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Otitis media (OM) is a leading cause of childhood hearing loss. Variants in FUT2, which
encodes alpha-(1,2)-fucosyltransferase, were identified to increase susceptibility to OM,
potentially through shifts in the middle ear (ME) or nasopharyngeal (NP) microbiotas as
mediated by transcriptional changes. Greater knowledge of differences in relative
abundance of otopathogens in carriers of pathogenic variants can help determine risk
for OM in patients. In order to determine the downstream effects of FUT2 variation, we
examined gene expression in relation to carriage of a common pathogenic FUT2
c.461G>A (p.Trp154*) variant using RNA-sequence data from saliva samples from 28
patients with OM. Differential gene expression was also examined in bulk mRNA and
single-cell RNA-sequence data from wildtype mouse ME mucosa after inoculation with
non-typeable Haemophilus influenzae (NTHi). In addition, microbiotas were profiled from
ME and NP samples of 65 OM patients using 16S rRNA gene sequencing. In human
carriers of the FUT2 variant, FN1, KMT2D, MUC16 and NBPF20 were downregulated
while MTAP was upregulated. Post-infectious expression in the mouse ME recapitulated
these transcriptional differences, with the exception of Fn1 upregulation after NTHi-
inoculation. In the NP, Candidate Division TM7 was associated with wildtype genotype
(FDR-adj-p=0.009). Overall, the FUT2 c.461G>A variant was associated with
transcriptional changes in processes related to response to infection and with
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increased load of potential otopathogens in the ME and decreased commensals in the
NP. These findings provide increased understanding of how FUT2 variants influence gene
transcription and the mucosal microbiota, and thus contribute to the pathology of OM.
Keywords: FUT2, microbiota, otitis media, p.Trp154*, RNA-sequencing, rs601338
INTRODUCTION

Infection and inflammation of the middle ear (ME), known as
otitis media (OM), is the most frequently diagnosed disease in
infants and young children in the United States and is globally a
leading cause of hearing loss (Monasta et al., 2012; GBD, 2021).
In children, an estimated 60% of hearing loss is due to
preventable causes, and infections and chronic OM account for
around 31% of pediatric hearing loss (Schilder et al., 2016; GBD,
2021). In the United States, treatment of OM costs over $5 billion
annually and typically includes antibiotics and surgery such as
tympanostomy tube insertion (Schilder et al., 2016; Suaya et al.,
2018). OM risk and pathology are influenced by many factors
including environmental factors such as age, sex, daycare
attendance and breastfeeding as well as genetic factors (Zhang
et al., 2014; Brennan-Jones et al., 2015). Heritability of OM is
estimated to be as high as 74%; furthermore, genes related to OM
predisposition are known to function in pathways that include
innate immune response, cell-mediated immune dysfunction
and pathogen-host-environment interactions (Casselbrant
et al., 1999; Mittal et al., 2014).

OM is often bacterial or viral in origin, wherein pathogens in
the nasopharynx (NP) migrate via the Eustachian tube to the
ME. This creates an inflammatory cycle in the ME with an
accumulation of mucus and fluid which can lead to permanent
damage and hearing loss (Rosenfeld et al., 2013). It is important
to note that prior to infection, the ME is essentially sterile as it is
generally separated from the external environment by the
tympanic membrane, whereas the NP has an established
microbiota that can vary based on microbial exposure and host
genetics, but these microbes in the NP do not become resident in
the ME if the Eustachian tube is functioning well (Jervis-Bardy
et al., 2019). Some NP commensals are potential opportunistic
otopathogens of the ME (Yatsyshina et al., 2016). It is well-
known that increased abundance of potential otopathogens in
the NP is associated with higher risk for OM (Jervis-Bardy et al.,
2017; Browne et al., 2021; Xu et al., 2021).

FUT2 (MIM 182100) encodes alpha-(1,2)-fucosyltransferase
which is responsible for secretion and expression of ABO(H)
antigens on mucosal epithelia (Kelly et al., 1995). Secretory status
directly influences pathogen binding in mucosal epithelia in
multiple organ systems. The FUT2 stop variant c.461G>A
(p.Trp154*; rs601338) has been associated with multiple
mucosal phenotypes and is in strong linkage disequilibrium
(LD) with a synonymous FUT2 variant rs681343 that was
previously associated with childhood ear infections in genome-
wide association studies (GWAS) (Pickrell et al., 2016; Tian et al.,
2017). This variant has also been confirmed to confer familial
OM risk in multiple cohorts (Santos-Cortez et al., 2018).
gy | www.frontiersin.org 2
Additionally, Fut2 expression transiently increased in the
mouse ME after infection with non-typeable Haemophilus
influenzae (NTHi), which is a common otopathogen in
humans (Santos-Cortez et al., 2018).

Non-secretors, i.e., homozygous for FUT2 c.461G>A, show
higher rates of bacterial infections [e.g. with Streptococcus
pneumoniae, NTHi in different organ systems], but decreased
susceptibility to viral infection (i.e. viral diarrhea or HIV-1),
possibly due to the effects of the glycan on the mucus barrier
(Magalhaes et al., 2016; Azad et al., 2018; Santos-Cortez et al.,
2018). Though FUT2 is well-studied, to our knowledge there are
no previous studies of transcriptome-wide differences in host
gene expression based on carriage of the FUT2 c.461G>A variant
in humans. Furthermore, to date only seven studies investigated
changes in the host microbiota that were associated with carriage
of this variant (Rausch et al., 2011; Wacklin et al., 2011; Wacklin
et al., 2014; Kumar et al., 2015; Davenport et al., 2016; Kumbhare
et al., 2017; Turpin et al., 2018; Chen et al., 2021). These studies
were limited to assessment of the gut microbiota according to
variant carriage and identified associations seemed to be
environment- or disease- specific. While some studies observed
no associations between gut microbiome and FUT2 c.461G>A
genotype, others noted that Bifidobacterium levels, among other
taxa, were significantly different between variant carriers and
wildtype (Wacklin et al., 2011; Wacklin et al., 2014; Davenport
et al., 2016; Turpin et al., 2018). Furthermore, in Crohn’s Disease
and throughout pregnancy, the FUT2 c.461G>A variant was
associated with differences in the gut microbiota diversity and
abundance of individual taxa (Rausch et al., 2011; Kumar
et al., 2015).

In order to further elucidate the role of FUT2 in OM
pathogenesis, the goal of this study was to investigate the
potential downstream effects of the FUT2 c.461G>A (p.Trp154*)
variant on gene expression and site-specific colonization by
commensals and known otopathogens. Characterization of this
common variant and its role in the interplay between host genetics,
host immune response, andmucosal microbiotas not only expands
our general understanding of these complex relationships but also,
within the context of OM, provides clinically relevant insight that
can be used to better determine individual risk and inform
treatment. In this study, we performed differential expression
(DE) analysis on RNA-sequence data from saliva of OM-affected
individuals and identified multiple differentially expressed genes
based on carriage of the FUT2 c.461G>A variant. These DE genes
were replicated using genome-wide expression data from infected
mouseME.Wealsoperformedmicrobiota analysis using16S rRNA
sequencedata fromMEandNPsamplesofOM-affected individuals
and identified bacterial taxa that were different in relative
abundance according to genotype.
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MATERIALS AND METHODS

Ethics Approval
Ethical approval was obtained from the COMIRB prior to the
start of the study. Informed consent was obtained from study
participants, including parents of children enrolled in the study.
The IACUC of the Veterans Affairs Medical Center, San Diego,
California granted approval for mouse studies.
Subject Ascertainment
and Sample Collection
Clinical data were obtained from 91 pediatric patients
undergoing surgery for OM, with information on age, sex, self-
reported ethnicity, family history, breastfeeding history, history
of exposure to smoking, OM diagnoses and surgical technique
(Table 1). We also had clinical information and samples from 15
adult patients with OM, but these samples were removed from
further analyses because of marked differences in expression and
microbiota profiles due to age (Figure 1). DNA samples were
collected from the 91 pediatric patients with OM using the
Oragene-DNA OGR-500 or OGR-575 kits (DNA Genotek,
Ottawa, Ontario, Canada).

Saliva samples were also collected from pediatric patients with
OM using Oragene-RNA RE-100 kits and sufficient RNA was
isolated from 30 samples using the manufacturer’s protocol
(Figure 1). A total of 296 microbial samples were obtained
from the ME (n=171) and NP (n=125) of 86 individuals,
including 74 ME swabs, 86 ME aspirates, and seven ME
mucosal tissue samples. Four ME cholesteatoma/granuloma
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
tissue samples and 125 NP swabs were also collected
(Figure 1). Microbial DNA was isolated from 217 (73%)
samples using the Epicentre Masterpure Complete DNA
Purification Kit (Lucigen, Middleton, WI, USA); the rest of the
samples from which no microbial DNA was isolated were
excluded from further study (Figure 1).
Human DNA Sequencing for FUT2 and
RASIP1 Variants
A variant in RASIP1 c.1801C>T (p.Arg601Cys; rs2287922) is in
moderate LD with the FUT2 variant c.461G>A (r2 = 0.82) and
with the rs681343 variant (r2 = 0.65) that was associated with
childhood ear infections (Pickrell et al., 2016; Buniello et al.,
2019). Sanger sequencing was performed for the FUT2
NM_000511.6:c .461G>A and RASIP1 NM_017805.3:
c.1801C>T variants using DNA from saliva samples of
pediatric patients with OM. Both variants were in Hardy-
Weinberg equilibrium within the entire cohort and in each
cohort used for RNA-seq and microbiota analyses (Table 1).
Human RNA-Sequencing and Analysis
Thirty salivary RNA samples (median RIN=7.1) were
submitted for RNA-sequencing at the University of Colorado
Denver Genomics and Microarray Core, as previously
described (Larson et al., 2019). In summary, RNA samples
were processed using the Nugen Trio RNA-Seq Kit (Tecan,
Redwood City, CA, USA). Sequencing was performed on an
Illumina HiSeq 4000 with an average of 31 million reads per
TABLE 1 | Characteristics of OM patients by dataset.

Cohort
characteristicsa

Entire pediatric cohort (n=91) Microbiota (n=65) RNA-seq (n=28)

Sample type Saliva, middle ear swab/aspirate/mucosa,
nasopharynx swab

Middle ear swab/aspirate/mucosa, nasopharynx
swab

Saliva

Median age (years) 2.0 2.0 2.3
% Female 33.0% 32.3% 17.9%
% Self-reported
ethnicity

74.7% White, 11.0% Hispanic, 1.1% Asian, 12.1%
other or mixed

80.0% White, 9.2% Hispanic, 1.5% Asian, 9.3%
other or mixed

85.7% White, 10.7% Hispanic,
3.6% Asian

FUT2 c.461G>A
genotype

25.6% GG, 48.8% GA, 25.6% AA 21.5% GG, 52.3% GA, 26.2% AA 18.5% GG, 51.9% GA, 29.6%
AA

Otitis media type
- % Recurrent/acuteb 74.7% 72.3% 78.6%
- % Chronic/effusiveb 16.5% 12.3% 7.1%
- % Both/either 8.8% 15.4% 14.4%
Otitis media surgery
- % Ventilation tubes 91.2% 93.8% 85.7%
- % Tympanoplasty 8.8% 6.2% 14.3%
% Breastfed 89.0% 89.2% 82.1%
% Smoking Exposure 13.2% 13.8% 25.0%
% (+) Family history 63.7% 49.2% 42.9%
January 20
aStatistical tests for effect of FUT2 variant on distribution in overall cohort—
Sex: Chi-squared test of independence p= 0.45.
Age: Wilcoxon Rank Sum p=0.02.
Ethnicity: Chi-squared test of independence (White vs non-White) p=0.63.
Hardy Weinberg Equilibrium p=0.94.
bRecurrent/acute OM (RAOM), defined as ≥3 OM episodes in 6 months or ≥4 OM episodes in 12 months; Chronic/effusive OM (COME), defined as ME effusion persisting for ≥2 months
(Rosenfeld et al., 2016).
22 | Volume 11 | Article 798246
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sample. Reads were trimmed using the FASTX-Toolkit v0.0.13
and aligned using STAR v2.5.3a (Dobin et al., 2013). Principal
components analysis (PCA) was performed on this dataset and
one outlier sample was removed from further analyses due to
not clustering with other samples (Supplementary Figure 1).
Transcript counts were summarized at the gene level and
analyses included genes with an average read count >3. DE
analysis was performed on 28 samples (Figure 1) according to
carriage of the FUT2 c.461G>A variant using the DESeq2
package in R (Love et al., 2014), with correction for age, sex
and batch effects (Supplementary Figure 1). Results were
considered significant for genes with log2-transformed fold
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
change > ± 2 and false discovery rate (FDR)-adjusted p-value
<0.05 using the Benjamini-Hochberg method.

Network and Pathway Analysis
FUT2,RASIP1 andDEgeneswere used as input inNetworkAnalyst
for construction of a protein-protein interaction network using the
IMEx interactome database (Xia et al., 2014; Xia et al., 2015).
Pathway enrichment analysis was performed on the resulting
network using the KEGG and PANTHER GO-slim BP databases
in NetworkAnalyst (Kanehisa and Goto, 2000; Kanehisa, 2019; Mi
et al., 2019; Kanehisa et al., 2021). Pathways with an FDR-adjusted
p<0.05 were deemed significantly enriched.
FIGURE 1 | Study flowchart. The flowchart shows the number of saliva and microbial samples included for genotyping, RNA-seq and microbiota analyses.
January 2022 | Volume 11 | Article 798246
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16S rRNA Sequencing and
Microbiota Analysis
A total of 171 ME and 125 NP samples were obtained from 86
Coloradan pediatric patients with OM and submitted for 16S
rRNA sequencing. Microbial DNA isolation was performed
using the Epicentre MasterPure™ Kit. In order to test for
contaminating bacterial DNA in reagents or plastics, every
batch of samples that was submitted for 16S rRNA gene PCR
and sequencing included ≥3 negative process controls. Bacterial
profiles were determined by broad-range PCR amplification and
sequence analysis of the 16S rRNA gene V1V2 regions, as
previously described (Santos-Cortez et al., 2018; Frank et al.,
2021). Illumina paired-end sequencing was performed on MiSeq
using the 600 cycle version 3 kit. Assembled and quality-filtered
sequences were aligned and classified with SINA (1.3.0-r23838)
using the 418,497 bacterial sequences in Silva 115NR99 (Pruesse
et al., 2012; Quast et al., 2013). Operational taxonomic units
(OTUs) were produced by clustering sequences with identical
taxonomic assignments (median: 115,176 sequences/sample;
interquartile range: 46,274.5 – 170,300.0). Goods coverage
scores were ≥99.7% for all samples, indicating adequate depth of
sequence coverage for all samples. Of the 296 microbial samples
submitted for sequencing, 79 did not pass quality control (DNA
concentration ≥10 ng/ul; 2500 reads after sequencing; Figure 1).
Because it was not possible to determine whether the lack of
microbial DNA is due to a relatively sterile ME or from a sample
collection issue, these 79 samples were excluded. Bacterial alpha-
diversity indices (richness, diversity, and evenness; Robertson
et al., 2013) were tested for association with carriage of each of
the FUT2 c.461G>A or RASIP1 c.1801C>T variants independently
via Wilcoxon test and adjusted for ethnicity (Robertson et al.,
2013). Associations of individual OTUs with FUT2 c.461G>A and
RASIP1 c.1801C>T variants were assessed using linear regression
with sample batch as a covariate. To minimize multiple-
comparisons, only taxa with a prevalence >10% and relative
abundance >1% were included in the analysis. Beta-diversity was
determined via PERMANOVA using the Morisita-Horn
dissimilarity index and adjusted for age, sex and batch effects. R
software was used for data analyses and figure generation.
Gene Expression in Infected Murine
Middle Ear
All animal experiments were performed according to the
recommendations of the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and
carried out in strict accordance with an approved Institutional
Animal Care and Use Committee (IACUC) protocol (A13-022)
of the Veteran Affairs Medical Center (San Diego, CA). All
animal experiments employed the best efforts for minimizing
animal suffering under general anesthesia according to the
NIH guidelines.

For gene array studies, wild-type (WT) C57/WB F1 hybrid
mice were purchased from the Jackson Laboratory (Bar Harbor,
ME USA). NTHi strain 3655 (non-typeable, biotype II, originally
isolated from the ME of a child with OM in St Louis, MO USA)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
was cultured in defined liquid media (Coleman et al., 2003). To
induce ME infection, mice were deeply anesthetized with an
intraperitoneal injection of rodent cocktail (13.3 mg/ml ketamine
hydrochloride, 1.3 mg/ml xylazine, 0.25 mg/ml acepromazine; at
0.1-0.2 ml per 25-30 g body weight of the mouse). The bullae
were bilaterally exposed through soft tissue dissection via a
ventral approach. A hole was made in the bulla with a 23
gauge needle, allowing approximately 5 ml of NTHi inoculum
(~5x104 CFU/mL) to be injected using a Hamilton syringe with a
30-gauge needle. After the injection of NTHi inoculum, the
tympanic membranes were visually inspected and confirmed to
be intact. The incision was then stapled and the mice were given
normal saline and analgesics (buprenorphine at 0.05mg/Kg)
subcutaneously while recovering on the heated mat. Following
recovery from anesthesia the mice appeared healthy, with a
clinical activity index ≤ 3 throughout the duration of OM.

Gene array data were generated as previously described
(Hernandez et al., 2015). In summary, forty mice per time
point were inoculated bilaterally with NTHi. Mucosal tissue
and exudate were harvested from 20 mice at each of the
following intervals – 0 hours (0h, no treatment), 3h, 6h, 1 day
(1d), 2d, 3d, 5d and 7d after inoculation – then pooled. The tissue
was homogenized in TRIzol (Life Technologies, Carlsbad, CA)
and total RNA extracted, reverse transcribed and re-transcribed
in vitro to generate biotinylated cRNA probes that were
hybridized to 2 Affymetrix MU430 2.0 microarrays.
Hybridization intensity data were median-normalized and
differences in gene transcript expression levels evaluated using
variance-modeled posterior inference (VAMPIRE) (Hsiao et al.,
2005). Bonferroni multiple testing correction (aBonf < 0.05) was
applied to identify only those genes with the most robust
changes. The data were duplicated at each time point to obtain
a second, independent biological replicate. Thus each data point
represents 2 separate samples consisting of 20 mice each, and 4
Affymetrix arrays. A total of 3,605 genes, approximately 14.4% of
the mouse genome, defined the signature of acute, NTHi-
induced OM across time. Hybridization of RNA to specific
gene probes was assessed at individual time points by
comparison to uninfected MEs, after Bonferroni correction for
multiple tests, using Genespring GX 7.3 (Agilent Technologies,
Santa Clara, CA).

For single-cell RNASeq, the same ME inoculation protocol
was followed, except that C57BL/6J mice (Jackson Labs) were
employed. Single-cell samples for RNA-sequencing were
generated from the entire contents of the mouse ME (Ryan
et al., 2020). For each of three independent samples, tissue was
harvested from both ears of six young adult C57-BL6 mice 6
hours after inoculation of the ME with NTHi. Single-cell libraries
were generated using the 10X Genomics (Pleasanton, CA, USA)
Chromium Single Cell 3’ Reagent Kit V2. cDNA synthesis,
barcoding, and library preparation were then carried out on a
10X Genomics Chromium Controller according to the
manufacturers’ instructions. After validating quality of cDNA
library, sequencing was performed on an Illumina HiSeq 2500
(Illumina, San Diego, CA USA). Reads were demultiplexed and
aligned to the murine reference genome (mm10 with
January 2022 | Volume 11 | Article 798246
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annotations from Ensembl, release 84). 10X Genomics
Cellranger aggr and Seurat were used to generate PCA
clustering (Satija et al., 2015). The expression of well-
recognized marker genes identified 24 distinct cell types (Ryan
et al., 2020). Linearized relative expression levels of each gene
examined in this study were log-transformed from single-cell
mRNA copy numbers, normalized, and scaled for each cell type.
Data were visualized in 10X Genomics cLoupe, with UMI
numbers expressed colorimetrically for each cell.
RESULTS

Cohort Summary
Samples were collected from 91 pediatric patients with OM with
ages ranging from 8.7 months to 14.9 years old (median 2.0
years; Table 1). Of these, 86 had sufficient DNA sample for
Sanger sequencing of FUT2 c.461G>A (Figure 1) and 83.3% are
homozygous or heterozygous for the FUT2 variant. Carriage of
the FUT2 variant was not associated with age, sex, ethnicity or
OM diagnosis among children with OM (Table 1). In the entire
cohort and in each subset analyses, males were predominant
(≥81%), which is a known phenomenon for OM (Paradise
et al., 1997).
Differentially Expressed Genes in OM
Patients With the FUT2 c.461G>A Variant
RNA-seq data from 28 pediatric patients (0.8 to 14.8 years old;
Table 1) passed QC and were available for analysis according to
FUT2 genotype. DE analysis was performed using FUT2
c.461G>A variant carriage as the classifier (5 wildtype and 23
variant carriers) and with adjustment for age, sex and batch effects
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
(Table 1 and Supplementary Figure 1). Five DE genes were
significant, namely: FN1 (log-fold change = -3.7, FDR-adj-
p=0.006); KMT2D/MLL2 (log-fold change = -3.8, FDR-adj-
p=0.04); MUC16 (log-fold change = -4.3, FDR-adj-p=0.04);
MTAP (log-fold change = +5.4, FDR-adj-p=0.006); and NBPF20
(log-fold change = -3.5, FDR-adj-p=0.04). In carriers of the FUT2
c.461G>A variant, FN1, KMT2D/MLL2, MUC16 and NBPF20
were downregulated whereas MTAP was upregulated (Figure 2).

To further investigate how FUT2, FN1, KMT2D/MLL2,
MUC16, MTAP, NBPF20 and RASIP1 are related, these genes
were used as input for network analysis. RASIP1, FN1, KMT2D/
MLL2 and MTAP were connected in a single protein-protein
interaction network (Figure 3A). Pathway enrichment analysis
of this network revealed 27 significant pathways in KEGG and 21
significant processes in PANTHER GO-slim BP, many of which
overlap (Figures 3B, C and Table 2). Among these are processes
pertaining to viral and bacterial infection, cell cycle regulation,
apoptosis, and endocytosis (Table 2).
Differentially Expressed Genes Were Also
Significantly Regulated in Infected ME of
Wildtype Mice
To further understand the role and interactions between FUT2,
RASIP1 and DE genes, expression of orthologs Fut2, Fn1, Kmt2d,
Muc16, Mtap and Rasip1 were measured by gene array in ME of
wildtype mice at multiple time points (from 3 hours to 7 days)
post-infection with NTHi (Figure 4 and Tables 3, 4). The NBPF
gene family results from segmental duplication events in
primate, thus an ortholog for NBPF20 is not present in mice
(Vandepoele et al., 2005). Expression of Fut2, Rasip1 and Mtap
were significantly increased after inoculation, with Fut2 and
Mtap peaking around one day post-inoculation, and Rasip1
FIGURE 2 | Volcano plot of differentially expressed genes based on carriage of the FUT2 c.461G>A variant in patients with OM. In variant carriers, KMT2D/MLL2,
MUC16, NBPF20 and FN1 were downregulated (FDR-adjusted p < 0.05, log2 fold change < -2) and MTAP was upregulated (FDR-adjusted p < 0.05, log2 fold
change > 2).
January 2022 | Volume 11 | Article 798246
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and Fn1 at 3 hours post-inoculation (Figure 4). Additionally,
expression of Muc16 was significantly decreased one day post-
inoculation. For Fn1, Mtap and Muc16, DE was sustained
through days 2-7 post-inoculation, including when OM is
supposedly in recovery phase (Hernandez et al., 2015). Kmt2d
showed no significant changes in ME expression at any point
during the 7 days when compared to control mice (Figure 4).

Single-cell RNA-sequence (scRNA-Seq) data were derived
from the MEs of NTHi-infected mice six hours after
inoculation (Figure 5 and Table 5). In uninfected ME (time
point 0h), Fut2 was expressed primarily in ciliated epithelial cells
(Hydin+). Muc16 was expressed in most epithelial cells except
basal epithelial cells (Krt14+). Rasip1 was expressed in most
endothelial cells (Egfl7+) and Fn1mostly in stromal cells (Col1a2+)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
and melanocytes (Mlana+). Mtap and Kmt2d were modestly
expressed in all ME cell types. Six hours after ME inoculation
with NTHi, when overall expression data was strongest (Figure 5),
Fut2 had increased expression in non-ciliated epithelial cells (Krt18/
19+) and Muc16 in all epithelial cell types. Rasip1 continued to be
expressed in endothelial cells, but was also observed in
polymorphonuclear cells (PMNs) and monocytes (Csf1r+). Fn1
increased expression in stromal cells and monocytes and some
endothelial cells (Figure 5).Mtap and Kmt2d remained moderately
expressed in all ME cell types except infiltrating PMNs and red
blood cells. Level of gene expression per cell peaked at 1 day, and
then declined (Table 5). Taken together, the mouse ME expression
profiles for Fut2, Rasip1 and DE genes support the findings of DE
genes in OM patients using RNA-seq data from saliva (Table 4),
A B

C

FIGURE 3 | Network and pathway enrichment analysis of differentially expressed genes. (A) A single PPI network was constructed using the FUT2,
RASIP1 and the DE genes as input. (B) KEGG and (C) PANTHER GO-slim:BP pathway enrichment analysis results, showing the top 10 pathways with
the smallest p-values. MUC16 and FUT2 are not connected to this network, suggesting a different mechanism for the interaction of these two genes in
relation to OM.
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and also the overall expression of these genes in other human
mucosal tissues (Table 6).

ME and NP Microbiota Profiles of Patients
Carrying the FUT2 c.461G>A Variant
A total of 296 microbial samples were collected from the NP and
ME of 86 children (Figure 1). For microbiota analyses, samples
were filtered for: (1) those with >2500 16S rRNA sequencing reads;
(2) one ME and one NP sample per individual where bilateral
samples were collected (if bilateral, right-sided sample was used);
and (3) available genotypes for FUT2 and RASIP1 variants
(Figure 1). No differences were identified between right and left
NP or ME samples from the same individuals in PCA and
PERMANOVA analyses (data not shown). After filtering, 16S
rRNA sequence data from 34 ME and 65 NP samples were
analyzed according to carriage of the FUT2 c.461G>A
(p.Trp154*) variant.

In the ME, based on carriage of the FUT2 variant, Chao1 which
denotes bacterial richness was significant when all ethnic groups
were included (p=0.03); however, all alpha-diversity indices were
not significant when only individuals of European descent were
included in analyses (Supplementary Table 1). Overall microbiota
composition (i.e., beta-diversity) did not differ significantly by FUT2
variant according to PERMANOVA analysis with adjustment for
age, sex, or batch effects (Figure 6A). Additionally, the relative
abundances of Haemophilus (nominal p=0.03) and Moraxella
(nominal p=0.02) were increased with wildtype FUT2 genotype,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
whereas increased Propionibacterium (nominal p=0.04) and
Anoxybacillus (nominal p=0.02) were associated with presence
(homozygous or heterozygous genotypes combined) of the variant
(Figure 6C and Supplementary Table 2). Performing these
analyses by genotype had no overall effect on results
(Supplementary Figure 2).

In the NP, there were also no significant differences in alpha-
or beta-diversity (Supplementary Table 1 and Figure 6B).
Similar to ME, Propionibacterium had increased relative
abundance in the NP (nominal p=0.01) among carriers of the
FUT2 variant. In addition, the relative abundances of
Actinobacillus (nominal p=0.03), Selenomonas (nominal
p=0.03) and Candidate Division TM7 (Saccharibacteria;
nominal p=0.0002) were increased in wildtype individuals
(Figure 6D, Supplementary Table 2). When individual taxa
were tested for association by genotype, no taxa were significant
(Supplementary Figure 2). Note however that these FUT2-
microbiota associations were nominal and were non-significant
after FDR correction, with the exception of Candidate Division
TM7 in the NP (FDR-adjusted p=0.009).

RASIP1
Sanger sequencing of DNA samples confirmed that the RASIP1
c.1801C>T and FUT2 c.461G>A variants are in moderate LD in
our cohort as the genotypes for 57 of 71 (80.3%) individuals were
identical. In the ME, similar to findings with the FUT2 variant,
an increased relative abundance of Haemophilus (nominal
TABLE 2 | Significant pathways within network connecting DE genes.

KEGG PantherBP : GO-slim

Pathway FDR-adj-p Pathway FDR-adj-p

Ribosome 2.82E-34 Translation 2.37E-58
Spliceosome 1.60E-16 MRNA splicing, via spliceosome 3.15E-26
RNA transport 4.05E-07 RNA splicing 6.20E-22
Cell cycle 2.09E-05 MRNA processing 2.46E-19
Focal adhesion 8.29E-05 RNA metabolic process 7.10E-15
Viral carcinogenesis 8.66E-05 Viral process 3.14E-13
Bacterial invasion of epithelial cells 0.0002 Protein folding 5.78E-08
Endocytosis 0.0002 Regulation of translation 1.14E-06
Pathogenic E. coli infection 0.0002 Cell proliferation 0.001
DNA replication 0.0003 Cell_matrix adhesion 0.001
Proteoglycans in cancer 0.001 Rhythmic process 0.001
Huntington’s disease 0.001 Negative regulation of apoptotic process 0.002
Proteasome 0.002 MRNA 3’_end processing 0.002
Regulation of actin cytoskeleton 0.002 Intracellular protein transport 0.003
Carbon metabolism 0.003 Vesicle_mediated transport 0.003
Adherens junction 0.004 Glycolytic process 0.005
Endocrine and other factor-regulated calcium reabsorption 0.004 DNA replication 0.01
mRNA surveillance pathway 0.004 RNA splicing via transesterification reactions 0.02
Aminoacyl-tRNA biosynthesis 0.004 Receptor_mediated endocytosis 0.02
Estrogen signaling pathway 0.008 Protein transport 0.02
Leukocyte transendothelial migration 0.01 DNA recombination 0.03
Glycolysis/Gluconeogenesis 0.02
Hepatitis B 0.03
Shigellosis 0.04
Pyruvate metabolism 0.04
Salmonella infection 0.04
Bladder cancer 0.049
January 2022 | Volume 11 | Art
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p=0.04) was associated with wildtype genotype whereas increased
Propionibacterium (nominal p=0.04) was associated with the RASIP1
variant (Figure 7C and Supplementary Table 3). When analyzed by
genotype,Haemophilus remained nominally associated with wildtype
(Supplementary Figure 3). In the NP, increased abundance of
Propionibacterium (nominal p=0.006), chloroplast (FDR-adjusted
p=0.05), Escherichia-Shigella (nominal p=0.04) and Staphylococcus
(nominal p=0.04) was associated with carriage of the RASIP1 variant,
whereas increased abundance of Candidate Division SR1 (FDR-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
adjusted p=0.05), Candidate Division TM7 (FDR-adjusted
p=0.05), and Actinobacillus (nominal p=0.01) was associated with
wildtype genotype (Figure 7D and Supplementary Table 3).
DISCUSSION

Variants in FUT2, including the c.461G>A (p.Trp154*) variant
investigated here, have been associated with increased
FIGURE 4 | Gene array expression data for select genes post-inoculation with non-typeable Haemophilus influenzae (NTHi). Mouse middle ear expression of select
genes across different time points, shown as fold change in middle ears inoculated with NTHi as compared to placebo. Fut2, Muc16 and Mtap reached peak
change in expression at 24 hours post-inoculation while Muc16 demonstrated sustained downregulation. On the other hand, Rasip1 and Fn1 reached peak
upregulation at 3 hours post-inoculation. In this experiment, time point 0h represents uninfected middle ear. *p < 0.05; see Table 3 for gene expression values by
time point and gene.
January 2022 | Volume 11 | Article 798246
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TABLE 3 | Mouse ME gene expression values by time point.

Gene Probe Time Fold diff. lower upper p-value (*<0.05)

Fut2 143862_at 0h 0.99 0.86 1.14 0.96
3h 1.53 1.27 1.85 0.27
6h 2.39 1.81 3.16 0.20
1d 10.14 9.32 11.03 0.02*
2d 3.49 3.13 3.89 0.55
3d 1.60 1.48 1.74 0.11
5d 0.79 0.55 1.13 0.63
7d 0.80 0.51 1.28 0.72

Rasip1 1428016_at 0h 0.99 0.83 1.17 0.95
3h 5.65 5.55 5.74 0.006*
6h 5.07 4.32 5.95 0.06
1d 3.01 2.56 3.55 0.09
2d 1.99 1.72 2.31 0.13
3d 1.33 1.06 1.66 0.43
5d 1.33 1.15 1.54 0.30
7d 1.06 0.92 1.21 0.76

Fn1 1437218_at 0h 0.80 0.40 1.60 0.80
3h 8.94 8.11 9.85 0.03*
6h 5.13 4.80 5.48 0.03*
1d 3.82 3.70 3.94 0.01*
2d 3.93 3.67 4.21 0.03*
3d 2.97 2.55 3.47 0.09
5d 2.07 1.81 2.35 0.11
7d 1.85 1.28 2.67 0.34

Mtap 1451345_at 0h 0.10 0.93 1.08 0.98
3h 0.75 0.73 0.78 0.08
6h 0.78 0.73 0.83 0.15
1d 3.29 3.20 3.37 0.01*
2d 2.39 2.09 2.73 0.10
3d 2.09 1.92 2.28 0.07
5d 1.69 1.63 1.76 0.047*
7d 1.67 1.55 1.79 0.09

Muc16 1432358_at 0h 0.95 0.67 1.33 0.90
3h 0.74 0.68 0.80 0.17
6h 0.56 0.42 0.75 0.30
1d 0.16 0.15 0.16 0.01*
2d 0.28 0.26 0.31 0.047*
3d 0.64 0.53 0.78 0.27
5d 0.71 0.67 0.75 0.10
7d 0.65 0.64 0.67 0.04*

Kmt2d 1427555_at 0h 0.99 0.83 1.17 0.95
3h 0.88 0.62 1.26 0.79
6h 1.18 1.09 1.27 0.28
1d 1.73 1.08 2.77 0.46
2d 4.98 3.12 7.97 0.18
3d 0.85 0.80 0.91 0.25
5d 0.71 0.62 0.81 0.24
7d 1.32 1.04 1.67 0.45
Frontiers in Cellular and
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*Denotes p-values < 0.05.
TABLE 4 | Comparison of DE gene regulation in human saliva of FUT2 c.461G>A variant carriers vs non-carriers and NTHi- vs placebo-inoculated mouse middle ear (ME).

Gene FUT2 Variant Carrier vs Wildtype (human saliva expression) NTHi- vs PBS-inoculated (mouse ortholog ME expression)

FUT2 Genotype as classifier variable Upregulated in NTHi at 1 day
RASIP1 Genotype as classifier variable Upregulated in NTHi at 3 hours
FN1 Downregulated in variant carriers Upregulated in NTHi, peak at 3 hours
MTAP Upregulated in variant carriers Upregulated in NTHi, peak at 1 day
MUC16 Downregulated in variant carriers Downregulated in NTHi, peak at 1 day
KMT2D/MLL2 Downregulated in variant carriers Not significant
NBPF20 Downregulated in variant carriers Not applicable
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FIGURE 5 | Single-cell RNA-seq expression data from mouse middle ear 6 hours after inoculation with NTHi. Expression of Fut2, Fn1, Muc16, Kmt2d and Rasip1 in
wildtype mouse middle ear, 6 hours post-infection. Cell types of the various PCA clusters were identified by the expression of unique marker genes. Darkness of
color (red for each gene) indicates level of UMI expression by each cell, according to the associated log2 scale. Epithelial cell clusters were identified based on the
expression of Krt18 and/or Krt19. Basal epithelial cells also express Krt14, while ciliated epithelial cells express Hydin. Stromal cells are identified by Col1a2. Vascular
endothelial cells express Egfl7 and Flt4, lymphatic endothelial cells Egfl7 and Flt1. Melanocytes express Mlana and pericytes Rgs5. Monocytes express Csf1r,
lymphocytes Ptprcap, polymorphonuclear cells Il1f9 and Stfa2l1, and red blood cells Hba-a1.
TABLE 5 | Single-cell RNA-seq expression levels in mouse ME by time point after NTHi inoculation.

Gene 0 hour 6 hours 1 day 5 days 7 days

Fut2 modest in ~10% of
ciliated epithelial cell and a
few other non-basal
epithelial cells

modest in ~10% of non-
ciliated non-basal epithelial
cells

moderate in ~30% of epithelial cells modest in only a few
epithelial cells

modest in ~10% of ciliated and
other non-basal epithelial cells~10% of vascular endothelial cells

and a few PMNs

Rasip1 moderate in most
endothelial cells, both
vascular and lymphatic

very strong in most
endothelial cells, modest in
~20% of PMNs and ~5%
of monocytes

strong in vascular endothelial cells, strong in most vascular
endothelial, modest in ~50%
of other cells but stromal,
lymphocytes

moderate in most endothelial
cellsmodest in some PMNs, monocytes

Fn1 strong in ~50% of stromal
cells, melanocytes, a few
endothelial cells and
monocytes

strong in most stromal
cells, moderate in most
monocytes, a few
endothelial cells

very strong in most monocytes,
some stromal cells, and some
vascular endothelial cells

very strong in all stromal
cells; moderate in ~50% of
monocytes and vascular
endothelial cells

strong in all vascular endothelial
cells, moderate in most stromal
cells, modest in ~10% of
monocytes

Mtap modest in ~10% of all cell
types

modest in ~10% of all cell
types but PMNs, RBCs

moderate in most vascular epithelial
cells, ~50% of stromal cells and
epithelial cells, some monocytes

modest in ~20% of all cell
types but PMNs, RBCs

modest in 10-20% of all cell
types but ciliated epithelial
cells, RBCs

Muc16 moderate in most
epithelial cells, excluding
basal cells

modest in most non-basal
epithelial cells

moderate in most non-basal
epithelial cells

moderate in non-basal
epithelial cells, very modest
in ~10% of basal epithelial
cells

moderate in most non-basal
epithelial cells, modest in ~10%
of basal epithelial cells

Kmt2d modest in ~10-20% of all
cell types

modest in ~10-20% of all
cell types except PMNs,
RBCs

moderate in most vascular
endothelial and ~50% of epithelial
cells; modest in most stromal cells,
monocytes, PMNs

modest in 50% of epithelial
cells and ~10-20% of all
other cell types but RBCs

modest in ~10-20% of all cell
types but RBCs
Frontiers
 in Cellular and Infection Mic
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Very modest expression = <0.5 x log2 UMI (transcript)/cell.
Modest expression = 0.5-1 x log2 UMI/cell.
Moderate expression = 1.5-2 x log2 UMI/cell.
Strong expression = 2.5-3 x log2 UMI/cell.
Very strong expression = 3.5-5 x log2 UMI/cell.
PMNs, polymorphonuclear cells; RBCs, red blood cells.
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susceptibility to OM but their functional role in OM pathology
has not been fully elucidated. Although FUT2 has been studied
by many groups, to our knowledge this is the first study in which
RNA-seq data combined with ME and NPmicrobiotas have been
examined in relation to carriage of the FUT2 c.461G>A variant.
Our results suggest that the FUT2 variant confers OM
susceptibility through its modulation of MUC16 expression
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
and downstream induction of FN1 and MTAP after microbe
binding and pathogen colonization (Figures 2, 3 and Table 2).
These DE findings were supported by similar regulation of
expression in NTHi-infected ME of wildtype mice, whether by
bulk mRNA-seq or single-cell RNA-seq data (Figure 4 and
Tables 3, 4). Because these genes were differentially regulated in
response to OM in the infected wildtype mouse ME, the results of
TABLE 6 | Known RNA and protein expression profiles of FUT2, RASIP1 and DE genes in human tissues.

Gene RNA Expression (GTEx Consortium; Lonsdale et al.,
2013)

Protein Expression (Human Protein Atlas; Uhlen et al., 2015)

FUT2 Minor salivary gland, esophagus-mucosa, small intestine-
terminal ileum, colon-transverse, stomach, vagina

Medium expression in most organs/tissues including nasopharynx, lung and oral mucosa

RASIP1 Lung, adipose-visceral (omentum), breast-mammary tissue,
adipose-subcutaneous, spleen, uterus

Medium expression in gallbladder, kidney, placenta, smooth muscle; low expression in adrenal
gland, salivary gland, epididymis, appendix, tonsil, cerebral cortex, colon

FN1 Cultured fibroblasts, artery-aorta, coronary, tibial High expression in kidney; medium or low expression in many organs/tissues including low
expression in nasopharynx, lung and oral mucosa

KMT2D/
MLL2

Expression detected across all tissues/organs; highest in
uterus, thyroid, brain-cerebellum

High expression in cerebral cortex, cerebellum, testis, and epididymis; medium or low
expression in many organs/tissues including low expression in nasopharynx and lung

MTAP Highest expression in cells-cultured fibroblasts, nerve-tibial,
ovary, uterus

Unavailable

MUC16 Minor salivary gland, adipose-visceral (omentum), fallopian
tube, testis, lung, cervix-endocervix

High expression in bronchus, fallopian tube, endometrium, uterine cervix; medium expression in
salivary gland; low expression in nasopharynx
A B

DC

FIGURE 6 | Relative abundance of individual taxa in middle ears (ME) and nasopharynges (NP) of carriers and non-carriers of the FUT2 c.461G>A variant. (A) Cumulative
relative abundance profiles in the ME of wildtype (n=8) and carriers (n=26) of FUT2 c.461G>A. (B) Cumulative relative abundance profiles in the NP of wildtype (n=14) and
carriers (n=51) of FUT2 c.461G>A. Plots showing p-values for relative abundance of individual bacterial taxa in the (C) ME and (D) NP of wildtype versus variant carriers
after adjusting for batch. Blue lines indicate taxa that were increased in wildtype, red lines for carriers. Dashed lines indicate significance thresholds where the red line is
unadjusted-p=0.1 (non-significant) and green lines indicate unadjusted-p=0.05 and unadjusted-p=0.01. (C) In the ME, Haemophilus (1) and Moraxella (2) were nominally
associated with wildtype, whereas Propionibacterium (3) and Anoxybacillus (4) were nominally associated with variant carriage. (D) In the NP, Candidate Division TM7 (1)
was significantly associated with wildtype (FDR-adj-p=0.009). Additionally, Selenomonas (2) and Actinobacillus (3) were nominally associated with wildtype whereas
Propionibacterium (4) was nominally associated with variant carriage.
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this DE analysis suggest that the FUT2 c.461G>A variant
magnifies the downstream response to infection (for example,
downregulated MUC16, upregulated MTAP), and/or reverses the
direction of regulation (e.g. downregulation of FN1 in carriers of
the FUT2 variant; Figures 2, 4 and Table 4). Alternatively, DE
genes may vary depending on the predominant otopathogen
during infection: in other words, whether commensal or
otopathogenic bacteria bind to ME mucosal epithelium via A
antigen, the expression of which is affected by heterozygous or
homozygous genotype for the FUT2 c.461G>A variant (Figures 6,
7; Santos-Cortez et al., 2018).

RASIP1 is expressed in ME endothelial cells and provides
another avenue for investigation in relation to FUT2 c.461G>A
variant carriage. RASIP1 c.1801G>T, previously identified by
GWAS to be in LD with FUT2 c.461G>A (Pickrell et al., 2016), is
also in moderate LD with FUT2 c.461G>A in the sample set.
RASIP1 is part of the PPI immune network including MTAP,
KMT2D and FN1 (Figure 3A and Table 2), which led us to
question whether the expression and microbiota effects we
observed were being driven by the RASIP1 missense variant
rather than the FUT2 stop variant. When examining the
changes in the expression of these genes in wildtype mice after
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
NTHi inoculation, Rasip1 and Fn1 expression peaked at 3 hours
post-inoculation, whereas Fut2 peaked at one day post-
inoculation, in concordance with Muc16 and Mtap expression
(Figure 4 and Table 3). Additionally, in the single-cell RNA-seq
data from mouse ME, we observed Rasip1 and Fn1 expression in
endothelial cells versus epithelial expression of Fut2 and Muc16
(Figure 5 and Table 5). When examined together, these
expression profiles strongly support FUT2 as mediating OM
susceptibility within the ME mucosal epithelium. In particular,
the downregulation ofMUC16 in OM patients with the FUT2 stop
variant might indicate a prolonged recovery phase when MUC16
is expected to return to normal levels as part of the normal
response to acute OM. MUC16 downregulation is therefore a
potential avenue for future research, for example, whether this
effect of FUT2 knockdown is a mechanism for an acute infection
to proceed to recurrence or chronicity (Kerschner et al., 2013).

Dysbiosis of theNPandMEmucosalmicrobiotas is supportedby
our data here and in our previous studies in which the ME of FUT2
c.461G>A variant carriers were enriched in potentially
otopathogenic taxa such as Propionibacterium, and decreased for
established otopathogens Haemophilus and Moraxella, although
these associations were nominal (Santos-Cortez et al., 2018). This
A B
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FIGURE 7 | Relative abundance of individual taxa in the middle ears (ME) and nasopharynges (NP) of carriers and non-carriers of the RASIP1 c.1801C>T variant.
(A) Cumulative relative abundance profiles in the ME of wildtype (n=8) and carriers (n=26) of RASIP1 c.1801C>T. (B) Cumulative relative abundance profiles in the
NP of wildtype (n=15) and carriers (n=50) of RASIP1 c.1801C>T. Plots showing p-values for relative abundance of individual bacterial taxa in the (C) ME and (D) NP
of wildtype versus carriers after adjusting for batch. Blue lines indicate taxa that were increased in wildtype, red lines for carriers. Dashed lines indicate significance
thresholds where the red line is unadjusted-p=0.1 (non-significant) and green lines indicate unadjusted-p=0.05 and unadjusted-p=0.01. (C) In the ME,
Gammaproteobacteria (1) was nominally associated with wildtype, whereas Propionibacterium (2) was nominally associated with variant carriage. (D) In the NP,
Candidate Division SR1 (1) and Candidate Division TM7 (2) were significantly associated with wildtype, and Chloroplast (5) with variant carriage (FDR-adj-p=0.05).
Additionally, Actinobacillus (3) was nominally associated with wildtype, whereas Propionibacterium (4), Staphylococcus (6) and Escherichia-Shigella (7) were nominally
associated with variant carriage.
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could be attributed to the effect of FUT2 c.461G>A on pathogen
binding, wherein those homozygous for the FUT2 variant are non-
secretors of ABO(H) antigens on the epithelia surface (Table 6);
these antigens can serve as ligands to which some bacteria may bind
and thus affect the commensal and pathogen loads of the NP and
ME. Interestingly the only bacterial taxon that has a significant
association with the FUT2 variant after correction for multiple
testing is Candidate Division TM7, which is also known as
Saccharibacteria (Figure 6). Little is known about Saccharibacteria
and its reported associationswith humanmucosal disease have been
variable, though there is some evidence that it parasitizes other
bacteria and can kill its host bacterium, thereby modulating the
overall microbiota (Bor et al., 2019).

The change in relative abundance of chloroplast in the NP
corresponding to RASIP1 variant carriage is an unusual result.
This is potentially due to a sequence misclassification of
cyanobacteria in the reference database rather than systematic
contamination during isolation from the kit or reagents. Though
general contamination is a possible explanation, if this were the
case its presence would be detected among all samples or the
effect would be eliminated by the adjustment for batch during
analyses. Furthermore, chloroplast contamination would be
negatively correlated with number of reads per sample as
contamination would be less prominent in samples with
higher bacterial loads. However, we did not observe these in
our samples and during analyses. Thus, it is unlikely that the
identification of chloroplast as being differentially abundant in
carriers of the RASIP1 variant is due to general contamination,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
though random, non-systematic contamination cannot be ruled
out. Note that the main findings in this work are more likely
explained by carriage of the FUT2 variant and not the
RASIP1 variant.

In addition to the impact on pathogen and commensal binding
to epithelia, the DE and network analyses suggest that the FUT2
c.461G>A variant also has a downstream effect on basic cellular
pathways (Figures 2, 3 and Tables 4, 7). For example, FN1 is a
modulator of ME anti-inflammatory response (Song et al., 2013)
as well as a binding site for otopathogen Staphylococcus aureus
(Fowler et al., 2000) and group A Streptococcus (McNitt et al.,
2018). FN1 protein expression was also previously demonstrated
to be dysregulated by viral infection (Simon et al., 2015; Qiao et al.,
2021); however, viruses are not included in this study due to
sample collection methods. Notably we only observed a nominal
increase in Staphylococcus abundance in the NP (but not ME) of
carriers of the RASIP1 variant (Figure 7), but not in carriers of the
FUT2 variant (Figure 6). In addition, NTHi inoculation of mouse
ME resulted in upregulation of Fn1 (Figure 4 and Table 3). In
contrast, in our OM patients with the FUT2 stop variant, FN1 was
downregulated (Figure 2 and Table 4), indicating that non-
functional FUT2 might also affect the direction of regulation of
the immune network that includes FN1 and also RASIP1, MTAP
and MLL2/KMT2D (Figure 3). It should be noted that KMT2D
variants are responsible for Kabuki Syndrome which is
characterized by increased rates of OM as well as other
immunological abnormalities (Hoffman et al., 2005; Ng et al.,
2010; Yap et al., 2020; Boniel et al., 2021).
TABLE 7 | Summary of relevant knowledge of FUT2, RASIP1 and DE genes.

Gene Prior findings in literature

FUT2 (alpha-[1,2]-fucosyltransferase), MIM 182100 • c.461G>A variant confers non-secretor status of ABO(H) antigens on mucosal epithelia
(Magalhaes et al., 2016)

• Non-secretors demonstrate decreased commensal load allowing an increase in
bacterial pathogen colonization (Giese et al., 2020)

• Non-secretor status affects mucus barrier (Magalhaes et al., 2016)
RASIP1 (Ras interacting protein 1), MIM 609623 • Crucial to formation of vascular structures via angiogenesis and vasculogenesis (Xu

et al., 2009)
• Involved in endothelial barrier function (Xu et al., 2011)
• Expressed in middle ear endothelial cells (Ryan et al., 2020)

FN1 (fibronectin-1), MIM 135600 • Glycoprotein found in extracellular matrix and on cell surface (McDonald et al., 1982;
Woods et al., 1986)

• Involved in cell adhesion, migration, host defense and wound healing (McAuslan et al.,
1980; Clark et al., 1982; Hill et al., 1984; Woods et al., 1986)

• Expressed in human middle ear epithelial cells & identified as a key modulator of anti-
inflammatory response to extracellular stress (Song et al., 2013)

• Utilized by S. aureus to gain entry to host cells (Fowler et al., 2000)
KMT2D/MLL2 (histone-lysine N-methyltransferase 2B; myeloid/lymphoid
or mixed-lineage leukemia protein 2), MIM 602113

• KMT2D mutations are the cause of the majority of cases of Kabuki syndrome (KS; MIM
147920) (Ng et al., 2010; Yap et al., 2020)

• KS patients have high rate of infections and array of immunological abnormalities
(Hoffman et al., 2005)

• OM occurs in 55-90% of KS patients (Boniel et al., 2021)
MTAP (S-methyl-5’-thioadenosine phosphorylase) * Mtap+/- mice had no hearing loss, whileMtap-/- was embryonic lethal (Williamson et al., 2007)
MUC16 (cell-surface associated mucin 16) • Transmembrane mucin expressed in human and mouse middle ear and airway epithelia

(Kerschner, 2007; Kerschner et al., 2010)
• Contributes to composition of mucous barrier as part of host defense against infection

(Kesimer et al., 2009)
• Upregulated in middle ear epithelia of OM patients as compared to normal controls

(Stabenau et al., 2021)
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In conclusion, we propose that the mechanistic effects of the
FUT2 c.461G>A variant on OM susceptibility are two-fold:
(1) Non-secretor status conferred by this FUT2 stop variant
alters the profiles of bacterial taxa that bind to ME and NP
mucosal epithelia and thereby increases susceptibility to bacterial
infection in mucosal epithelia; and (2) FUT2 variants affect
expression of genes including downregulation of MUC16 and
those connected to an immune network, which leads to further
susceptibility to infection as well as impaired immune responses
(Figure 3) and basic cellular processes (Table 2) within the ME
mucosal epithelium. Through increased understanding of the
effects of pathogenic variants on dysbiosis and gene regulation in
OM, the ability to determine risk for patients due to
specific genetic variants may be improved, and thereafter
enhance prevention and treatment protocols for OM using
more targeted antibiotics for otopathogens associated with
these variants.
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