limited size of
the ambulances fleet available to carry the specimens collection
task, the logistic management was a challenging problem.

In this paper, we propose a solution approach to find an
efficient routing plan for the set of ambulances collecting the
patients’ specimens at their locations. The objective is to respond
to the maximum number of requests by maximizing the collected
patients’ scores. Each ambulance route starts from a given depot
in the target testing area, and finishes its one day tour at a
hospital having a COVID-19 laboratory. As the testing capacities
for each hospital are limited by the number of testing kit supplies
and working hours of the health officers, the number of collected
specimens at one hospital should not exceed this capacity. The
problem is modeled as an integer linear problem, derived from
team orienteering vehicle routing problem (TOP) [5,6].

The TOP was first proposed by Chao et al. in 1996 [5]. It
can be represented by a directed complete graph where start
and end points are specified along with other customers. Each
customer has an associated score. The goal is to determine a
fixed number of routes, limited in length, that visit some loca-
tions and maximize the sum of the collected scores. Furthermore,
each customer can be served at most once. The TOP was used
to model different routing problems in rescue and emergency
situations [7–10]. Given the computational challenge of TOP (NP-
hard), heuristic and metaheuristic algorithms are very suitable
for finding near-optimal solutions for large sized instances that
cannot be solved exactly in an acceptable computation time [5].

Our problem differs from the well-known TOP through the
assumptions that the final depot has a determined capacity and
also by the fact that the ambulances are located in different
starting points. The considered problem can be also defined as
an open VRP [11] given that the itinerary of an ambulance is not
a closed circuit. We also assume that the generated route ends at
one of the hospitals having capacity restrictions. An illustrative
example of ambulance routing in the city of Tunis is presented in
Fig. 1.

As a solution approach, we propose two variants of genetic
algorithms.

• A Hybrid Genetic Algorithm (HGA) that combines k-means
method with regular evolutionary operators. The initial pop-
ulation is generated based on a cluster-first route-second
approach which starts by grouping the patients into a set of
clusters based on their locations. The number of clusters is
equal to the number of available ambulances. Then, in order
to get the routes, a scheduling of the patients is performed
for each cluster without violating the route duration and
hospital capacity constraints. A one point crossover operator
is used for solution recombination, and a inversion and swap
operators are used for the mutation task.
2

Fig. 1. Illustrative example of ambulance routing problem in Tunis city.

• A Memetic Algorithm (MA) that integrates a Local Search
(LS) procedure into the HGA to strengthen the exploitation
process and enhance its performance. The main concept of
LS technique is to improve interactively the solution using
local modifications. The proposed version of MA is based on
three effective neighborhood structures which are designed
to expand the search space and accelerate the convergence
of HGA. In summary, the key point is that both genetic oper-
ators and LS neighborhood structures are carefully selected
in order to run jointly when producing the solution.

In the literature, GAs have for long been recognized as power-
ful optimization tools for complex routing problems [12]. Also,
numerous local search heuristics [13] showed very promising
results on solving different TOP extensions [14,15]. MA offers
a framework to combine the exploration power of GA and the
exploitation effectiveness of local search. Such combination out-
comes a robust metaheuristic that has demonstrated a significant
success to handle several NP-hard problems [16]. Motivated by
these facts, we propose to implement an HGA and an MA to tackle
the TOP.

In order to validate our proposed algorithms, we experiment
it using a TSP-based benchmark proposed by Fischetti et al. [17].
Computational experiments include a comparison of our algo-
rithms with five existing methods from the literature as well as a
real-word case study. HGA and MA reached the best known solu-
tions in 54.7% and 73.5% of instances, respectively. In terms of the
number of average relative percentage deviation, MA produced
challenging results by achieving 0.0675% and performed better
than four state-of-the-art approaches.

To make more rigorous comparisons, statistical tests have
been conducted and proved the competitiveness of our
approaches versus the state-of-the-art methods.

The experiments on a real case data set show that the MA
improves consistently the exploration of the search space as it
produces high quality solutions compared to the HGA. We should
note that this enhanced algorithm performance in solving the
MODTOP is to the detriment of the required running time.

The remainder of this paper is structured as follows. Section 2
reviews the related work. Section 3 presents the problem descrip-
tion and the proposed mathematical model. Section 4 details the
proposed approach and its implementation. Section 5 describes
the computational results and comparisons with state-of-the-art
approaches. Finally, conclusions and future research directions
are provided in Section 6.
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. Related work

With the fast spread of COVID-19 pandemic, several concerns
ave been increased regarding the performance of healthcare
ystems to handle the permanent emergencies. Trying to cope
ith the pandemic situation, different studies considered the
roblems relative to healthcare rescue, ambulance routing and
mergency states. These problems are based on the timely deliv-
ry of services/rescue or needed supplies to different locations.
badi et al. [18] proposed a model of the hybrid salp swarm
lgorithm and genetic algorithm to solve nurses’ scheduling and
esignation problem during COVID-19 pandemic. However the
ost important problem in the healthcare optimization context is

he ambulances management, allocation and routing especially in
OVID-19 context [19]. Cerna et al. [20] evoked the COVID-19 im-
act on ambulances’ turnaround time and proposed a two-stage
achine learning methodology to solve the problem in a given

ime and hospital. Kumar and Susan [21] proposed a novel fuzzy
ime series forecasting with the particle swarm optimization to
andle the emergency ambulance dispatch problem.
Hence, one key question in emergency logistics operations is

ow to efficiently assign the work to the available ambulances
nd how to optimize the followed routes notably when we are
alking about the transportation of coronavirus specimens. Zahedi
t al. [22] minimized the maximum ambulances response and
he total critical response time utilizing Internet of Things (IoT).
ifferent vehicle routing variants were used to tackle these prob-
ems. An optimal transportation planning based on supply chain
heory was evoked by Mosallanezhad et al. [23] using a multi-
bjective model. An excellent literature review was presented
y Tassone et al. [24] describing the recent developments of the
mbulance Routing Problem (ARP) and Ambulance Location Prob-
em (ALP) which are derived variants of the VRP and Maximum
overing Problem (MCP).
Özdamar et al. [25] studied the emergency logistics planning

roblem in natural disasters. A new model was developed to gen-
rate the plan of optimal mixed pick up and delivery schedules for
ehicles within the considered planning time horizon as well as
he optimal quantities and types of loads picked up and delivered
n these routes. Wohlgemuth et al. [26] considered the same
roblem in a dynamic context to solve vehicle routing problem
ith anticipation in disaster relief. Campbell et al. [27] studies
he routing of vehicles carrying critical supplies in large disasters,
iven that the timely arrival to patient is critical, the authors
ntroduced two new objective functions: one that minimizes the
aximum arrival time and one that minimizes the average arrival

ime. Different heuristics based on insertion and local search
echniques were used. Tlili et al. [11] focused in a similar problem
andling emergency requests during disaster situations, where
n ambulatory service is provided to patient transportation. A
ulti-depot VRP model was proposed and a genetic algorithm is

mplemented to solve a real case study.
In all the previous cited references the considered objective

unctions are related to either time or cost of the generated routes
ith the assumptions that all the requests (i.e. of pick up/service
r delivery) are satisfied. In the other side, some routing models
pplied to emergency and rescue assume that only a subset of
equests will be covered and the objective is to maximize the
umber of served requests or the number of collected rewards
f the visited points. These assumptions fit with TOP model.
On its broad context, the TOP proposed by Chao et al. [5] is
routing problem where the goal is to determine the path for
ach team member, in order to maximize the total collected score
y the team given a limited time span. The TOP is NP-hard [5].
nly few researches focused on using exact methods [28,29] to
olve the TOP. Such methods become highly time-consuming as
3

the problem instances increase in size. Therefore, the main body
of literature dealing with TOP is dominated by heuristic and
metaheuristics methods [7,9,10].

Dang et al. [7] proposed an efficient heuristic approach for TOP
based on an interval graph model and an inspired particle swarm
optimization. Chen et al. [8] used the TOP to model the problem
of optimal team deployment in urban search and rescue in post-
disaster circumstances. The problem is formulated as a multistage
stochastic program. The solution consists in identifying the teams
tours maximizing the total expected number of people that can
be saved. The authors proposed a dynamic solution framework
to handle the continuous flow of stochastic information. Baffo
et al. [9] presented an orienteering-based approach to manage
emergency situation, where the purpose is to collect the highest
number of people from several origins and bring them into a
unique destination, using a limited number of capacitated vehi-
cles and while respecting a time limit. The problem was modeled
as multi-origins capacitated TOP and solved by the ant colony
metaheuristic. Recently, Saeedvand et al. [10] studied the prob-
lem of TOP with time window for disaster rescue using robots.
A multi-objective formulation is considered and an efficient so-
lution combining multi-objective evolutionary algorithms with
learning algorithms is presented. The authors presented a hybrid
adaptive large neighborhood search to solve this problem.

Recently, various local search metaheuristics showed very
promising results on solving different variants of the TOP prob-
lem. Hammami et al. [13] proposed a hybrid adaptive large
neighborhood search to solve the TOP. Their solution approach
combines the exploration power of local search procedures and
an optimization stage using a set packing problem to improve
the solutions. Orlis et al. [15] introduced a new variant called
TOP with overlaps, where each node can be serviced via a set
of service points. An exact branch-and-cut-and-price and a large
neighborhood search was developed to solve the problem. Bayliss
et al. [30] developed a learnheuristic solution approach that inte-
grates metaheuristics and machine learning for solving the team
orienteering problem with aerial drone. Amarouche et al. [14]
studied the TOP with time windows where they proposed a
neighborhood search method based on (1) splitting algorithms
with the alternation between two different search spaces, a large
tour search space and an inner route search, and (2) the use of a
long term memory mechanism to keep the elite solutions.

3. Problem description and mathematical model

The Tunisian ministry of health established a protocol to be
followed in order to schedule the visits for suspected COVID-
19 patients requesting an at-home test. The Fig. 2 describes
the adopted process. As a first step, the call center answers
the requests of patients suspected to be COVID-19 positive. An
electronic information form is filled for each patient to get the
following information:

• The symptoms (e.g. fever, cough, fatigue, headache, short-
ness of breath, loss of smell or taste, sore throat or other)
• The age and health condition of the patient.
• Whether he was in a close contact of someone who is

diagnosed with COVID-19
• Whether he traveled lately to a hot-spot area

During the triage phase, a score is assigned automatically to
each patient. For those having a score greater than a certain
threshold, they will be scheduled in a waiting list, to be visited
by an ambulance at their place to take a PCR (Polymerase Chain
Reaction) test. Given the limited size of the available ambulances
fleet, the logistic management should be done efficiently to an-
swer the maximum number of demands. Our model describes
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Fig. 2. The protocol followed to answer COVID-19 patients’ requests for an at-home test.
he optimal routing plan of ambulances fleet collecting the spec-
mens from the patients. We should point out that by the end
f the tours, the collected tests will be delivered to a set of
ospitals having limited capacities (e.g. the capacity depends on
he number of testing kit supplies and working hours of the
ealth officers). Hence, another decision along the routing is to
ssign each vehicle to one of the hospitals while respecting the
apacity constraints. We propose to model this problem as a
ulti-Origin–Destination Team Orienteering Problem (MODTOP)
y extending the original TOP formulation [5,6]. The objective is
o design a set of ambulances’ routes that maximizes the total
ollected scores, while satisfying the hospitals capacities and the
aximum duration constraints for each route.
The problem can be described by a complete directed graph
= (N, A), where N = {0, 1, 2, . . . , n} is the node set and
= {(i, j) : i, j ∈ N} is the arc set. The routes of the ambulances

start from one of the depots and finish the tour at one of the
hospitals. Let O denoted the set of ambulances depots where each
depot contains vo vehicles. Let H denotes the set of hospitals
here each hospital has a limited capacity ch. Furthermore, a non-
egative travel time tij is associated with each arc (i, j) ∈ A. The
otal time taken to visit the points on each of the paths cannot
xceed the specified limit Tmax. The set of patients is denoted by
c . Each patient i ∈ Nc has a predefined profit pi (i.e. score) and
service time si.
Due to time constraint and hospitals’ capacity restrictions, it

s not possible to serve all patients. The objective is to find the
ubset of served patients along with the corresponding visiting
equences such that the total collected profit is maximized. We
hould note that each customer is visited at most once by only
ne ambulance.
Used parameters as well as the decision variables are de-

cribed as follows.

otation:

Parameters:
N Set of nodes N = {O ∪ H ∪ Nc}.
Nc Set of patients
O Set of depots
H Set of hospitals
A {(i, j) : i, j ∈ N} the arcs set
K Set of ambulances
ci Capacity of hospital i
pi Profit or score of patient i
vo Number of ambulances in depot o
tij Travel time from i to j
4

si Service time for patient i
Tmax Maximum total travel time for an ambulance
Decision variables:

xijk

{
1 if the arc (i, j) is traversed by ambulance k
0 otherwise

yik

{
1 if patient is i served by ambulance k
0 otherwise

Max
∑
i∈Nc

∑
k∈K

piyik (1)

Route construction constraints∑
k∈K

∑
j∈Nc

xojk = vo o ∈ O (2)∑
j∈N

xijk =
∑
j∈N

xjik i ∈ Nc, k ∈ K (3)∑
h∈H

yhk = 1 k ∈ K (4)∑
i∈N

∑
k∈K

xhik = 0 h ∈ H (5)

Capacity constraints∑
k∈K

yhk
∑
i∈Nc

yik ≤ ch h ∈ H (6)

Time constraints∑
i∈N

∑
j∈N

tijxijk +
∑
i∈Nc

siyik ≤ Tmax k ∈ K (7)

Patient visiting constraints
∑
k∈K

yik ≤ 1i ∈ Nc (8)∑
j∈N

xijk = yik i ∈ Nc ∪ H, k ∈ K (9)

Decision variables type constraints

yik, xijk ∈ {0, 1} i, j ∈ N, k ∈ K (10)

The objective function (1) maximizes the total collected scores.
The set of constraints (2)–(3)–(4)–(5) ensures that each ambu-
lance starts from one depot and arrives at one of the hospitals as
open vehicle tour.

• Constraints (2) ensure that vo vehicles leave each depot o.
• Constraints (3) are the flow conservation constraints.
• Constraints (4) ensure that each ambulance visits exactly

one hospital.
• Constraints (5) ensure that the hospitals are the end-points

of the ambulances’ routes.
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• Constraints (6) state that for each hospital h, the total num-
ber of collected specimens is lower than the capacity of the
hospital ch. Constraints (7) checks that the route duration
of each ambulance does not exceed the Tmax. Constraints (8)
and (9) are related to patient visiting assumptions.
• Constraints (8) ensure that each patient is visited at most

once by one of the ambulances.
• Constraints (9) set values of the decision variable yik. A

patient i is considered to be visited by the ambulance k if
this vehicle crossed one of the arcs (i, j) where j ∈ N .
• Constraints (10) impose binary restrictions to x and y deci-

sion variables.

. Solution approaches

Due to its NP-hardness [31], the MODTOP cannot be solved
ptimally within a reasonable computational time particularly
or large-scale instances. Therefore, we designed two genetic
ased algorithms which are (1) Hybrid Genetic Algorithm (HGA)
nd (2) Memetic Algorithm (MA). The general structure of the
roposed approaches is based on the combination of k-means
lustering and genetic operators. The k-means clustering process
as proved to be efficient in simplifying logistic networks and

mproving the routing solution [32,33]. Furthermore, in order to
revent the HGA from being trapped into local optimum, we
eveloped the MA that incorporates a local search (LS) procedure
o improve the solution in local search scope.

For both of HGA and MA, the first step is to generate an initial
opulation based on a cluster-first route-second method that
ntegrates K-means algorithm and route construction procedure

Section 4.3). Common GA operators are proposed as follows. t

5

• Survivor selection mechanism adapting ‘‘Steady-state’’ tech-
nique (Section 4.4).
• Offspring generation using ‘‘Random one point crossover’’

(Section 4.5).
• Mutation operator applying ‘‘Inversion and swap’’ methods

(Section 4.6).

hree different neighborhood structures have been designed in
he local search for the proposed MA. The neighborhood operators
amed, 1-0 exchange, 1-1 exchange and Insert node, are executed
n sequence to improve the solutions. More details for the LS are
utlined in Section 4.7. The solution quality evaluation is based
n the fitness function that seeks to maximize the total collected
rofit as explained in Section 4.1. The termination criterion is
resented in Section 4.2.
The aforementioned framework is detailed in Fig. 3.

.1. Solution representation and evaluation function

The chromosome is coded as a vector of K substrings where K
s the number of ambulances. Each substring, describing the route
ollowed by a vehicle k ∈ K , is composed of three parts:

• The depot index o ∈ O of the vehicle k
• The vector containing the index of visited patients where

i ∈ NC .
• The index of the hospital h ∈ H where the vehicle k will

deliver the collected specimens.

n the proposed encoding, K − 1 zeros are employed to separate

he set of routes. Given VP the number of visited patients and
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Fig. 4. Example of a solution representation.

UP the number of unvisited patients. The total length of the
chromosome is equal to VP + (K − 1)+ (K × 2), where (K × 2) is
the number of depots and hospitals in the chromosome.

The quality of the solution s is evaluated using a fitness func-
tion defined as f (s) = TS(s), where TS(s) is the total score of
s.

An example of the solution for COVID-19 context is shown in
Fig. 4. Given 10 patients to be visited by 2 ambulances based on
2 medical depots. The 10 diagnostic specimens are transported to
2 different hospitals. The visiting sequence of route 1 from o1 to
h1 is 1− 2− 3− 7, and the visiting sequence of route 2 from o2
to h2 is 10− 6− 9.

4.2. Termination criterion

In genetic algorithms, three kinds of termination criteria are
usually employed, CPU time limit, number of fitness function
evaluations, and maximum number of generations. The CPU time
depends on the computer specifications which are not detailed
enough in many studies. The best fitness value is unpredictable
and the convergence is uncertain. Thus, the maximum number
of generations is the most adequate stopping criterion for the
proposed approach.

4.3. Initial population

The initial population can be viewed as a ‘‘cluster-first route-
second’’ heuristic.

• Cluster-first step: K-means algorithm is used to assign
a given set of sub-patients P ∈ Nc to clusters [34]. It is
about generating a set of N clusters, named C , where C =
n1, n2, . . . ,N . Each cluster (ni) involves a set of patients and
the number of clusters is equal to the number of routes
(i.e. ambulances). At the end of this step, k-means generates
a set of k clusters containing the patients to visit. Each
feasible cluster should satisfy the constraints described in
the problem formulation of Section 3. K-means method is
detailed in algorithm 1.
• Route-second step: In the resulting clusters from step 1, the

patients in each cluster are sorted randomly. Each obtained
route contains a number of nearby patients with random
order. To generate an initial population, a set of generated
6

routes needs to be feasible. Based on the encoding previ-
ously described in Section 4.1, each route R is adjusted as
follows.

– Add a depot number o as a first element of R.
– Add the patients sequentially in a random order to R.
– Add a random hospital number h at the end of R while

checking its capacity constraint.
– If the route duration exceeds Tmax then remove the

patients with the lowest scores until the duration con-
straint is satisfied.

The aforementioned steps construct a set of feasible routes
to be inserted in one solution.

his procedure is iterated multiple times by varying the subset
f patients P , given as input to the k-means, until the population
ize is reached. The initial subset P ∈ Nc is randomly generated
ontaining from 80% up to 100% of all patients.

Algorithm 1 K-means algorithm

Require: P: A set of nodes (patients)
Ensure: C: A set of K clusters
1: Choose randomly p patients from P as the initial centroids
2: e = 0;
3: repeat
4: for all c ∈ C do
5: for all j ∈ P do
6: Calculate the Euclidean distance to each centroid;
7: Assign the closest node to centroid to create the cluster

;
8: Update cluster means with the smallest distance;
9: Recompute the new cluster centroid;
0: end for
1: end for
2: e++;
3: until No change in the centroid

4.4. Survivor selection mechanism

The survivor selection of the candidate solutions is an im-
portant step in genetic algorithms. The most promising chromo-
somes are included in the next generation and will be used as
parents in the crossover operations. There are different selec-
tion techniques, e.g roulette-wheel, rank selection, tournament,
elitism and steady-state [35].

In the proposed algorithm, a chromosome is more likely to
be selected if its fitness function value f is high and the steady-
state mechanism is adopted. The main idea of steady-state is that
the candidate solutions are allowed in the current population to
become a part of the new population. The steady-state selection
process used in HGA and MA is detailed as follows.

Step 1: Identify the best solutions of the population.
Step 2: Remove nb bad chromosomes.
Step 3: The rest of the current population survives to the new
generation without going through selection process.

4.5. Offspring generation

We apply a random one-point crossover, one random com-
bination point is selected from both parents’ chromosomes. The
chromosomal section next to the chosen point are swapped with
each other, giving birth to two new offsprings. As the generated
offspring may contains redundant visit to a same patient by
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Fig. 5. Mutation operators used by the proposed algorithms.

ifferent ambulances, a repair phase is necessary to make the
olution feasible. we detail in what follows the applied algorithm

Algorithm 2 Offspring generation

Require: two parent solutions p1, p2
nsure: New offspring s1, s2
1: s1, s2← randomonepointcrossover;
2: for all s ∈ {s1, s2} do
3: s← remove_redundant_patients(s);
4: for all x ∈ Sorted_list_of _unvisited_patient(s) do
5: s← best_insertion(s, x);
6: end for
7: end for

As an improve to the produced offsprings, a new insertion
euristic is introduced. Insertion heuristics have proven to be
opular methods for solving a variety of vehicle routing and
cheduling problems [36]. The best_insertion(s, x) contains three
teps

• Compute the geographical center of all routes (i.e. genes)
• Assign x to the nearest route that has not exceeded the

capacity constraint
• If the generated route exceed TMax, mark x as unvisited.

4.6. Mutation

In order to maintain the population diversity, a mutation op-
erator is performed after the crossover previously described. The
mutation process applied in the proposed algorithm integrates
two different types which are (1) inversion operator and (2) swap
sequence operator. The inversion is about switching the order
of a couple of nodes randomly. The swap consists in exchanging
two nodes that are randomly selected from the path [37]. Fig. 5
presents the difference between the two operators.

4.7. Local search

Local search (LS) is a classical method used for solving combi-
natorial optimization problems. In extant studies, LS proved to be
an effective method for generating high-quality solutions to rout-
ing problems [38]. The LS basic idea is to improve interactively an
initial solution using local modifications until finding the high-
quality solution. The LS approach (1) operates various techniques
to specify a move type then (2) constructs a neighborhood of the
current solution. One of the key features when implementing a
LS procedure is the choice of the neighborhood operators. The
neighborhood is the set of solutions N(si) that can be reached
after modifying some components of an initial solution si.

Three neighborhoods are implemented in MA described be-
low.
 o

7

Neighborhoods
In the proposed LS, three neighborhood structures have been

developed to explore the solution space. An illustrative example
is illustrated in Fig. 6 to better explain the developed operators.
In the illustrative example, the initial routes are:

R1 = {D → x1 → x2 → x4 → x5 → x6 → H1} and
R2 = {D→ x7 → x8 → x9 → x3 → H2}.

(a) 1-0 exchange: Relocates a patient from its current position
to another by replacing three solution arcs. As explained in
case (a), the patient x4 is relocated after deleting the arcs
(x2, x4) and (x4, x5) from R1 and (x8, x9) from R2. Three new
arcs are created which are (x2, x5), (x8, x4) and (x4, x9). After
the 1-0 exchange operator, the new routes are:

R1 = {D → x1 → x2 → x5 → x6 → H1} and R2 = {D →
x7 → x8 → x4 → x9 → x3 → H2}.

(b) 1-1 exchange: Swaps the positions of two patients, x4 from
R1 and x9 from R2, by removing four arcs: (x2, x4), (x4, x5),
(x8, x9), and (x9, x3), then creating four new ones. After the
1-1 exchange operator, the new routes are:

R1 = {D → x1 → x2 → x9 → x5 → x6 → H1} and
R2 = {D→ x7 → x8 → x4 → x3 → H2}.

(c) Insert node: Inserts a new patient in a route where the loca-
tion consumes the least travel time. A detailed explanation
of the insert operator is introduced in [6].

As shown in case (c), the unvisited patient x11 is supposed
(1) to be the least time consuming compared to patient
x10 and (2) its insertion does not exceed the maximum
travel time. A single arc is deleted (x6,H1) and two other
arcs are created (x6, x11) and (x11,H1). After the insert node
operator, the new routes are:

R1 = {D→ x1 → x2 → x4 → x5 → x6 → x11 → H1} and
R2 = {D→ x7 → x8 → x9 → x3 → H2}.

The LS process follows the scheme of Algorithm 3. It is about
carrying on consecutively the neighborhood structures previously
presented.

Algorithm 3 Local search algorithm

Require: Initial solution: S
Ensure: Updated S
1: S1 ← First Improvement on S using 1-0 exchange operator;
2: S2 ← First Improvement on S1 using 1-1 exchange operator;
3: S3 ← First Improvement on S2 using Insert node operator;
4: if f (S3) > f (S1) then
5: S ← S3;
6: else
7: GO to Line 1;
8: end if

Given an initial solution S, we sequentially improve this solu-
ion by choosing the first incumbent neighbor improving S with
espect to 1-0 exchange operator and so on until computing a
irst local optimum S1 that cannot be improved no more. In the
ame way, given the solution S1 as the starting point for the next
ocal search using 1-1 exchange operator until finding a solution
2. Finally, we apply the insert node operator to improve S2 and
ind the new solution S3. This process is repeated until a local
ptimum of the three structures of neighborhood is reached.
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Fig. 6. Local search operators used in the memetic algorithm; Given two routes R1 and R2 with nine visited patients {x1, . . . , x9}, two unvisited patients {x10 and
x11}, one depot D, and two hospitals H1 and H2 .
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5. Computational experiments

The proposed algorithms described in the previous section
were coded in Java. The testing environment is a computer
equipped with an Intel Core i7-7500U processor running at
2.9 GHz and with 8 GB of RAM. In this section, we detail the
numerical results carried on to demonstrate the effectiveness of
HGA and MA. For each instance, the proposed algorithms are run
for 10 times. It is a two-pronged experimentation which provides
a comparison against the existing heuristics in the literature as
well as a real-word case study.

1. We compare the experimental values obtained by our ap-
proaches to those resulting from four other state-of-the-art
algorithms which are 2-PIA, GRASP-SR, GRASP-PR, EA4OP
and ALNS, depicted in Section 5.3. For adapting the bench-
mark to MODTOP model, we relax the capacity constraints
by assuming that the destination points have infinite ca-
pacities. Furthermore, as the standard TOP model includes
a single origin and destination nodes, we suppose that this
node is duplicated to represent both depots and hospitals.

2. We provide a comparison of HGA and MA executed under
Cplex version 12.6.2 with a time limit of three hours. For
this reason, we generate a set of instances, inspired from
Fischetti benchmark, to evaluate the performance of our
approaches on a real-word case (Section 5.4).

5.1. Benchmark description

For performance assessment, we carried out 135 benchmark
instances grouped into three classes, called ‘generations’. Each
generation contains 45 problems with up to 400 vertices. The cor-
responding Tmax value for each instance is computed as 50% of the
shortest Hamiltonian cycle length [39]. The tested benchmark is a
TSP-based data set adapted by Fischetti et al. [17] to handle TOP.
It is available at the following link http://www.mech.kuleuven.be/
en/cib/op. The generations are based on the profit pi detailed in

the following rules.

8

Table 1
Metaheuristics parameter tuning.
Parameter Considered values Final value

MA
Population size 100, 200, 300 300
Number of generations 100, 200, 300 300
Crossover probability 0.7, 0.8 0.7
Mutation probability 0.05, 0.1 0.05

HGA
Population size 100, 200, 300 300
Number of generations 100, 200, 300 300
Crossover probability 0.7, 0.8 0.8
Mutation probability 0.05, 0.1 0.05

For all vertices i ∈ V :
• Generation 1: pi := 1;
• Generation 2: pi := 1+ (7141× i+ 73)mod (100);
• Generation 3: pi := 1+ ( 99 ∗ d1idmax

);

where V is the set of vertices, d1i is the distance from vertex
to vertex i and dmax is the distance from vertex 1 to its farthest
ertex.

.2. Parameters settings

The performance of designed metaheuristics depends inher-
ntly of its parameter settings. To tune the different parameters,
e apply an automatic procedure called F-Race to determine the
est configuration. The F-Race is an offline automatic statistical
rocedure proposed by [40] to enable configuration of parameter-
zed algorithms. The tuning was performed on a random selection
f 10 large instances from the benchmark and the real case
nstances, with the total time limit set to 600 s. To evaluate the
erformance of each parameter, we test each considered value
rom Table 1 while fixing the other parameters to their final
alues. For each algorithm, the total number of configurations in
his preliminary experiment is equal to 3 × 3 × 2 × 2 = 36. We
eport in Table 1, the set of candidate configurations and the final
etained values.

http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
http://www.mech.kuleuven.be/en/cib/op
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Table 2
Solution approaches details.
Name Description Processor Reference

2-PIA Two-parameter iterative algorithm Intel Xeon, 1.9 GHz [41]
GARSP-PR GRASP with path relinking Intel Xeon, 1.9 GHz [42]
GARSP-SR GRASP with segment remove Intel Core i7 with, 3.4 GHz [43]
EA4OP Evolutionary algorithm Intel Xeon, 1.9 GHz [44]
ALNS Adaptive large neighborhood search Quad-core Intel Xeon E5, 2.2 GHz [45]
HGA Hybrid genetic algorithm Intel Core i7-7500U, 2.5 GHz This paper
MA Memetic algorithm Intel Core i7-7500U, 2.5 GHz This paper
t
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5.3. Comparison with existing algorithms

In order to investigate the proposed algorithms’ performance
n solving MODTOP model, we outline and statistically compare
he obtained results with state-of-the-art methods. For the sake
f completeness, we also report the processor details of the
omputing environments used to test the five solution methods
Table 2).

The CPU time depends on a variety of factors, such as hard-
are, compiler and programming language used to develop the
ifferent approaches. Therefore, we did not directly compare the
xecuting time efficiency of the algorithms.
Tables 3–5 summarize the test results of our proposed ap-

roaches and those of the state-of-the-art algorithms for all
enchmark instances. The first three columns describe the in-
tances and report, the name, Tmax value and the best known
olution (BKS), respectively. For each algorithm, columns ‘Best’
eport the best found solutions and columns ‘PRE’ report the
ercentages relative error (PRE) calculated as follows.

RE = 100× (BKS − Best)/BKS.

• The bold values mean the best-so-far results found by the
algorithms.
• * means BKS achieved.
• - means not available value.

Table 3 presents the results for generation 1 instances. As shown,
HGA reaches the BKS for 30 instances with an overall average
equals to 0.25% which is better than 2PIA. MA find the BKS
for 38 instances of generation 1 which is equivalent to 84.4%.
With regard to the number of times that we reached the BKS
in 45 instances, MA outperforms HGA (30/45 = 66.7%), 2-
IA (21/45 = 46.7%), GRASP-PR (32/45 = 71.1%) and EA4OP
30/45 = 66.7%). However, it was not the case compared to ALNS
hat identifies the BKS in 42/45 = 93.3% instances.

Table 4 summarizes the results of generation 2 and shows that,
n terms of the average, ALNS ranks first among all the algorithms
ith 0.05%, MA is in the second rank with 0.06% followed by HGA
ith 0.16%. According to the same table, MA obtained the BKS in
3 instances which is the best result compared to all the other
lgorithms.
In Table 5, we eliminate GRASP-SR and ALNS from the com-

arison since there are 6 unvalued instances. MA outperforms all
he rest of algorithms in terms of average (0.2%) and number of
KS found (24 instances).
While focusing on HGA and MA results, we can show that the

ntegration of LS heuristic improved the solution quality of HGA.
here is a decrease of the average by 0.17% in generation 1 and
.1% in generation 2 and generation 3.
In Table 6, we provide the number of times the BKS is found

#Best) and the average relative percentage deviation (ARPD)
ver the total number of benchmark instances for the genera-
ions. Since there are unaddressed instances for GRASP-SR and
LNS algorithms, we excluded 18 instances (6 for each gener-
tion) from the data set in order to ensure a fair comparison.
or GRASP-SR, there is no indication about instances Berlin52,
9

s225 and a280 in all the generations. For ALNS, there are no
vailable values for instances tps225, rat99 and rat195 in gener-
tion 3. Therefore, the missing instances are eliminated from the
omparative study and only 117 instances are used. The ARPD is
alculated as follows.

RPD =
117∑
i=1

( BKSi−BestiBKSi
)

117
× 100,

where Besti and BKSi denote, respectively, the objective function
alue and the best known solution of problem instance i.
The average computational time (AVG Time) depends on a

ariety of factors, such as hardware, compiler and programming
anguage used to develop the different algorithms (Table 2).
herefore, we did not deeply compare the run time efficiency of
he algorithms.

Table 6 indicates that for the number of times the BKS is
ound, MA reached the best so far solutions in 86 instances which
s 73.5% of the tested instances. For HGA, the #BKS is equal to
4 which is 54.7%. Consequently, MA and HGA outperform 2-
IA, GRASP-PR and EA4OP. According to the same table, for the
verage relative percentage deviation criterion, HGA calculated
.20%, which is better than the results of EA4OP (0.21%), GRASP-
R (0.27%) and 2-PIA (0.44%). As it can be seen for MA, the
RPD achieves 0.0675% and performs better than all the other
pproaches except ALNS with a difference of 0.005% but in terms
f time MA is speeder than ALNS with 147.32 s. More illustration
or the results are depicted in Fig. 7.

From Table 6, we can obviously observe that 2-PIA, with the
orst results in terms of #Best and ARPD, is the fastest algorithm
ith 1.62 s. For HGA and MA, the AVG time is equal to 2.28 and
.95 s, respectively. However, ALNS that outperformed the others
n #Best and ARPD, is ranked the last one with a huge difference
or the computational performance (AVG Time = 151.27 s).

The AVG Time values are plotted in Fig. 8 that shows a com-
arison of (a) HGA and MA computational performance and (b)
GA and MA vs all the used algorithms.
We further compare statistically the algorithms outcomes in

erms of percentage relative error (PRE) using a group of one-
ided paired-samples T-tests. The T-test is able to carry out a
omparison between the means of two algorithms in order to
onclude whether it is significant or not. Since MA outperforms
GA in almost all experiments (as shown in Fig. 7), we choose to
erform the t-test by comparing MA against the other methods
t a confidence level α = 0.05.
The statistical results reported in Table 7 shows that MA

outperforms, in all generations, 2-PIA, GRASP-PR and EA4OP with
a general p-value equals to 0.00, 0.00 and 0.03, respectively.
Compared to HGA, the test is significant on generation 1 (p-value
= 0.04) and generation 3 (p-value = 0.02) but it is not the case
for generation 2 where p-value > 0.05. Regarding GRASP-SR and
ALNS, the proposed MA shows a competitive results with p-value

> 0.05.
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able 3
omparison with existing algorithms for generation 1 instances.
Instance HGA MA 2-PIA GRASP-SR GRASP-PR EA4OP ALNS

Name Tmax BKS Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE

att48 5314 31 31 * 31 * 31 * 31 * 31 * 31 * 31 *
gr48 2523 31 31 * 31 * 31 * 31 * 31 * 31 * 31 *
hk48 5731 30 30 * 30 * 30 * 30 * 30 * 30 * 30 *
eil51 213 29 29 * 29 * 29 * 29 * 29 * 29 * 29 *
berlin52 3771 37 37 * 37 * 37 * – – 37 * 37 * 37 *
brazil58 12689 46 46 * 46 * 46 * 46 * 46 * 46 * 46 *
st70 338 43 43 * 43 * 43 * 43 * 43 * 43 * 43 *
eil76 269 47 47 * 47 * 46 2.13 47 * 47 * 46 2.13 47 *
pr76 54080 49 49 * 49 * 49 * 49 * 49 * 49 * 49 *
gr96 27605 64 64 * 64 * 64 * 64 * 64 * 64 * 64 *
rat99 606 52 51 1.92 51 * 51 1.92 52 * 52 * 52 * 52 *
kroA100 10641 56 55 1.79 55 * 56 * 56 * 56 * 55 1.79 56 *
kroB100 11071 58 58 * 58 * 58 * 58 * 58 * 57 1.72 58 *
kroC100 10375 56 56 * 56 * 56 * 56 * 56 * 56 * 56 *
kroD100 10647 59 59 * 59 * 59 * 59 * 59 * 58 1.69 59 *
kroE100 10375 57 57 * 57 * 55 3.51 57 * 57 * 57 * 57 *
rd100 3955 61 61 * 61 * 61 * 61 * 61 * 61 * 61 *
eil101 315 64 63 1.56 64 * 63 1.56 64 * 64 * 64 * 64 *
lin105 7190 66 65 1.52 65 * 66 * 66 * 66 * 66 * 66 *
pr107 22152 54 52 3.70 53 1.85 54 * 54 * 54 * 54 * 54 *
gr120 3471 75 75 * 75 * 74 1.33 75 * 75 * 74 1.33 75 *
pr124 29515 75 75 * 75 * 75 * 75 * 75 * 75 * 75 *
bier127 59141 103 101 1.94 103 * 103 * 103 * 103 * 103 * 103 *
pr136 4386 71 71 * 71 * 69 2.82 71 * 70 1.40 71 * 71 *
gr137 34927 81 81 * 81 * 81 * 81 * 81 * 78 3.70 81 *
pr144 29269 77 77 * 77 * 73 5.19 77 * 77 * 77 * 77 *
kroA150 13262 86 86 * 86 * 85 1.16 86 * 86 * 86 * 86 *
kroB150 13065 87 86 1.15 86 1.15 86 1.15 87 * 86 1.15 86 1.15 87 *
pr152 36841 77 70 9.09 77 * 76 1.30 77 * 77 * 77 * 77 *
u159 21040 93 92 1.08 92 1.08 82 11.83 93 * 92 1.08 92 1.08 93 *
rat195 1162 102 102 * 102 * 99 2.94 102 * 102 2.94 99 2.94 102 *
d198 7890 123 123 * 123 * 120 2.44 123 * 123 0.81 123 * 123 *
kroA200 14684 117 115 1.71 117 * 112 4.27 117 * 117 * 117 * 117 *
kroB200 14719 119 119 * 119 * 117 1.68 119 * 119 0.84 119 * 119 *
gr202 20080 145 147 * 147 * 140 3.45 145 * 147 * 145 * 145 *
ts225 63322 124 123 1.60 124 * 124 * 124 * 124 * 124 * 124 *
tsp225 1958 129 127 1.55 127 1.55 117 9.30 – – 126 2.33 127 1.55 128 0.78
pr226 40185 126 126 * 126 * 121 3.97 126 * 126 * 126 * 126 *
gr229 67301 176 173 1.70 173 1.70 174 1.14 175 0.56 174 1.14 176 * 173 1.70
gil262 1189 158 158 * 158 * 150 5.06 158 * 151 4.43 156 1.27 158 *
pr264 24568 132 132 * 132 * 132 * 132 * 132 * 132 * 132 *
a280 1290 147 143 2.72 143 2.72 133 9.52 – – 143 2.72 143 2.72 144 2.04
pr299 24096 162 162 * 162 * 154 4.94 162 * 158 2.47 160 1.23 162 *
lin318 21015 205 205 * 205 * 194 5.37 205 * 200 2.44 202 1.46 203 0.98
rd400 7641 239 237 0.84 237 0.84 218 8.79 235 1.67 225 5.86 234 2.09 237 0.84

Average 0.25 0.08 0.72 0.02 0.22 0.21 0.05
Fig. 7. Comparison of all the algorithms based on ARPD and #Best results.
.4. Results for real-case instances

Since no benchmark instances are readily available for the
tudied problem, there is a need to generate the test instances
10
to evaluate HGA. We should point out that in the handled vari-
ant of TOP, we consider that: (1) the starting node (depot) is
different from the ending node (hospital), so that the itinerary
route is open, (2) each hospital can receive a maximum number
of specimens, thus there is a hospital capacity constraint.
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able 4
omparison with existing algorithms for generation 2 instances.
Instance HGA MA 2-PIA GRASP-SR GRASP-PR EA4OP ALNS

Name Tmax BKS Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE

att48 5314 1717 1717 * 1717 * 1717 * 1717 * 1717 * 1717 * 1717 *
gr48 2523 1761 1761 * 1761 * 1750 0.62 1761 * 1761 * 1749 0.68 1761 *
hk48 5731 1614 1614 * 1614 * 1614 * 1614 * 1614 * 1614 * 1614 *
eil51 213 1674 1674 * 1674 * 1674 * 1674 * 1674 * 1668 0.36 1674 *
Berlin52 3771 1897 1897 * 1897 * 1897 * – – 1897 * 1897 * 1897 *
brazil58 12698 2220 2218 0.09 2220 * 2220 * 2220 * 2220 * 2218 0.09 2220 *
st70 338 2286 2285 0.04 2286 * 2285 0.04 2286 * 2286 * 2285 0.04 2286 *
eil76 269 2550 2505 1.76 2550 * 2540 0.39 2550 * 2550 * 2550 * 2550 *
pr76 54080 2708 2701 0.26 2708 * 2708 * 2708 * 2708 * 2708 * 2708 *
gr96 27605 3396 3425 * 3396 * 3394 0.06 3425 * 3396 * 3394 0.06 3394 0.06
rat99 606 2944 2944 * 2944 * 2932 0.41 2944 * 2944 * 2944 * 2944 *
kroA100 10641 3212 3181 0.97 3212 * 3212 * 3212 * 3212 * 3212 * 3212 *
kroB100 11071 3241 3237 0.12 3239 0.06 3239 0.06 3241 * 3241 * 3238 0.09 3239 0.06
kroC100 10375 2947 2924 0.78 2928 0.65 2947 * 2947 * 2909 1.29 2931 0.54 2947 *
kroD100 10647 3307 3307 * 3307 * 3295 0.36 3307 * 3307 * 3307 * 3307 *
kroE100 11034 3090 3090 * 3090 * 3090 * 3090 * 3082 0.26 3082 0.26 3090 *
rd100 3955 3359 3351 0.24 3359 * 3351 0.24 3359 * 3351 0.24 3359 * 3359 *
eil101 315 3655 3645 0.27 3655 * 3636 0.52 3665 * 3643 0.33 3655 * 3655 *
lin105 7190 3544 3544 * 3544 * 3536 0.23 3544 * 3544 * 3530 0.40 3544 *
pr107 22152 2667 2660 0.26 2667 * 2667 * 2667 * 2667 * 2667 * 2667 *
gr120 3471 4371 4371 * 4371 * 4358 0.30 4371 * 4371 * 4356 0.34 4371 *
pr124 29515 3917 3840 1.97 3917 * 3917 * 3917 * 3901 0.41 3899 0.46 3917 *
bier127 59141 5383 5383 * 5383 * 5328 1.02 5379 0.07 5331 0.97 5381 0.04 5366 0.32
pr136 48386 4309 4309 * 4309 * 4244 1.51 4309 * 4228 1.88 4309 * 4309 *
gr137 34927 4286 4283 0.06 4286 * 4281 0.12 4286 * 4270 0.37 4099 4.36 4286 *
pr144 29269 4003 4003 * 4003 * 3963 1.00 4003 * 4003 * 3965 0.95 3969 0.85
kroA150 13262 4918 4913 0.10 4915 0.06 4913 0.10 4915 0.06 4842 1.55 4902 0.33 4918 *
kroB150 13065 4869 4869 * 4869 * 4853 0.33 4869 * 4853 0.33 4869 * 4869 *
pr152 36841 4279 4275 0.09 4275 0.09 4269 0.23 4279 * 4227 1.22 4245 0.79 4279 *
u159 21040 4960 4960 * 4960 * 4938 0.44 4960 * 4889 1.43 4941 0.38 4950 0.20
rat195 1162 5791 5790 0.02 5790 0.02 5666 2.16 5786 0.86 5612 3.09 5703 1.52 5782 0.16
d198 7890 6670 6670 * 6670 * 6622 0.72 6669 0.015 6625 0.67 6660 0.15 6661 0.13
kroA200 14684 6547 6547 * 6547 * 6461 1.31 6544 0.046 6279 4.09 6534 0.20 6547 *
kroB200 14719 6419 6409 0.16 6409 0.16 6328 1.42 6404 0.234 6282 2.13 6278 2.20 6413 0.09
gr202 20080 7789 7848 * 7848 * 7703 1.10 7789 * 7659 1.67 7789 * 7719 0.90
ts225 63322 6834 6784 0.73 6808 0.38 6749 1.24 6808 0.38 6743 1.33 6819 0.22 6782 0.76
tsp225 1958 6987 6936 0.73 6936 0.73 6936 0.73 – – 6818 2.42 6936 0.73 6980 0.10
pr226 40185 6662 6615 * 6615 * 6646 0.24 6662 * 6621 0.62 6658 0.06 6662 *
gr229 67301 9177 9187 * 9187 * 9111 0.72 9151 0.28 9046 1.43 9174 0.03 9177 *
gli262 1189 8321 8100 2.66 8212 1.3 8100 2.66 8286 0.42 7907 4.98 8175 1.75 8269 0.62
pr264 24568 6654 6654 * 6654 * 6244 6.16 6406 3.73 6654 * 6173 7.23 6654 *
a280 1290 8428 8222 2.44 8350 0.9 8269 1.89 – – 8021 4.83 8304 1.47 8404 0.28
pr299 24096 9182 8689 5.37 9013 1.84 9060 1.33 9165 0.19 8846 3.66 9112 0.76 9147 0.38
lin318 21015 10923 10900 * 10900 * 10724 1.82 9165 16.09 10424 4.57 10866 0.52 10801 1.12
rd400 7641 13652 13255 3.14 13309 2.51 13255 2.91 13274 2.77 12617 7.58 13442 1.54 13562 0.66

Average 0.16 0.06 0.25 – 0.4 0.21 0.05
Fig. 8. Comparison of the average computational time per generation.
A real data set of 30 instances has been generated assuming

hat there are 6 hospitals and 6 depots. Each hospital has a

aximum capacity of specimen tests (Table 8) and in each depot,

here are a prefixed number of ambulances (Table 9).
11
Inspired from Fischetti benchmark, the patients scores are
randomly chosen from these values {5, 15, 25, 35}. The maximum
total travel time in a single day is Tmax = 600 (min).

Given the aforementioned data set, the problem instances
were solved using Cplex 12.6.2 with default settings. We got to
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omparison with existing algorithms for generation 3 instances.
Instance HGA MA 2-PIA GRASP-SR GRASP-PR EA4OP ALNS

Name Tmax BKS Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE Best %PRE

att48 5314 1049 1049 * 1049 * 1049 * 1049 * 1049 * 1049 * 1049 *
gr48 2523 1480 1480 * 1480 * 1480 * 1480 * 1480 * 1480 * 1480 *
hk48 5731 1764 1764 * 1764 * 1764 * 1764 * 1764 * 1764 * 1764 *
eil51 213 1399 1399 * 1399 * 1399 * 1399 * 1399 * 1398 0.07 1399 *
berlin52 3771 1036 1036 * 1036 * 1036 * – – 1036 * 1034 0.19 1036 *
brazil58 12698 1702 1702 * 1702 * 1702 * 1702 * 1702 * 1702 * 1702 *
st70 338 2108 2108 * 2108 * 2108 * 2108 * 2108 * 2108 * 2108 *
eil76 269 2467 2467 * 2467 * 2461 0.24 2467 * 2462 0.20 2467 * 2467 *
pr76 54080 2430 2430 * 2430 * 2430 * 2430 * 2430 * 2430 * 2430 *
gr96 27605 3170 3166 0.13 3166 0.13 3170 * 3170 * 3153 0.54 3166 0.13 3166 0.13
rat99 606 2908 2886 0.76 2892 0.55 2896 0.41 2908 * 2881 0.93 2886 0.76 – –
kroA100 10641 3211 3211 * 3211 * 3211 * 3211 * 3211 * 3180 0.97 3211 *
kroB100 11071 2804 2785 0.68 2804 * 2804 * 2804 * 2804 * 2785 0.68 2804 *
kroC100 10375 3155 3155 * 3155 * 3155 * 3155 * 3149 0.19 3155 * 3155 *
kroD100 10647 3167 3141 0.82 3155 0.38 3123 1.39 3167 * 3167 * 3141 0.82 3167 *
kroE100 11034 3049 2049 * 3049 * 3027 0.72 3049 * 3049 * 3049 * 3049 *
rd100 3955 2926 2923 0.10 2926 * 2924 0.07 2926 * 2924 0.07 2923 0.10 2926 *
eil101 315 3345 3345 * 3345 * 3333 0.36 3345 * 3322 0.69 3345 * 3345 *
lin105 7190 2986 2973 0.44 2986 * 2986 * 2986 * 2986 * 2973 0.44 2986 *
pr107 22152 1877 1802 4.00 1854 1.22 1877 * 1877 * 1877 * 1802 4.00 1877 *
gr120 3471 3779 3748 0.82 3751 0.74 3736 1.14 3779 * 3745 0.90 3748 0.82 3777 0.05
pr124 29515 3557 3557 * 3455 2.87 3517 1.12 3557 * 3549 0.22 3455 2.87 3557 *
bier127 59141 2365 2361 0.17 2361 0.17 2356 0.38 2356 0.38 2332 1.40 2361 0.17 2361 0.17
pr136 48386 4390 4390 * 4390 * 4390 * 4390 * 4380 0.23 4390 * 4390 *
gr137 34927 3954 4954 * 4954 * 3928 0.66 3979 * 3926 0.71 3954 * 3954 *
pr144 29269 3745 3700 1.20 3710 0.93 3633 2.99 3741 1.79 3745 * 3700 1.20 3744 0.03
kroA150 13262 5039 5019 0.40 5030 0.17 5037 0.04 5039 * 5018 0.42 5019 0.40 5037 0.04
kroB150 13065 5314 5314 * 5314 * 5267 0.88 5314 * 5272 0.79 5314 * 5314 *
pr152 36841 3905 3902 0.08 3905 * 3557 8.91 3905 * 3905 * 3902 0.08 3539 9.37
u159 21040 5272 5272 * 5272 * 5272 * 5272 * 5272 * 5272 * 5272 *
rat195 1162 6195 6143 0.83 6152 0.7 6174 0.34 6191 0.06 6086 1.76 6139 0.90 – –
d198 7890 6320 6292 0.44 6320 * 5985 5.30 6163 2.48 6162 2.50 6290 0.47 6320 *
kroA200 14684 6123 6119 0.06 6110 0.21 6048 1.22 6123 * 6084 0.64 6114 0.15 6118 0.08
kroB200 14719 6266 6213 0.85 6211 0.88 6251 0.24 6266 * 6190 1.21 6213 0.85 6266 *
gr202 20080 8616 8600 0.18 8560 0.65 8111 5.86 8469 1.89 8419 2.29 8605 0.13 8564 0.60
ts225 63322 7575 7490 1.12 7575 * 7149 5.62 – – 7510 0.86 7575 * 7575 *
tsp225 1958 7740 7575 * 7575 * 7353 5.00 7575 * 7565 2.26 7488 3.26 – –
pr226 40185 6993 6923 1.00 6977 0.23 6652 4.88 6912 1.16 6964 0.41 6908 1.22 6993 *
gr229 67301 6328 6311 0.27 6299 0.46 6190 2.18 6235 1.76 6205 1.94 6297 0.49 6328 *
gil262 1189 9246 9178 0.73 9220 0.28 8915 3.58 9128 1.28 8922 3.50 9094 1.64 9210 0.39
pr264 24568 8137 7754 4.70 8137 1.89 7820 3.90 8137 * 7959 2.19 8068 0.85 8137 *
a280 1290 9774 8702 10.97 8724 10.74 8719 10.79 – – 9426 3.56 8684 11.15 8789 10.08
pr299 24096 10343 9959 3.71 10201 1.37 10305 0.37 10277 0.78 10033 3.00 9959 3.71 10233 1.06
lin318 21015 10368 10273 1.05 10330 0.37 9909 4.43 10275 1.03 9758 5.88 10273 0.92 10337 0.30
rd400 7641 13223 13088 1.07 13106 0.89 12828 2.99 13070 1.20 12678 4.12 13088 1.02 13122 0.76

Average 0.3 0.17 0.6 – 0.32 0.29 –
Table 6
Number of best solutions found and the average relative percentage deviation
for each generation.

HGA MA 2PIA GRASP-SR GRASP-PR E4OP ALNS

#Best
Generation 1 28 34 19 37 29 27 36
Generation 2 21 28 10 28 17 12 27
Generation 3 15 24 15 29 16 14 27

All 64 86 44 94 62 53 90

ARPD
Generation 1 0.2229 0.0565 0.6247 0.019 0.1847 0.1764 0.0301
Generation 2 0.1568 0.057 0.2390 0.2043 0.3562 0.2103 0.0461
Generation 3 0.2285 0.0.89 0.4602 0.1175 0.2909 0.2668 0.1109

All 0.2027 0.0675 0.4413 0.1136 0.2772 0.2178 0.0623

AVG Time (s)
Generation 1 2.87 3.21 1.14 4.53 7.66 2.12 99.51
Generation 2 2.43 3.89 1.92 19.45 2.48 2.38 173.77
Generation 3 1.54 4.76 1.8 13.35 4.18 2.31 180.55

All 2.28 3.95 1.62 12.44 4.88 2.27 151.27

solve small instances with a time limit of 10 800 s. Table 10
presents the comparison of our algorithms results (Best) with the
12
exact solution values generated by Cplex (Fcplex). For each algo-
rithm, we calculate the average percentage deviation computed
as: %Gap = 100× (Fcplex − Best)/Fcplex.

The columns of Table 10 correspond to, the instance name, the
number of patients (#patients), the best solution reached (Best),
the average deviation (%Gap) and the average computational time
(Time), respectively.

• In the small-scaled instances in which the number of pa-
tients is less than 25, Cplex was able to find optimal so-
lutions within three hours. For the rest of instances, Cplex
either terminates with an out of memory error or it is
stopped as we have set the maximum resolution time, while
the HGA and MA continue to generate solutions within a
very limited CPU time. This fact underlines the usefulness
of metaheuristics in solving such NP-hard problems.
• The computational difficulty increases significantly with

problem size. For instance, Cplex takes more than 2 hours
to solve the problem instance Cov10. To handle the same
instance, HGA finds a near optimal solution in only 7.8 s,
with a %Gap that amounts to only 0.5%. Although, MA
succeeds to reach the best solution in 10.9 s. Moreover, the
CPU time for the MA and HGA grows polynomially with
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nalytical results of the paired-samples t-tests with respect to PRE for three generation instances. Bold values mean p-value <= 0.05.
MA vs HGA 2PIA GRASP SR GRASP-PR EA4OP ALNS

Paired difference PRE
Generation 1 −0.4530 −1,7044 0,1125 −0,3846 −0,3595 0,0794
Generation 2 −0.2992 −0,5459 −0,4419 −0,8977 −0,4600 0,0327
Generation 3 −0.4174 −1,1125 −0,0843 −0,6046 −0,3523 −0,0646

t-value
Generation 1 −1.6854 −3.8951 1.2857 −1.7757 −2.2278 0.8613
Generation 2 −1.5296 −2.6883 −1.0224 −3.1243 −1.9690 0.3391
Generation 3 −2.0871 −3.2110 −0.6427 −2.6300 −2.0512 −0.2566

p-value
Generation 1 0.0479 0.00010 0.1012 0.0398 0.0144 0.1958
Generation 2 0.0651 0.0044 0.1549 0.0012 0.0262 0.3677
Generation 3 0.0201 0.00097 0.2611 0.00516 0.0218 0.3990
Table 8
Specimens tests per Hospital.
Hospital Capacity

O1. Hospital Charles Nicolle 10
O2. Hospital Abderrahmen Mami 25
O3. Hospital Mongi Slim 32
O4. Hospital Régional de Ben Arous 15
O5. Hospital Régional de Khéreddine 20

Table 9
Ambulances per Depot.
Depot Nb ambulances

D1 3
D2 2
D3 3
O1 2
O4 3

Table 10
Results and comparison with optimal solutions.
Instance #patients Cplex HGA MA

Best Time Best %Gap Time Best %Gap Time

Cov1 5 65 74.76 65 0 0.8 65 0 2.77
Cov2 8 67 180.33 67 0 0.9 67 0 2.98
Cov3 10 126 320.66 126 0 1.2 126 0 2.4
Cov4 12 113 709.2 113 0 2.3 113 0 4.6
Cov5 16 304 1200 304 0 5.1 304 0 7.1
Cov6 18 312 6000 312 0 3.4 312 0 5.6
Cov7 20 470 8021 470 0 2.3 470 0 2.32
Cov8 22 622 7332 622 0 4.3 622 0 5.6
Cov9 24 1174 7820 1174 0 8.0 1174 0 10.2
Cov10 25 1200 9200 1174 0.5 7.8 1200 0 10.9
Cov11 52 – – 1562 – 6.3 1724 – 11.9
Cov12 57 – – 1720 – 7.6 1890 – 9.4
Cov13 66 – – 2112 – 5.8 2370 – 6.5
Cov14 72 – – 1800 – 4.6 2015 – 8.9
Cov15 79 – – 1978 – 5.7 2440 – 9.2
Cov16 83 – – 2490 – 7.7 2766 – 11.3
Cov17 87 – – 2610 – 6.3 2722 – 10.8
Cov18 90 – – 2790 – 2.5 3054 – 5.3
Cov19 97 – – 3300 – 4.5 3753 – 6.7
Cov20 101 – 3060 – 3.4 3299 – 4.4
Cov21 121 – – 4114 – 8.7 4522 – 11.9
Cov22 156 – – 5148 – 7.4 5223 – 11.3
Cov23 178 – – 5874 – 10.3 5978 – 14.2
Cov24 180 – – 5940 – 9.0 6319 – 11.7
Cov25 212 – – 6360 – 7.8 7343 – 13.3
Cov26 223 – – 7130 – 10.7 7400 – 12.6
Cov27 245 – – 8085 – 9.7 8309 – 11.9
Cov28 257 – – 7190 – 8.9 7514 – 11.5
Cov29 260 – – 7280 – 10.4 7503 – 14.6
Cov30 300 – – 9000 – 9.7 9410 – 13.7

Averages 7.02 8.85
13
the instance size, while the computational requirements of
Cplex seem to increase exponentially.
• Among all instances solved by Cplex, HGA finds the optimal

solutions in 9 instances out of 10. In fact, the average gap
among all instances is equal to 0.5% which is considerably
interesting. MA attains all the optimal values generated by
Cplex with a general AVG time equals to 8.85 s which is a
worst result compared to HGA that solved the instances in
7.02 s. In terms of solution values, MA outperforms HGA in
all the tested data set.

6. Conclusions and future works

COVID-19 related issues become a top priority for researchers
worldwide, notably in combinatorial optimization field. In this
paper, we studied the collection and transport of COVID-19 spec-
imens. The problem can be described as follows. Given (1) a
set of suspected patients requesting COVID-19 tests at home,
each one of them is associated with a priority and (2) a set
of ambulances located in different hospitals. The objective is to
select the subset of urgent patients to be visited in priority as
well as to determine the order and the optimal itinerary to collect
the COVID-19 specimens test. Some restrictions are imposed in
our model, such as the hospital capacity and the daily working
time of the ambulance driver. We modeled the collection and
transportation of COVID-19 specimens as a new variant of the
team orienteering problem, named multi-origin–destination team
orienteering problem. Given the problem complexity (NP-hard)
a hybrid genetic algorithm combining the k-means along with
the evolutionary operators is proposed. A memetic algorithm
considering a local search is also implemented to improve the
convergence speed and fully exploit the solution space. Compared
to the current state-of-the-art, the two algorithms are proved to
be efficient as they matched in many cases the best reported
results on different TOP benchmarks. Experiments on real-case
benchmark data sets indicated that the both HGA and MA pro-
duce high quality solutions with reasonable computational re-
quirements for small sized instances. The numerical results for
large sized instances, supported by statistical tests, prove the
efficiency of HGA in generating better approximation of the global
optimum. However, MA is computationally less efficient than the
HGA, this may be explained by the constructive nature of the
considered neighborhoods.

As future works, we can consider the dynamic case where new
requests are coming while serving the actual patient, also we can
solve different objective functions in a multi-objective problem.
Finally, we suggest to integrate our proposed approaches into
a decision support system in order to assist dynamically the
ambulance drivers of COVID-19 specimens to accomplish their

works optimally.
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