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Abstract: Soil roughness is one of the most challenging issues in the agricultural domain and plays a
crucial role in soil quality. The objective of this research was to develop a computerized method based
on stereo vision technique to estimate the roughness formed on the agricultural soils. Additionally,
soil till quality was investigated by analyzing the height of plow layers. An image dataset was
provided in the real conditions of the field. For determining the soil surface roughness, the elevation
of clods obtained from tillage operations was computed using a depth map. This map was obtained
by extracting and matching corresponding keypoints as super pixels of images. Regression equations
and coefficients of determination between the measured and estimated values indicate that the
proposed method has a strong potential for the estimation of soil shallow roughness as an important
physical parameter in tillage operations. In addition, peak fitting of tilled layers was applied to the
height profile to evaluate the till quality. The results of this suggest that the peak fitting is an effective
method of judging tillage quality in the fields.

Keywords: stereo vision; soil roughness; tillage; depth map

1. Introduction

It takes enormous energy to prepare land for planting in the agriculture sector. In
order to record and analyze the quality of tillage operations, it is important to measure and
monitor physical parameters, such as soil aggregate distribution and surface roughness [1].
These parameters, which often occur at the soil surface, can be examined more accurately
and optimally using recent methods [2,3].

Soil surface roughness is a key parameter which has an important role for understand-
ing and analyzing different soil properties and physical processes which have a direct or
indirect relationship with phenomena such as soil erosion, surface water flow movement,
agronomy, meteorology, and risk assessment [4].

Soil surface roughness is mainly caused by two factors: rainfall and tillage operations
(primary and secondary tillage), particularly when many different tilling machines are
used. In other words, tillage operations can increase the roughness of the soil surface,
which can in some cases reach decimeters. As a result, soil roughness and soil clods must
be considered when evaluating the quality of plowed soil [5].

In practical applications, soil roughness is considered as surface variations that de-
pend on the aggregates in the peaks and depressions on the soil surface. There are several
methods to measure this including roller chain, which is a classical method of measuring
soil roughness. Although roller chain is accurate and can be used as a reference to evaluate
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new methods, this method is time consuming and fastidious, and for this reason alternative
approaches, especially image-based methods, have been proposed [6,7]. Indeed, irregu-
larities in the soil surface (roughness) are calculated based on different methods, mostly
non-contact indicators of surface elevation points measurements [8].

Thanks to the development of new instrumentation and analysis tools, soil surface
analysis can now be visualized with image processing [9]. This has been used to create
2D images of soil surface by various different researchers [6,10,11]. With contrast analysis,
they obtained good results on average for soil clods diameter estimation but also obtained
individual discrepancies. This challenge was solved somewhat by extracting textural
features from clods. However, the accuracy was still low [12].

In recent years, several digital elevation models (DEMs) have been used to estimate
soil surface roughness [13–17]. DEMs often involve using laser scanners and/or stereo
photogrammetry. Because soil clods have geometric features, DEMs provide accurate
information about their 3D characteristics. As the pixel values of these kind of images
represent altitude, DEM can be used to measure geometrical specifications of clods such
as length, width, volume, etc., [18]. Despite the advantages of DEM in studying soil
roughness, this method takes a disadvantageously long time in the image acquisition phase
which restricts its practical application.

In [19], an automatic photogrammetric method was developed to measure soil surface
roughness. Three-dimensional models were calculated from the images taken at millimeter
level and were used to extract different roughness indices. The reported results were very
satisfactory; however, the procedure used to gather the dataset can be considered as a limi-
tation of this study because the images were taken under the shade of an umbrella, which
can affect real-time usage. Additionally, different old and new methods for measuring soil
roughness, including contact and non-contact techniques, were introduced in [20]. In this
report, the features, advantages, and disadvantages of each method are detailed.

Stereo vision is an effective method that is widely used in various fields. In [21], a
linear method was developed for 3D line reconstruction using stereo vision. Reconstruction
becomes difficult when the number of corresponding points on the lines is limited. To solve
this challenge, the researchers in the study developed a method called point-then-direction
(PtD). Their results show that the proposed method increased the accuracy of both the
direction and the position of the 3D line reconstruction. In other research, a binocular stereo
vision with Gaussian mixture model was introduced to recognize broccoli seeding [22]. In
this study, some additional factors were considered during the procedure, such as weed
conditions, shooting heights, and exposure intensities in the natural field. In addition to
emphasizing the efficiency of the stereo vision method, the performance was reported as
being satisfactory. Additionally, a famous method called structure from motion (SfM) was
used for the 3D reconstruction of surfaces, in which the depth information within images
was also involved [23,24].

With the advent of unmanned aerial vehicles, we are witnessing the use of these
devices in the study of various phenomena in the agricultural fields, one of which is soil
roughness. The data obtained from this tool have different resolutions that affect the
roughness analysis, so more studies are needed to achieve more stable results.

In some methods, satellite and radar data are used to determine soil roughness. With
careful processing of these data, acceptable results are usually obtained, but they are still
considered expensive methods [25]. Additionally, these methods are still limited in their
application in real time.

To overcome these challenges, a system based on the stereo vision technique was
created to reconstruct the soil surface in the field in a 3D space in which the input images
were common digital images in the visible band. Additionally, the use of conventional,
rather than complex, methods to extract features and convert images to 3D mode was
another objective of the present study.
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2. Materials and Methods
2.1. Soil Preparation

In order to gather image data from tilled soil, farming operations were conducted in
the field of Babolan (37◦33′57”N 48◦55′47”E at an altitude of 1352 m above sea level) located
at 10 km from Ardabil city in 2018. The texture of the land and moisture content was sandy
loam and 8%, respectively. To obtain a cloddiness structure for exploring roughness on the
soil surface, the land was split into different plots. Each plot was then plowed by one of
the primary and secondary tillage instruments: moldboard, rotavator, or disk plow. These
machines provided different soil clods on the soil surface (fine to coarse grain size).

2.2. Image Acquisition

Since our goal was to gather the dataset in real field conditions, rather than in an
isolated environment at laboratory, stereo-pair images were used. In this research, the
W3-Fujifilm stereo camera, equipped with two 10-megapixel CCD sensors for both left
and right lenses, was used with a baseline spacing of 7.5 cm, and a 12 mm focal length.
The distance between the camera lens and the ground was 60 cm. The total number of
stereo-pair images was 156, with a resolution of 3684 × 2736 pixels. A schematic image
with a constructed platform for holding the camera is shown in Figure 1. Using this simple
imaging device without the use of additional equipment, image data were collected, which
was timesaving compared to similar methods such as DEM. Due to the use of three types
of tillage tools (molboard, disk and rotavator), 52 images were prepared from each plot
along with the measurement of the chain index.
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Figure 1. Schematic of the stereo imaging with its setup.

2.3. Roughness Measurement

In order to avoid damaging the clods on the soil surface obtained from tillage opera-
tions, roughness was measured manually after imaging. For this, the roller chain method
was used. The roller chain used in this study had joints of 4 millimeters with links of
5 millimeters and a total length of 1 m. This simple tool was carefully spread on the soil
surface and the length covered after cultivation. The ratio between the distance over surface
(1 m) and the Euclidean distance (measured by ruler) of the chain was used to calculate the
chain roughness (CI index) as a measure of the roughness [25]. The CI index was calculated
using the following equation:

CI =
(

1− L1

L0

)
× 100 (1)
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where L0 is the distance over surface (here 1 m) and L1 is the Euclidean distance in
meters [26]. It is worth noting that the CI index used in this study measured the height of
plow layers to evaluate the result of the three-dimensional model. Indeed, the height of
plow layers was calculated using both roller chain and 3D reconstruction.

2.4. Calibration and Image Rectification

The stereo algorithm was composed of four stages: calibration, rectification, corre-
sponding, and triangulation. In order to increase the speed of all processing stages, the size
of image data was reduced by four times. Stereo-pair images were calibrated by means of
a chessboard pattern using the stereo camera calibrator toolbox of MATLAB R2018a and
camera parameters were determined. The calibrated images were then rectified and both
the left and right image were set in a horizontal line. This procedure minimized bias in
extracted local features from stereo-pair images. More details are given in [27].

2.5. Keypoints Extraction and Matching

The pipeline of 3D reconstruction of soil surface after plowing operations is illustrated
in Figure 2. In order to extract keypoints as effective features in stereo-pair images, the SIFT
algorithm was applied. The main advantage of SIFT is that it is independent from rotation,
scale, and robustness against affine transformation [28]. These keypoints reconstruct a 3D
model named point cloud, whereby every point has three components along the x, y, and z
axis. For implementing the SIFT algorithm, Python programming language and Numpy
library were used.
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Figure 2. Pipeline of 3D reconstruction of tilled soil surface.

In stereo systems, the coordinates of points are determined after matching the ob-
tained keypoints from SIFT between left and right images, which are named corresponding
keypoints. For this, the brute force algorithm was used so that the locations of all corre-
sponding points were determined and a point cloud could be obtained. This algorithm
computes Euclidean distance as matching criteria so that the minimum distance between
points in the stereo-pair can be considered as a corresponding keypoint.

2.6. Disparity Calculation and Depth Map Estimation

Disparity as a dissimilarity between the pixels of two left and right images was
required to estimate depth because disparity is inverse to the distance between the observed
objects inside images. Hence, disparity calculation is essential for the creation of depth
map. For this, the binocular method was used where the disparity is the difference between
the two images as shown in Figure 3.

Disparity =
f T
z

= xl − xr (2)

z =
f T

|xl − xr|
(3)
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where f is the focal length of the camera, T is the distance between the origins of the two
camera lenses, z is the depth value of the image, Xl is the horizontal position of the pixel in
the left image, and Xr is the horizontal position of the matched pixel in the right image.
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By calculating the depth of the images, the coordinates (x, y, z) of the objects are
available and the scene can be reconstructed in 3D. Additionally, to determine pixel
intensity as color, maximum depth was computed for all pixels and pixels with maximum
depth were set to the value 0, represented by the color black. The color of each pixel was
then calculated using the following equation:

pixel color = 255− 255 ∗ depth
maxdepth

(4)

In the above formula, 255 was the value set to pixels in the left images which had
no matched pixels in the right images. Thus, depth images were obtained so that in the
images, darker regions represented objects which were far from the camera lens and the
lighter regions represented the objects which were closer to the camera lens. A sample of
depth maps is shown in Figure 4.
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2.7. Three Dimmensional Reconstruction

The 3D reconstructed points from these images provide information about objects
composed of continuous surfaces, from which the set of points are obtained [29]. To
establish the relationship between these surfaces and the desired points, among various
methods, triangulation was used as it is a simple and efficient method. For this, a linear
relationship was set between the points of the image and the corresponding points of the flat
surfaces, details of which are given in the study of [30]. The last step in 3D reconstruction
was to apply textures to the surfaces formed in the triangulation step. The intensity for
each point was determined based on Formula 4.

2.8. Evaluation Metric

As the output of our study has continuous rather than discrete values, regression was
used to evaluate the results instead of classification. In other words, the values of plow
layers obtained from CI and 3D model -which were continuous- were compared using a
regression method to determine how much correlation there is between the operation and
the constructed virtual 3D model. Therefore, a regression equation was used to evaluate the
measured and estimated soil surface roughness. As the plowing layer heights were large
enough to create considerable roughness, regression relationships were used to characterize
the soil surface situation. Additionally, a determination coefficient was computed for each
tillage implement. In order to quantitatively estimate the height of the plow layers, the
peaks from the height profiles obtained from the depth map were detected and analyzed. If
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the heights of the peaks were at the same level, this was taken as an indication of plowing
quality and roughness being in good condition. In addition, to validate the reconstructed
3D points obtained, the mean square error was calculated from the following equations.
These relationships determine the difference between the values observed in the images
(xr) and the calculated values (xcr).

RMSEx =

√
∑N

r=1(xcr − xr)
2

N
(5)

RMSEy =

√
∑N

r=1(ycr − yr)
2

N
(6)

RMSExy =

√√√√ N

∑
r=1

(
(RMSEx)

2 +
(

RMSEy
)2
)

(7)

3. Results

The visual results of extracted and matched keypoints are given in Figure 5. As can
be seen, a sufficient number of keypoints were found. The 3D model of soil surface was
reconstructed from the locations of the points and the differences on the horizontal lines
between the left and right image. This is shown in Figure 6.
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After constructing the three-dimensional model, we focused on evaluating the accu-
racy of the proposed method to determine its efficiency compared to actual measurement.
For this purpose, and to evaluate the proposed method in the 3D reconstruction of soil
surface images and validation of reconstructed 3D points, the root mean square error was
used to calculate the accuracy of the set of points, by which the difference between the
values (observed) in the images and calculated values are specified. Table 1 shows the
values obtained from these relationships for 5 random points.

Table 1. RMSE values for 5 random points from the plowed soil surface in the 3D reconstructed image.

Random Points of Soil Surface
RMSE X (Pixel) RMSE Y (Pixel)

X1 X2 Y1 Y2

1 2.12 2.09 0.91 0.86

2 2.36 2.42 1.22 1.40

3 0.98 0.85 1.75 2.08

4 1.79 1.93 0.68 0.80

5 1.90 2.23 0.74 1.01

Mean RMSE 1.07 1.65

RMSE XY 2.14

The results of evaluation are given in Table 2 containing regression equation with
coefficients of determination. From the data in the table, it can be observed that the
proposed method is an accurate method of estimating soil surface roughness in soil tilled
by moldboards, disks, and rotavators. The R square values obtained were 0.90, 0.83, and
0.78 for moldboards, disks, and rotavators respectively. The reason for these values was
that the size of soil aggregates and clods obtained from moldboard were larger than those
obtained from the disk and rotavator. Thus, the elevation component of clods from the
moldboard could be more accurately identified than the clods of the other instruments. In
addition, the small size of soil aggregates obtained from rotavator and its high distance
from camera lens led to the rotavator having the lowest R square value. This is consistent
with the results of similar studies in this field [17].

Table 2. Values of regression equation of the proposed method in estimation of soil surface roughness.

Evaluation Metrics
Implement type

Moldboard Disk Rotavator

R2 0.9 0.83 0.78

RMSE 9.08 10.83 12.32

Table 3 represents the results of calibration in the case of intrinsic and extrinsic param-
eters of the used stereo camera. The value of reprojection error was obtained as 0.61 and
0.59 for the first and second camera, respectively. Extrinsic parameters also included the
rotation matrix and the transition vector, which were used to calculate the fundamental
matrix and camera location, and finally, to calculate the three coordinates of the length,
width, and height of the reconstructed 3D images. In this regard, the first camera (left)
was considered as the base indicator and these vectors were calculated for the second
camera (right).
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Table 3. Calibration results and estimation of intrinsic and extrinsic parameters of the stereo camera.

Parameters
Intrinsic Parameters Extrinsic Parameters

Camera 1 Camera 2 Rotation Vector
(◦)

Translation Vector
(mm)

Focal length (pixels) (61.4, 61.4) (61.4, 61.4)

(0.003, 0.002,
1.670 × 10−4)

(−73.080, 1.009, −9.143)
Principle point (pixels) (54.6, 75.6) (54.7, 74.8)

Skew value (pixels) (0.9078) (0.9016)
Radial distortion (mm) (0.0167, 0.4256) (0.0167, 0.4282)

Tangential distortion (mm) (6.84 × 10−4, 5.× 10−4) (6.83 × 10−4, 5.81 × 10−4)

Figure 7 shows the regression graphs of three tillage implements in estimation of soil
surface roughness. This graph indicates that the roughness obtained from moldboard was
converged more effectively and more rapidly than the disk and rotavator because there
was less distance between the soil surface and the camera lens for the moldboard than for
the other two instruments.
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ments.

Due to the previously given explanations, the height of plow layers, which is also
a sign of soil surface roughness and plow quality, was examined. If the peaks were of
the same height in the height profile, this was taken as an indication that the plowing
quality and soil roughness were of good condition. For a plowed surface, the plow layers
and corresponding peaks detected are shown in Figure 8. As seen in the figure, the two
peaks were almost the same height. Therefore, it can be concluded that the crowns of the
plow layers were at the same level. This indicates that the roughness and plow quality
of the soil were in good condition. Figure 9 also shows a peak fitting. For profiles with
relatively large differences in plow layer height, peak analysis and fitting are illustrated
in Figures 10 and 11. In these cases, the roughness and till quality was poor. It should
be noted that the reason for the irregularities and differences between the predicted and
measured values was due to the inaccuracy of the height component in the depth map, as
well as the presence of noise that caused an unrealistic peak in the height profile. In other
words, noise and inaccuracy in calculating the height component were the most significant
variability factors in the peak analysis.
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3.1. Noise Effect

It should be noted that in some cases, these irregularities and possibly peaks are due
to noise in the images. In these cases, if the amount of noise is above a certain level, a
pre-processing step, such as noise removal, should be applied to the images. In this study,
the level and type of noise is not known and needs further investigation.

Proper selection of tillage machine and proper implementation of plowing operations
will lead us to a desirable soil roughness that can be confirmed by accurate imaging without
noise and side effects and accurate processing and analysis.

3.2. Robustness against Geometrical Variations

The SIFT algorithm was used to extract local features to make three-dimensional soil
surface images robust against different geometric variations, such as translation, rotation,
scale, and affine transformation. These advantages facilitated the work during data collec-
tion. However, other feature detectors, such as SURF, should be implemented to improve
their performance.

4. Discussion

Ideally, the average squares of the error of the image points should be less than the size
of a pixel, i.e., subpixels, but in practice such a degree of accuracy does not always occur
due to reasons such as model defects. Additionally, a large error value for a particular point
indicates the incorrect path of the algorithm for that point in terms of incorrect coordinates
of the corresponding points or the placement of points in the wrong place. It should be
noted, however, that the RMSE is not a systematic error, and its value cannot be predicted
in advance or reduced by standardization processes, such as calibration. Therefore, it
cannot be concluded that a point with a high RMSE is necessarily the least accurate point
among a set of points.

From the stereo vision perspective, due to the small amount of disparity (difference
between the horizontal distance of the corresponding points in the two images left and
right) between the plow layers of the disc and the rotavator, the depth is greater. As a
result, in the stereo vision system, layers that were further away from the camera lens
had insufficient depth and resolution accuracy. For a similar reason, the depth map for
the plow layers of the moldboard had higher resolution. This is also consistent with the
human visual perception of the environment and the rule that larger objects are better seen
and analyzed. Additionally, the correlation coefficients of the three tillage machines were
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obtained as 0.95, 0.91 and 0.89 respectively, showing a strong correlation between the actual
and estimated roughness values. The regression results show an improvement compared
to the similar study in which regression equations were used to characterize clods and soil
aggregates [11].

Regarding camera calibration, the amount of reprojection error was acceptable for
estimating the stereo camera parameters, and was suitable for 3D image reconstruction,
which was also consistent with the reports of [31,32]. This means that there was no need
for recalibrating.

The required time for 3D reconstruction was about 2500 ms for a pair of stereo images.
It is worth nothing that the time can be changed due to factors such as point cloud volume,
the number of meshes of the triangulation, the used hardware, etc., so that if the processing
power was high, the time required to obtain the result would be reduced.

In the peak analysis, it should be noted that the reason for the irregularities and
differences between the predicted and measured values is due to the inaccuracy of the
height component in the depth map, as well as the presence of noise that caused an
unrealistic peak in the height profile. The source and amount of noise is not known,
but its existence does not need to be proven, especially since the images were taken in
ambient conditions.

5. Conclusions

In this study, soil surface roughness, including random and oriented roughness, was
obtained from three tillage instruments as a combination of primary and secondary tillage
was estimated. To achieve this aim, a new dataset from the real conditions of the field
was gathered, and a stereo vision approach was applied to the dataset as a non-contact
method. The elevation component was computed, and the dataset was reconstructed as a
3D model. Following this, keypoints as local features were extracted from the images using
SIFT technique. By matching and refining corresponding features, depth math containing
the elevation component was computed. Finally, 3D reconstruction of the tilled soil was
obtained using triangulation. It can be concluded that estimation of soil surface roughness
via RGB images is not only feasible but also satisfactory if it is properly calibrated. Another
finding of this study was that the height of the plow layers could be a good indicator of
the ruggedness and quality of tilled soil. One of the limitations of this study was poor
hardware, which had a negative effect on the duration of the 3D map creation. Adjustment
and obtaining the optimal soil roughness, which depends on many factors such as plant
type and physical parameters of the soil, should be investigated in future research.
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