
Cerebrospinal Fluid Dendritic Cells Infiltrate the Brain
Parenchyma and Target the Cervical Lymph Nodes under
Neuroinflammatory Conditions
Eric Hatterer1,2, Monique Touret1,2, Marie-Françoise Belin1,2, Jérôme Honnorat1,2, Serge Nataf1,2*
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Abstract

Background: In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central
nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to
play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in
normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However,
there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions.

Methodology/Principal Findings: To address this issue, we performed in vivo transfer experiments in rats suffering from
experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF
with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester
(CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous
antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral
lymph nodes were assessed for the presence of microspheres+ APCs or CFSE+ DCs by immunohistology and/or FACS
analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed
CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger
number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an
accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte
glycoprotein, a major immunogenic myelin antigen.

Conclusions/Significance: Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed
brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the
immune responses that develop within and outside the inflamed CNS.
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Introduction

DCs are the most powefull antigen presenting-cells of the immune

system. They sequentially capture antigens in inflamed tissues, reach

the lymphatic vessels, migrate toward lymphoid organs and induce

the antigen-specific proliferation of T-cells [1,2]. However, this

functional scheme does not apply to CNS for the following reasons: i)

in contrast with all other tissues, there is no DCs residing in the CNS

parenchyma, ii) the so-called ‘‘blood-brain barrier’’ considerably

limits the penetration of blood-circulating immune cells, including

DCs and their precursors, into the CNS parenchyma; iii) the CNS is

devoided of lymphatic vessels. Nevertheless, despite these limitations,

DCs were shown to infiltrate several compartments of the CNS

under neuroinflammatory conditions. These intra-CNS compart-

ments communicate with each others and comprises: the CSF [3,4],

the meninges [5,6], the perivascular spaces [5,6] and the CNS

parenchyma [6,7]. Due to the lack of intra-CNS lymphatic vessels,

the question whether and how DCs migrate from the inflamed CNS

to lymphoid organs is still controversial. Previous studies performed

in normal rats or mice showed that DCs are able to migrate from

brain to cervical lymph nodes (CLNs) and to elicit a systemic

immune response [8,9]. Also, we reported that in normal rats, DCs

injected into the cerebrospinal fluid reached the CLNs while DCs

injected into the brain parenchyma stayed confined to the CNS [10].

However, as these experiments were performed in normal rats, one

cannot conclude on the actual behavior of CNS-infiltrating DCs

under neuroinflammatory conditions. In the present paper, we

specifically assessed the migratory behavior and functions of CSF-

circulating DCs (CSF DCs) in a rat model of multiple sclerosis, the

most common autoimmune disorder of the CNS. Two complemen-

tary experimental procedures were followed: i) in a first set of

experiments, we tracked endogenous CSF-circulating antigen-

presenting cells (APCs) by injecting fluorescent microspheres into

the CSF of rats induced for EAE; ii) in a second set of experiments,

bone marrow-derived myeloid DCs were labeled with the fluorescent

marker carboxyfluorescein diacetate succinimidyl ester (CFSE) then
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injected into the CSF of EAE rats, at the clinical peak of the disease,

or control rats. The brains and peripheral lymph nodes of injected

animals were then examined by immunohistological methods or

FACS analysis on day 1 or 8 post-injection. Data showed that in

EAE rats, CSF DCs substantially infiltrated the inflamed brain.

Moreover, CSF DCs reached the cervical lymph nodes and

enhanced the systemic humoral response against myelin oligoden-

drocyte glycoprotein (MOG), a major immunogenic myelin antigen,

Results

Intra-CNS migration of CSF DCs in EAE versus control rats
An immunohistological examination of the CNS was performed

in: i) EAE rats injected intra-CSF with microspheres (n = 14) and

sacrificed on day 1 (n = 8) or 8 (n = 6) post-injection; ii) EAE rats

injected intra-CSF with CFSE-labeled DCs (n = 18) and sacrificed

on day 1 (n = 8) or 8 (n = 10) post-injection; iii) control rats injected

intra-CSF with CFSE-labeled DCs and sacrificed on day 1 post-

injection (n = 4) or 8 post-injection (n = 3). In EAE rats, all intra-

CSF injections were performed at the clinical peack of disease, on

day 12 post-immunization.

(i) Migration of CSF DCs in the periventricular
parenchyma

In EAE rats injected with microspheres and sacrificed on day 1

post-injection (n = 8), phagocytic cells having engulfed fluorescent

microspheres (microspheres+ cells) were detected as free-floating

cells in the injected lateral ventricle (Fig 1A–D) as well as in the

third ventricle (Fig 1E) and in the fourth ventricle (data not

shown). These microspheres+ cells expressed OX42 (CD11b/c)

and MHC class II molecules (Fig 1A–C). Also, microspheres+ cells

harboring the same phenotype were evidenced in periventricular

inflammatory lesions (Fig 1D–E). Similarly, in EAE rats injected

with CFSE-labeled DCs and sacrificed on day 1 post-injection

(n = 8), CFSE+/OX42+ cells were detected in the ventricular CSF

compartment (Fig 1F–H) and in the periventricular parenchyma

(Fig 1I). A similar distribution of CFSE+/OX42+ cells was

observed in EAE rats injected with CFSE-labeled DCs and

sacrificed on day 8 post-injection (n = 10) (Fig 1J). When

performing an immunostaining of the myelin basic protein

(MBP)(Fig 2), we found that microspheres+ cells (Fig 2A–C) or

CFSE+/MHC class II+ DCs (Fig 2D–I) could be evidenced within

periventricular demyelinating lesions, on day 8 (Fig 2A–C) or 1

post-injection (Fig 2D–I). Such a migratory behavior was specific

as the mean number of CFSE+ DCs was more than 4 times higher

in periventricular demyelinating lesions than in normal-appearing

periventricular white matter (9.4+/22.5 cells/1022 mm2 vs 1.6+/

20.5 cells/1022 mm2 in demyelinated vs normal-appearing

periventricular white matter respectively, p = 0.02, Mann and

Whitney test)(Fig 3A). Interestingly, some of the microspheres+

cells that localized in these periventricular demyelinating lesions

displayed an intracytoplasmic MBP staining, suggesting they had

ingested MBP-containing myelin debris (Data supplement S1).

Finally, to further determine whether the intra-CNS migration of

CSF DCs is conditionned by the neuroinflammatory environment,

we performed parallel experiments in which CFSE+ DCs were

injected into the CSF of normal rats (n = 4). Rats were sacrificed

on day 1 post-injection and serial sections of the injected lateral

ventricle were examined. CFSE+ DCs were then counted in order

to establish the respective percentages of intraventricular vs

periventricular CFSE+ DCs on day 1 following injection (Fig 3B).

The same procedure was applied to EAE rats injected with CFSE-

labeled DCs and sacrificed on day 1 post-injection (n = 7). While in

normal rats, 14.5+/20.6% cells localized in the periventricular

parenchyma, we found that in EAE rats more than 40% of the

injected cells localized in the periventricular parenchyma (42+/

27%, p = 0.008, Mann and Whitney test).

Altogether these data show that in EAE rats as compared to

controls, CSF DCs present an increased ability to penetrate the

periventricular parenchyma and, in particular, the demyelinating

lesions that are adjacent to ventricles.

(ii) Migration of CSF DCs along the deep penetrating
meninges

On day 1 or 8 following injection, numerous microspheres+ cells

were evidenced in the superficial meninges covering the outer surface

of the brain (data not shown). However, microspheres+ cells were also

frequently detected in the deep penetrating meninges (Fig 4). In

particular, microspheres+ cells localized along the pia matter covering

the molecular layers of the cerebellum (Fig 4A–B) or lining the inner

surface of the brainstem (data not shown). These microspheres+ cells

expressed MHC class II molecules (Fig 4C–E) and OX42 (data not

shown). Similarly, on day 1 post-injection, numerous CFSE+ DCs

were evidenced in the deep penetrating meninges (Fig 4C, D). As

observed for microspheres+ cells, CFSE+ DCs were frequently

detected in the meninges covering the molecular layers of the

cerebellum (data not shown) or in the meninges lining the inner

surface of the brainstem (Fig 4F–G). These cells expressed MHC class

II molecules and OX42 (Fig 4H–J and data not shown). However, on

day 8 following injection, only few CFSE+ cells were still detectable in

the deep penetrating meninges (data not shown). Interestingly, when

CSFE+ DCs were injected into the CSF of normal rats, we could not

detect CFSE+ cells in the deep penetrating meninges (Table 1).

(iii) Migration of CSF DCs in the brain parenchyma and
perivascular spaces

On day 1 or 8 post-injection, microspheres+/MHC class II+ cells

as well as CFSE+ DCs localized in parenchymal areas, distant away

from the site of injection (Fig 5 and 6). In some cases, these cells

appeared to infiltrate a non-inflamed parenchymal area as judged by

the lack of infiltrating MHC class II+ or OX42+ inflammatory cells

(Fig 5A–C). In other cases, CSF-derived DCs were clearly localized

within parenchymal inflammatory foci. (Fig 5D–I). Interestingly,

microspheres+/MHC class II+ cells or CFSE+ DCs were demon-

strated in perivascular infiltrates (Fig 6). Indeed, as early as day 1

post-injection, microspheres+/MHC class II+ cells or CFSE+/MHC

class II+ DCs were detected in close vicinity with the vascular wall of

cuffed vessels (Fig 6A–D) including small caliber venules (Fig 6B,

arrow). A similar migratory pattern was observed on day 8 post-

injection (Fig 6E–F). In comparison, only a few CFSE+ cells were

detected in the perivascular spaces of normal rats injected with

CFSE+ DCs (Table 1).

Migration of CSF DCs in the cervical lymph nodes
A histological examination of the cervical lymph nodes and

axillary lymph nodes was performed in EAE rats injected intra-

CSF with microspheres (n = 14) and sacrificed on day 1 (n = 8) or 8

(n = 6) post-injection. On day 1 or 8 following injection,

fluorescent microspheres were evidenced in the cervical lymph

nodes (CLNs) (Fig 7A–B) but not in the axillary lymph nodes

(Fig 7E–F) of EAE rats. Microspheres preferentially localized in

the B-cell area of CLNs and could be demonstrated within the

germinal centers of B-cell follicles (Fig 7G). In order to formally

confirm that microspheres had not been passively transported in

the lymph flux, an ultrastructural analysis of CLNs was performed.

This allowed microspheres to be demonstrated in the cytoplasm of

phagocytic cells that localized in the B-cell areas of CLNs (Fig 7H).

Traffic of CSF Dendritic Cells
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Figure 1. CSF-circulating DCs infiltrate the periventricular parenchyma. Fluorescent microspheres or DCs labeled with the cytoplasmic
fluorescent marker CFSE were injected into the left lateral ventricle of EAE rats (n = 32) at the clinical peak of disease (day 12 post-immunization). EAE rats
injected with fluorescent microspheres (n = 14) or CFSE-labeled DCs (n = 18) were then sacrificed on day 1 post-injection (n = 16) or 8 post-injection
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PLoS ONE | www.plosone.org 3 October 2008 | Volume 3 | Issue 10 | e3321



To gain quantitative insights on the migration of CSF DCs

toward the CLNs, a FACS analysis was performed on the lymph

nodes of EAE rats (n = 8) or control rats (n = 7) injected intra-CSF

with CFSE+ DCs (Fig 8). In injected EAE rats sacrificed on day 1

post-injection (n = 4), we found that 2.26+/20,11% CFSE+ cells

could be detected in the CLNs as compared to 1.37+/20,03% in

the axillary lymph nodes (p = 0.02, Mann and Whitney

test)(Fig 8A, C–D). However, in injected EAE rats sacrificed on

day 8 post-injection (n = 4), no statistical difference was observed

between the CLNs and the axillary lymph nodes regarding the

Figure 2. CSF-circulating DCs penetrate periventricular demyelinating lesion. Fluorescent microspheres or DCs labeled with the
cytoplasmic fluorescent marker CFSE were injected into the left lateral ventricle of EAE rats (n = 32) at the clinical peak of disease (day 12 post-
immunization). EAE rats injected with fluorescent microspheres (n = 14) or CFSE-labeled DCs (n = 18) were then sacrificed on day 1 post-injection
(n = 16) or 8 post-injection (n = 16). An immunohistological analysis of brains obtained from injected EAE rats or control healthy rats (n = 4) was then
performed using antibodies directed against MHC class II molecules and/or myelin basic protein (MBP). A–C: In a normal rat (A), immunostaining of
MBP (green) is homogenous and symmetric in the periventricular parenchyma adjacent to the third ventricle. In contrast, a large periventricular
demyelinated area, adjacent to the third ventricle, is observed in an EAE rat injected intra-CSF with microspheres and sacrificed on day 8 post-
injection (B). This demyelinating lesion is filled with microspheres+ cells (C). D–F: On day 1 post-injection, an area of periventricular infiltration
adjacent to the injected lateral ventricle (D) is demyelinated (E) and contains CFSE+ DCs (F). G–I: On day 1 post-injection, periventricular parenchymal
infiltrates (G) adjacent to the injected lateral ventricle are formed by MHC class II+ cells (H) and contain MHC class II+/CFSE+ DCs (I). LV: lateral ventricle,
V3: third ventricle. Scale bars: 50 mm (A–I).
doi:10.1371/journal.pone.0003321.g002

(n = 16). An immunohistological analysis of brains was then performed using antibodies directed against CD11b/CD11c (OX42) or MHC class II molecules.
A–C: OX42+ cells (green) harboring intracytoplasmic fluorescent microspheres (red) are observed in the lumen of the injected lateral ventricle, on day 1
post-injection. D: Microspheres+/OX42+ cells localize in the periventricular parenchyma of the injected ventricle, on day 1 post-injection. Insert (solid
square) shows a high magnification view of microspheres+/OX42+ cells infiltrating a periventricular inflammatory lesion (dashed square). E: On day 1
post-injection, MHC class II+ cells (green) harboring intracytoplasmic fluorescent microspheres (red) are detectable in the lumen of the third ventricle
(dashed square) and in a large periventricular area infiltrated with MHC class II+ cells. Insert (solid square) shows a high magnification view of
microspheres+/MHC class II+ cells that localize in the lumen of the third ventricle (dashed square). Arrows indicate microspheres+/MHC class II+ cells in the
periventricular parenchyma. F–H: CFSE+ DCs (green) that express OX42 (red) are detected in the lumen of the injected lateral ventricle, on day 1 post-
injection. I: A periventricular area bordering the injected lateral ventricle is infiltrated by OX42+ cells and contains OX42+/CFSE+ DCs, on day 1 post-
injection. J: On day 8 post-injection, CFSE+ DCs are observed in a periventricular inflammatory lesion, adjacent to the injected lateral ventricle. LV: lateral
ventricle, V3: third ventricle. Scale bars: 100 mm (B–J), 50 mm (A–C, E–I), 10 mm (inserts in panel D and E).
doi:10.1371/journal.pone.0003321.g001
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percentage of CFSE+ cells (Fig 8B). It has to be noticed that a

dilution effect may have partly biased these results as cellularity

increases in the CLNs during the course of EAE (data not shown).

It is also noteworthy that in the CLNs, a majority of CFSE+ cells

were MHC class II+ on day 1 or 8 post-injection (Fig 8E–F). This

suggests that in the CLNs, the phenotype of injected cells is stable

over time, at least regarding the expression of MHC class II

molecules.

The presence of CFSE+ cells, as assessed by FACS analysis, was

then compared in the CLNs of injected EAE rats (n = 8) vs injected

control rats (n = 7) on day 1 or 8 post-injection. Data showed that

on day 1 post-injection, a greater pourcentage of CSFE+ cells was

detectable in the CLNs of injected EAE rats (n = 4) as compared to

injected control rats (n = 3) (2.26+/20.11% vs 1.49+/20.13% in

EAE and control rats respectively, p = 0.03, Mann and Whitney

test) (Fig 8G). Again, this difference did not reach significance on

day 8 post-injection (Fig 8H).

Overall, these results show that CSF-circulating APCs rapidly

and specifically target the CLNs under neuroinflammatory

conditions. This process is, at least partly, dependent on the

immune processes that take place in the CNS and the CLNs.

Effects of intra-CSF injection of DCs on EAE outcome
The clinical course of EAE was compared between control EAE

rats, EAE rats injected intra-CSF with microspheres and EAE rats

injected intra-CSF with CFSE-labelled DCs As shown in Figure 9,

we observed that in the time period between day 12 (intra-CSF

injections) and day 20 (sacrifice), EAE rats injected with DCs

(n = 10) presented higher clinical scores (cumulative clinical score:

22.25+/21.4) than EAE control rats (n = 11, cumulative clinical

score: 17.45+/27.09, p = 0.04 as compared to EAE rats injected

with DCs, Student’s t test) or EAE rats injected with microspheres

(n = 6, cumulative clinical score: 14.83+/21.6; p = 0.002 as

compared to EAE rats injected with DCs, Student’s t test). We

then attempted to determine whether intra-CSF injections of DCs

had induced an increased peripheral immune response against

CNS antigens. As microspheres+ CSF-derived APCs targeted the

B-cell follicles of CLNs, we focused our analysis on the B-cell

response against CNS antigens. On day 20 post-immunization,

blood samples were withdrawn from control EAE rats (n = 4) or

EAE rats that had been injected intra-CSF with DCs on day 12

post-immunization (n = 4). Sera were then assessed by Western

blot or ELISA for the presence of antibodies directed against CNS

antigens. We first profiled the serum antibody repertoire against

whole spinal cord antigens, using Western blot analysis (Fig 10A).

Data showed that, as compared to control EAE rats, sera from

injected EAE rats contained higher concentrations of antibodies

directed against a 28 Kda protein, distinct from myelin basic

protein (MBP). As myelin oligodendrocyte glycoprotein, a major

immunogenic myelin antigen, is a 28 Kda molecule [11], we then

performed ELISA experiments to determine the serum concen-

trations of anti-MOG antibodies (Fig 10B). The concentration of

antibodies directed against the MOG peptide 35–55 was greatly

increased in injected EAE rats as compared to control EAE rats

(84.23+/222.8 ng/ml vs 20.53+/24.1 ng/ml in EAE and control

rats respectively, p = 0.02, Mann and Whitney test) (Fig 10B). Such

an increased antibody response was not observed when consider-

ing myelin basic protein (MBP) as a target antigen (Fig 10C).

Overall, these data demonstrate that injection of DCs into the CSF

of EAE rats induces an exacerbation of clinical signs along with an

increased systemic antibody response against MOG.

Discussion

The use of fluorescent microspheres to track endogeneous APCs

has been commonly used to analyze the migratory behavior of

DCs in other tissues than the CNS [1,12]. In our experimental

settings, however, one has to consider that microspheres may not

have been exclusively taken up by CSF-circulating APCs. Indeed,

free microspheres may have penetrated into the inflamed CNS

parenchyma before being phagocytized. Nevertheless, several

observations which were performed on day 1 post-injection, that is

Figure 3. CFSE+ DCs specifically target the periventricular demyelinating lesions. DCs labeled with the cytoplasmic fluorescent marker
CFSE were injected into the left lateral ventricle of healthy control rats or EAE rats at the clinical peak of disease (day 12 post-immunization). Rats were
then sacrificed on day 1 post-injection (EAE rats: n = 4, normal rats: n = 4) and an immunohistological analysis was performed on brain sections
crossing the injected lateral ventricle. At least 3 to 5 sections per animal were examined. A: In brain sections from EAE rats, an immunostaining of the
myelin basic protein (MBP) was performed and the number of CFSE+ cells/1022 mm2 was counted in demyelinated vs normal-appearing
periventricular white matter, as described in the Materials and Methods section. Data show that the mean number of CFSE+ cells was more than 4
times higher in periventricular demyelinating lesions than in normal-appearing periventricular white matter (9.4+/22.5 cells/1022 mm2 vs 1.6+/
20.5 cells/1022 mm2 in demyelinated vs normal-apprearing periventricular white matter respectively, p = 0.02, Mann and Whitney test). B:
Intraventricular vs periventricular CFSE+ cells were counted in brain sections obtained from injected EAE rats or injected control rats. Data are
presented as percentages of intraventricular vs periventricular cells. Results show that in normal rats, 14.5+/20.6% cells localized in the
periventricular parenchyma, while, in EAE rats, more than 40% of the injected cells localized in the periventricular parenchyma (42+/27%, p = 0.008,
Mann and Whitney test). Conversely, 85.5+/20.6% CFSE+ cells localized in the intraventricular lumen of normal rats while less than 60% of the
injected cells localized in the intraventricular lumen of EAE rats (58+/27%, p = 0.008, Mann and Whitney test). *: p,0.05, **: p,0.01.
doi:10.1371/journal.pone.0003321.g003
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Figure 4. CSF-circulating DCs migrate along the deep penetrating meninges. Fluorescent microspheres or DCs labeled with the
cytoplasmic fluorescent marker CFSE were injected into the left lateral ventricle of EAE rats (n = 32) at the clinical peak of disease (day 12 post-
immunization). EAE rats injected with fluorescent microspheres (n = 14) or CFSE-labeled DCs (n = 18) were then sacrificed on day 1 post-injection
(n = 16) and an immunohistological analysis of brains was performed using antibodies directed against CD11b/CD11c (OX42) or MHC class II
molecules. Nuclei were counterstained with the fluorescent nuclear dye DAPI. A, B: Counterstaining of nuclei with DAPI coloration (A) shows that
microspheres+ cells (visualized as white spots in B) localize in the deep penetrating meninges lining the inner parts of the brainstem (Bs) and
cerebllum (Cb). C–E: Microspheres+ cells (white in D, red in E) expressing MHC class II molecules (green in C and E) are observed in the deep
penetrating meninges covering the cerebellar convolutions. Insert in E shows a high magnification view of a ramified microsphere+/MHC class II+ cell

Traffic of CSF Dendritic Cells
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to say an early time point post-injection, argue against this

interpretation: i) there were very few free microspheres in the

brain of injected EAE rats, ii) microspheres were detected in

parenchymal locations that are distant away from the CSF

compartments, iii) when injected into the lateral ventricle of

normal rats, microspheres did not cross the neuroepithelial layer

bordering the lateral ventricle (data not shown). Besides these

considerations, it is striking to observe that all the results obtained

with the microsphere approach were confirmed, at least

qualitatively, when CFSE-labeled DCs were injected into the

CSF of EAE rats. It appears to us that quantitative differences rely

on the sustained traffic of APCs that likely occurs in the CSF of

EAE rats and which cannot be mimicked by a single intra-CSF

injection of labeled DCs. However, regarding the presence of

microspheres+ cells in the CLNs, one cannot exclude the

possibility that microspheres have been indeed phagocytized

outside the CNS compartments, in the blood or in the CLNs.

The presence of periventricular inflammatory and demyelinating

lesions is a full hallmark of MS pathology [13]. We found here that

DCs injected into the CSF of EAE rats deeply and specifically

penetrated into periventricular demyelinating lesions. Similarly, in

EAE rats injected intra-CSF with fluorescent microspheres,

periventricular demyelinating lesions contained microspheres+/

MHC class II+ cells, that putatively derived from the CSF. These

observations show that, in EAE rats, CSF-circulating DCs are

chemoattracted toward such lesions. In all likelihood, these CSF-

derived DCs sample antigens locally. However, whether they present

antigen to T-cells in situ or in the cervical lymph nodes remains to be

established. In this regard, it has to be noticed that DCs injected into

the brain parenchyma of normal rats migrate little from their site of

injection and do not reach the CLNs [10]. This suggests that,

similarly, DCs entering the inflamed CNS parenchyma may exert

their APC functions in situ. Supporting this view, a recent work

showed that in EAE mice, blood-derived myeloid DCs infiltrate

demyelinating lesions then capture and present myelin antigens in

situ [6].

Another interesting observation is the particular ability of CSF-

circulating DCs to infiltrate the deep penetrating meninges of the

inflamed brain. The pia-matter not only covers the hemispheric

and cerebellar cortical convolutions, but it lines deep cerebral

structures such as the hippocampus or the inner part the

brainstem. The pre- and post-capillary vessels are also covered

by the pia matter, which thus connects the CSF compartment with

the perivascular spaces (Virchow-Robin spaces) [14]. Our data

indicate that the pia matter is a major route of traffic for CSF-

circulating DCs. In this view, it has to be noticed that meninges

have been described as an important site of antigen-presentation

and/or B-cell proliferation in EAE or MS [15,16,17]. The

molecular mechanisms supporting the migration of CSF-DCs

along the pia matter have to be clarified. One may hypothesize

that chemokines accumulate specifically in the CSF compartment

delineated by the penetrating pia-matter. Alternatively, leptome-

ninengeal cells themselves may secrete chemokines [18]. One may

speculate that such a peculiar routage via the pia-matter may allow

CSF-DCs: i) to sample soluble antigens that are drained from the

interstitial fluid of CNS parenchyma [19,20,21], ii) to eventually

reach intra-parenchymal locations that are distant away from the

ventricles, iii) to target the perivascular spaces of post-capillary

venules, where T-cells preferentially infiltrate the CNS [14].

The intra-CSF injection of DCs in EAE rats induced an

exacerbation of clinical signs and an increased systemic antibody

response against MOG. Interestingly, in different EAE models

developed in rats, mice or monkeys, anti-MOG antibodies are

considered as highly pathogenic [22,23,24,25]. Similarly, in MS

patients, anti-MOG antibodies were evidenced in the serum, CSF

and, most importantly, within CNS inflammatory lesions [22,26].

Based on these results, one may assume that in EAE rats injected

with DCs, increased concentrations of serum anti-MOG antibod-

ies may be partly responsible for the aggravation of clinical signs.

Moreover, that intra-CSF injected DCs enhanced the systemic

antibody response further demonstrates that DCs are able to

migrate from the CSF to the CLNs. Interestingly, preliminary data

indicate that, in EAE rats, a diversification of the antibody

repertoire occurs in the CLNs but not the axillary lymph nodes

(data supplement S2). It is thus thinkable that, when targeting the

B-cell area of CLNs, DCs injected intra-CSF induce an

amplification of the anti-MOG antibody response that develops

in the CLNs. Supporting this view, a sub-population of DCs was

previously evidenced in the B-cell zone of lymphoid organs

[27,28,29] and DCs were shown to support the proliferation/

differentiation of B-cells [29,30]. Besides the effects of DCs on B-

Table 1. Semi-quantitative distribution of CSF-injected CFSE+

DCs in the CNS of normal or EAE rats.

CNS compartment Normal rat EAE rat

Perivascular +/2 +

Intraventricular

Free-floating +++ +++

Adherent to choroid plexuses +++ +++

Periventricular

LV + (SVZ) +++

V3 +/2 ++

V4 +/2 ++

Brain meninges

Superficial +++ +++

Penetrating 2 ++

Cerebellum meninges

Superficial +++ +++

Penetrating 2 +++

Cerebellum parenchyma 2 +

Brain stem parenchyma 2 +

In parallel experiments, DCs labeled with the cytoplasmic fluorescent marker
CFSE were injected intra-CSF to normal rats (n = 7) or EAE rats (n = 8). Serial
brain sections crossing different brain areas (anterior brain, midbrain, brain
stem and cerebellum) were then assessed for the presence of CFSE+ cells, on
day 1 post-injection (EAE rats: n = 4, normal rats: n = 4). A semi-quantitative
analysis was performed as follows: 2: none; +/2: occasional cells; +: 2 to 5 cells
per section; ++: 5 to 10 cells per section; +++: .10 cells per section. LV: lateral
ventricle, V3: third ventricle, V4: fourth ventricle, SVZ: subventricular zone.
doi:10.1371/journal.pone.0003321.t001

observed in the penetrating pia matter. F, G: Counterstaining of nuclei with DAPI coloration (F) shows that CFSE+ cells (G) localize along the pia
matter lining the inner parts of the brainstem (Bs) and cerebellum (Cb). H–J: An OX42+ infiltrate is observed in the deep penetrating meninges
covering the inner parts of the brainstem (Bs) and cerebellum (Cb) (H). These infiltrating cells comprise CFSE+ cells (I) that express OX42 (J). Scale bars:
100 mm (F–G), 50 mm (A–E, H–J), 10 mm (insert in panel E).
doi:10.1371/journal.pone.0003321.g004
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lymphocytes, it is likely that T-cell driven mechanisms are also

triggered by the infiltration of CSF DCs in multiple CNS

compartments, as previously shown in a murine model of EAE [6].

In many neuroinflammatory disorders, the intra-CSF accumu-

lation of immune cells is a major diagnosis criterion. Paradoxically,

little is know about how and where these CSF-circulating cells

migrate, under neuroinflammatory conditions. The present work

unravels the complex migratory behavior of CSF-circulating DCs

in EAE rats. From the ventricular CSF compartment, DCs have

the ability to target the CLNs but also inflammatory lesions that

localize in periventricular areas, in the deep penetrating meninges

and, to a lesser extend, around parenchymal blood vessels. Our

work shows that CSF DCs are thus able to support CNS-targeted

immune responses inside as well as outside the inflamed CNS.

Materials and Methods

Animals
Animal care and procedures have been conducted according to

the guidelines approved by the French regional ethical committee

in animal experimentation (CREEA - agreement number 0108)

and meet the Neuroscience Society guidelines. Eight to ten weeks

old female Dark Agouti rats were obtained from Harlan (Gannat,

France).

Reagents
Murine GM-CSF, human Flt3-L and murine IL-4 were

obtained from Peprotech (Tebu). Mouse monoclonal antibodies

recognizing rat MHC class II molecules (OX6 antibody), rat

Figure 5. CSF-circulating DCs infiltrate the brain parenchyma. Fluorescent microspheres or DCs labeled with the cytoplasmic fluorescent
marker CFSE were injected into the left lateral ventricle of EAE rats (n = 32) at the clinical peak of disease (day 12 post-immunization). EAE rats injected
with fluorescent microspheres (n = 14) or CFSE-labeled DCs (n = 18) were then sacrificed on day 1 post-injection (n = 16) and their brains examined by
immunohistology using antibodies directed against CD11b/CD11c (OX42) or MHC class II molecules. Nuclei were counterstained with the fluorescent
nuclear dye DAPI. A–C: Visualization of nuclei with DAPI coloration (A) allows the localization of microspheres (white in B, red in C) to be determined
(dashed squares in A and B). Microspheres are detected in the molecular layer of the cerebellum and localize in the cytoplasm of a MHC class II+ cell
(C). Insert in C shows a high magnification view of this microspheres+/MHC class II+ cell. DAPI coloration (A) and MHC class II staining (C) shows that
there is no detectable inflammatory infiltrate in this area of the cerebellum. D–F: In the brainstem, an intraparenchymal inflammatory infiltrate is
formed by OX42+ cells (D) and contains a CFSE+ cell (E) that expresses OX42 (F). G–I: In the brainstem, an area of diffuse infiltration with OX42+ cells
(G) contains a CFSE+ cell (H) that expresses OX42 (I). Inserts in G, H and I show high magnification views of this CFSE+/OX42+ cell. Scale bars: 100 mm
(A, B), 50 mm (C–I), 10 mm (insert in panel C).
doi:10.1371/journal.pone.0003321.g005
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CD11b/CD11c (OX42 antibody) or human myelin basic protein

(MBP), were purchased from Becton Dickinson Biosciences

(Pharmingen). For immuncytochemistry, a fluorescein-conjugated

goat anti-mouse antibody (Alexa Fluor 488 or 546, Molecular

Probes) was used as a secondary antibody.

Generation and characterization of rat bone marrow-
derived DCs

Rat myeloid DCs were generated from whole bone marrow

cultures as previously described [10]. Briefly, rats were sacrificed,

and bone marrow was flushed from femurs and tibias using 10 ml

of DMEM in a 10 ml syringe with a 26-gauge needle. Bone

marrow cells were then re-suspended and passed through a cell

strainer (70 mm pore). Cells were washed once in DMEM (Gibco)

then cultured in 25 cm2 culture plates at a density of 106 cells/ml

in IMDM (Gibco) supplemented with 15% FCS (Fetal Clone II,

Perbio Science) and antibiotics (penicillin/streptomycin, Invitro-

gen). Bone marrow cultures were then grown for 7 days at 37uC,

5% CO2 in the presence of murine GM-CSF (10 ng/ml) and

human Flt-3 ligand (10 ng/ml). By the end of this period, clusters

of non adherent cells had formed that were removed, dispersed

and re-plated in fresh media consisting of DMEM supplemented

with 10% FCS (BioWest), penicillin/streptomycin (Invitrogen),

murine GM-CSF (10 ng/ml) and murine IL-4 (10 ng/ml). After 3

days, large numbers of free-floating cells could be harvested,

washed once in PBS and used for labeling and in vivo experiments.

The phenotype and morphology of injected cells was assessed by

FACS or immunocytology, as previously described [10] (data

Figure 6. CSF-circulating DCs migrate toward intraparenchymal perivascular infiltrates. Fluorescent microspheres or DCs labeled with
the cytoplasmic fluorescent marker CFSE were injected into the left lateral ventricle of EAE rats (n = 32) at the clinical peak of disease (day 12 post-
immunization). EAE rats injected with fluorescent microspheres (n = 14) or CFSE-labeled DCs (n = 18) were then sacrificed on day 1 post-injection
(n = 16) or 8 post-injection (n = 16). Their brains were then examined by immunohistology using antibodies directed against MHC class II molecules.
Nuclei were counterstained with the fluorescent nuclear dye DAPI. A, B: Two cuffed vessels (dashed square in A) are observed in the brain
parenchyma, distant away from the injected lateral ventricle, on day 1 post-injection. These perivascular infiltrates contain microspheres+/MHC class
II+ cells (arrow heads in B). One of the cuffed vessels presents a venule-like morphology (arrow). Inserts in B show high magnification views of these
microspheres+/MHC class II+ cells. C, D: In the brainstem, a perivascular infiltrate is formed by MHC class II+ cells (C) and contains CFSE+/MHC class II+

cells (arrow heads in C and D) on day 1 post-injection. Insert in C shows a DAPI coloration of the brainstem area where this cuffed vessel localizes
(arrow in dashed square). E, F: In the hippocampus, on day 8 post-injection, three cuffed vessels harboring a venule-like morphology (white stars in E)
are surrounded by CFSE+ cells (F). Scale bars: 100 mm (A), 50 mm (B, E, F), 20 mm (C, D).
doi:10.1371/journal.pone.0003321.g006
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supplement S3). Data showed that injected cells expressed a

dendritic cell phenotype as demonstrated by the detection of

OX42 (CD11b/c), CD11c and MHC class II molecules. Only 25–

35% of cells expressed the co-stimulatory molecule CD86,

indicating that a great majority of cells displayed an immature

DC phenotye. Accordingly, on cytsopin preparations, immunocy-

tological staining of MHC molecules showed that most cells

harbored intracytoplasmic MHC class II vesicles, a hallmark of

immature DCs (data supplement S3).

Cell labelling
DCs were labeled with CFSE (carboxyfluorescein diacetate

succinimidyl ester, Molecular Probes) as previously described [10].

Briefly, cells were washed once in PBS and incubated for 5 min at

Figure 7. CSF-derived microspheres+ cells target the B-cell zone of CLNs. Fluorescent microspheres were injected into the left lateral
ventricle of EAE rats (n = 14) at the clinical peak of disease (day 12 post-immunization). EAE rats were then sacrificed on day 1 post-injection (n = 8) or
8 post-injection (n = 6) and their cervical lymph nodes and axillary lymph nodes were examined by histological methods. Nuclei were counterstained
with the fluorescent nuclear dye DAPI. A–D: In the cervical lymph nodes, on day 1 (d1)(A, B) or 8 (d8)(C, D) post-injection, microspheres+ cells
(visualized as white spots) localize preferentially in the cortical, B-cell rich zone. E, F: On day 8 post-injection (d8), there is no detectable
microspheres+ cell in the axillary lymph nodes. G: On day 8 post-injection (d8), in the cervical lymph nodes, microspheres+ cells (arrow heads)(red
spots) are observed in a B-cell follicle (arrow heads). H: On day 8 post-injection, analysis of cervical lymph nodes by transmission electron microscopy
(TEM) shows, in the cortical zone, a phagocytic cell containing a latex bead (Lb, dashed square) and localizing in close contact with lymphocytes (Ly).
A high magnification view of this engulfed latex bead (Lb) is shown in the insert (solid square). Scale bars: 100 mm (A–F), 50 mm (G), 1 mm (H).
doi:10.1371/journal.pone.0003321.g007
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Figure 8. CSF-circulating DCs target the CLNs. In parallel experiments, DCs labeled with the cytoplasmic fluorescent marker CFSE were injected
into the left lateral ventricle of control rats (n = 7) or EAE rats (n = 8) at the clinical peak of disease (day 12 post-immunization). Rats were then
sacrificed on day 1 (d1) or 8 (d8) following injections. The cervical lymph nodes (CLNs) and axillary lymph nodes (ALN) were assessed by FACS analysis
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37 uC in 1 mM CFSE. Then, 250 ml of FCS was added and cells

were further incubated for 5 min at 37uC before being washed in

PBS and re-suspended at a dilution of 3.104 cells/ml in red phenol-

free DMEM.

Experimental allergic encephalomyelitis
Chronic relapsing EAE was induced in a total of 47 female Dark

Agouti rats, as previously described [31]. Briefly, 0.5 gram guinea

pig spinal cord obtained from Dunkin-Hartley guinea pigs was

homogenized with 3 ml saline and the homogenate was then

emulsified with 3 ml of Difco’s bacto complete Freund’s

adudjuvant (CFA) H37RA supplemented with 15 mg of Myco-

bacterium tuberculosis H37RA (Difco Laboratories, Detroit, MI).

Rats were injected intradermally into each footpad, under

Isoflurane anesthesia, with 0.1 ml of this emulsion. In this EAE

model, clinical signs peak on day 12 post-immunization then

animals partially recover and experience a second relapse. Rats

were weighted and scored daily according to the following clinical

scale: 0 = no clinical signs, 1 = tail weakness, 2 = tail paralysis,

3 = incomplete paralysis of one or two hind legs, 4 = complete hind

limb paralysis, 5 = moribund

Stereotaxic injections of fluorescent microspheres
On day 12 post-immunization, EAE rats (n = 14) received an

intracerebroventricular (intra-CSF) injection of sterile latex

fluorescent microspheres diluted 1/1000. All injections were

performed using red-phenol free DMEM as a vehicle. Briefly,

each rat was deeply anesthetized by pentobarbital injection, placed

in a stereotaxic frame and its head tilted slightly by raising the

tooth bar at 5 mm. Ten ml of the solution was then slowly injected

in the left lateral ventricle (stereotaxic coordinates: 1,4 mm lateral

to the bregma and 4,5 mm down from the surface of the skull)

over a period of 3 min, using a Hamilton syringe. The animal

remained in the stereotaxic frame with the needle in place

thereafter for 1 min and the needle was then slowly removed over

a period of 2 min. Following intra-CSF injections, animals were

kept in our animal facility before being sacrificed on day 1 post-

injection (n = 8), or on day 8 post-injection (n = 6).

Stereotaxic injections of labeled DCs
Following the same protocol than described above, EAE rats

(n = 18) were injected intra-CSF with vehicle (10 ml) containing 3.105

CFSE-labeled DCs. Animals were then sacrificed on day 1 (n = 8) or

on day 8 (n = 10) post-injection. In parallel experiments, normal rats

(n = 7) were injected intra-CSF with the same preparation of cells

and sacrificed on day 1 (n = 4) or 8 (n = 3) post-injection.

Histological analysis
On day 1 or 8 after intra-CSF injections of DCs or

microspheres, animals were anesthetized by halothan inhalation

and killed by intraperitoneal injection of an overdose of

pentobarbital sodium (100 mg/kg). Brains, cervical lymph nodes

and axillary lymph nodes were dissected out and frozen in dry-ice.

When needed, frozen tissues were embedded in polyethylene

glycol and cut in 14 mm thick sections with a cryostat. After

fixation in ethanol, sections were rinsed 3 times in PBS then

incubated for 30 min at room temperature with a blocking

solution containing 4% bovine serum albumin (Sigma-Aldrich)

and 10% normal goat serum. Sections were then incubated

overnight at 4uC with mouse monoclonal antibodies directed

against CD11b/CD11c (OX42), MHC class II molecules (OX6)

or myelin basic protein. OX42 (anti-CD11b/CD11c). All primary

antibodies were diluted 1:100 in blocking solution. After several

washes in PBS, sections were incubated for 50 min in blocking

solution containing a fluorescein-conjugated goat anti-mouse

antibody (dilution 1:100) then rinsed in PBS and mounted using

an aqueous preparation (Fluoroprep, BioMérieux). Images were

recorded and analyzed using a computer-assisted system consisting

of specific image analysis software (analysis auto, Soft Imaging

System GmbH, Munster, Germany), coupled to a light and

fluorescent microscope (Zeiss Axioplan II, Oberkochen, Germany)

and in some cases, confocal laser scanning microscopy (LSM

META Zeiss) was performed to discriminated between phagocytic

cells internalization of microspheres and attachment to the cell

membrane. For analysis of fluorescence, two views of the same

sections were recorded, using appropriate filters, as black and

white image, which were then color-coded by software as blue

(DAPI, cell nuclei), green (CFSE or cell type markers) or red

Figure 9. DCs injected intra-CSF aggravates EAE clinical signs.
The clinical course of EAE was compared between control EAE rats
(n = 11), EAE rats injected intra-CSF with microspheres (n = 6) and EAE rats
injected intra-CSF with CFSE-labeled DCs (n = 10). Data show that in the
time period between day 12 (intra-CSF injections) and day 20 (sacrifice),
EAE rats injected with DCs presented higher clinical scores (cumulative
clinical score: 22.25+/21.4) than EAE control rats (cumulative clinical
score: 17.45+/27.09, p = 0.0409 as compared to EAE rats injected with
DCs, Student’s t test) or EAE rats injected with microspheres (cumulative
clinical score: 14.83+/21.6; p = 0.0020 as compared to EAE rats injected
with DCs, Student’s t test). In contrast, the cumulative clinical scores
observed in EAE control rats and EAE rats injected with microspheres were
not statistically different. *: p,0.05, **: p,0.01.
doi:10.1371/journal.pone.0003321.g009

for the presence of CFSE+ cells. The level of autofluorescence was established on cells obtained from the CLNs or ALNs of non-injected EAE rats (n = 4)
or control rats (n = 3). A–D: In injected EAE rats sacrificed on day 1 post-injection (n = 4), we found that 2.26+/20.11% CFSE+ cells could be detected
in the CLNs as compared to 1.37+/20.03% in the axillary lymph nodes (p = 0.0202, Mann and Whitney test)(A). However, in injected EAE rats sacrificed
on day 8 post-injection (n = 4), the percentage of CFSE+ cells was not statistically different between the CLNs and the ALNs (B). Pannels C and D show
representative dot plots obtained from the analysis of injected EAE rats sacrificed on day 1 post-injection. E–F: In the CLNs of injected EAE rats, a
great majority of CFSE+ cells express MHC class II molecules, on day 1 post-injection (94.25+/23.3%) or 8 post-injection (87.65+/25.2%). A
representative dot plot is shown in F. G–H: When comparing injected EAE rats to injected control rats, data showed that on day 1 post-injection, a
greater pourcentage of CSFE+ cells was detectable in the CLNs of injected EAE rats as compared to injected control rats (2.26+/20.11% vs 1.49+/
20.13% in injected EAE and injected control rats respectively, p = 0.0339, Mann and Whitney test)(G). This difference did not reach significance on day
8 post-injection (1.71+/20.03% vs 1.66+/20.13% in injected EAE and injected control rats respectively) (H). *: p,0.05, NS: not significant.
doi:10.1371/journal.pone.0003321.g008
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(fluorescent microspheres or cell type markers). When needed, in

order to better visualize red fluorescent microspheres on a black

background, red spots were represented as white spots. The

number and localization of CFSE+ cells was assessed on serial

sections of different brain regions (anterior brain, midbrain,

brainstem and cerebellum) in EAE rats (n = 8) or in control rats

(n = 7). On sections obtained from animals sacrificed on day 1

post-injection (EAE rats: n = 4, normal rats: n = 4), a semi-

quantitative analysis was performed to evaluate the presence of

CFSE+ cells in the following CNS compartments: intraventricular

CSF (free-floating or adherent to the choroid plexuses), periven-

tricular parenchyma, superficial meninges, deep-penetrating

meninges, perivascular spaces, CNS parenchyma. The following

semi-quantitative scale was used: 2: none, +/2: occasionnal cells,

+: 2 to 5 cells per section, ++: 5 to 10 cells per section, +++: more

than 10 cells per section. Also, the injected lateral ventricle was

specifically examined and the numbers of intraventricular vs

periventricular CFSE+ cells were counted in EAE or control rats.

Finally, in EAE rats, sections crossing the injected lateral ventricle

(3 to 5 sections per animal, n = 4 animals) were immunostained

with MBP and the number of CFSE+ cells was counted in normal-

appearing or demyelinated periventricular white matter. Using a

computer-assisted system consisting (analysis auto, Soft Imaging

System GmbH, Munster, Germany), we then determined the

number of CFSE+ cells per mm2 surface in demyelinated vs non-

demyelinated periventricular white matter.

Electron microscopy
In some experiments, cervical lymph nodes obtained from

control EAE rats (n = 3), EAE rats injected intra-CSF with

microspheres (n = 4) or healthy control rats (n = 3) were processed

for electron microscopy examination. Briefly, tissues were fixed for

30 min in 2% glutaraldehyde-0.1 M NaCacodylate pH 7.4. They

were then washed three times in 0.1 M NaCacodylate/sucrose,

pH 7.4 for 15 min and post-fixed with 1% OsO4-0.15 M

NaCacodylate pH 7.4 for 30 min. After dehydratation in a

growing gradient of ethanol, 5 min for each step: 30, 50, 70 and

95%, impregnation steps and inclusion were performed in Epon

Figure 10. DCs injected intra-CSF stimulates the antibody response against myelin oligodendrocyte glycoprotein. On day 20 post-
immunization, blood samples were withdrawn from control EAE rats (n = 4) or EAE rats that had been injected intra-CSF with DCs on day 12 post-
immunization (n = 4). Sera were then assessed by Western blot analysis or ELISA for the presence of antibodies directed against CNS antigens. A. The
serum antibody repertoire against whole spinal cord homogenate (obtained from healthy rats) was profiled by Western blot analysis (left panel)
followed by measures of optical densities (right panel). Data showed that, as compared to control EAE rats, sera from injected EAE rats contained
higher concentrations of antibodies directed against a 28 Kda protein, distinct from myelin basic protein (MBP, a major immunogenic myelin antigen)
(optic density: 5583.9+/21161.5 vs 2343+/2677 in EAE+DC and EAE rats respectively; p = 0.0433, non parametric Mann and Whitney test). B. As
myelin oligodendrocyte glycoprotein (MOG, another major immunogenic myelin antigen) is a 28 Kda protein, we performed ELISA experiments
allowing serum antibodies against MOG peptide 35–55 to be measured. Data showed that higher concentrations of anti-MOG antibodies were
detectable in injected EAE rats (EAE+DCs) as compared to control EAE rats (EAE) (84.23+/222.8 ng/ml vs 20.53+/24.1 ng/ml in EAE+DCs vs EAE rats
respectively, p = 0.0273, non parametric Mann and Whitney test). C. Western blot experiments (left panel) followed by quantitative analysis of optical
densities (right panel) showed that the serum antibody response against purified myelin basic protein (MBP) was not significantly different in EAE
injected rats (EAE+DCs) as compared to control EAE rats (EAE) (optic density: 20572+/21683.93 vs 18209+/22932.34 in EAE+DCs vs EAE rats
respectively, p: not significant). Membranes were stained with Red ponceau (lower left panel) to ensure that similar amounts of purified MBP had
been loaded in the different lanes. *: p,0.05.
doi:10.1371/journal.pone.0003321.g010
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finally polymerized at 60uC for 48 h. 60–80 nm sections were

obtained using an ultramicrotome RMC-MTX (Tucson), and

contrasted with uranyl acetate and lead citrate. Observations were

performed on a JEOL 1200EX transmission electron microscope

(Jeol LTD) equipped with a MegaView II high resolution TEM

camera and Analysis Soft Imaging system (Eloı̈se SARL).

Flow cytometry
Following intra-CSF injection of CFSE-labeled DCs in normal

rats (n = 7) or EAE rats (n = 8), CLNs and axillary lymph nodes

were mechanically dissociated, washed once in PBS 16 then

filtered through a 70 mm cell strainer (Pharmingen, San Diego,

USA). Cells were then fixed in PFA 1% before analysis of CFSE

fluorescence. The level of autofluorescence was established on cells

obtained from the CLNs or ALNs of non-injected EAE rats or

control rats. Alternatively, cells were stained with OX6 antibody

(recognizing MHC Class II molecules) as previously described

[10]. Briefly, 2 to 5.105 cells were sequentially incubated on ice

with a blocking CD16/CD32 monoclonal antibody (Pharmingen,

San Diego, USA) and a mouse PE-conjugated OX6 antibody

(Pharmingen, San Diego, USA) diluted 1:50 in PBS containing 2%

FCS. After two washes in PBS 16, cells were then fixed in PFA

1% before being analyzed on a Galaxy flow cytometer (Partec,

Germany) with FlowMax software (Partec, Germany).

Western blot
Western blot experiments were performed to assess the presence

of serum antibodies directed against purified myelin basic protein

(MBP) (obtained from guinea pig brain, Sigma-Aldrich) or whole

spinal cord protein extracts (obtained from normal healthy rats).

Purified MBP or pooled spinal cord samples that had been boiled in

SDS-PAGE reducing buffer for 5 min at 95uC, were separated on a

SDS-PAGE gel and transferred onto a nitrocellulose membrane.

The membrane was incubated in PBS containing 0.1% Tween 20

and 5% milk, 1 h at room temperature and incubated with serum

samples (dilution 1/10) obtained from control EAE rats (n = 4) or

EAE rats injected intra-CSF with DCs (n = 4). Membranes were

then washed in PBS containing 0.1% Tween 20 and 1% Milk and

incubated with peroxidase-conjugated goat anti-rat IgG immuno-

globulin (Jackson, USA) for 1 hour at room temperature. After

washing, membranes were incubated with Western Blot Chemolu-

minescence Reagent (Covalab, France) for 1 min at room

temperature and blots were exposed to X-ray films. Semi-

quantitative analyses of signals were performed by measuring optical

densities with the software Image Quant.

ELISA
Serum samples were tested by ELISA for the presence of anti-

MOG 35–55 antibodies, using a commercially available kit

(Anaspec). Assays were performed in duplicate and according to

the manufacturer’s recommendations. Briefly, 100 ml of undiluted

serum samples were incubated in wells of the 96-well microtitra-

tion plate pre-coated with MOG 35–55 peptide and a blocking

solution. After washing, peroxidase-conjugated antibodies to rat/

mouse IgG were added and further incubated for 1 h at room

temperature. The reaction was developed after another series of

washes by addition of 50 ml of TMB (Tetramethylbenzidine) color

substrate solution. Optical densities were then measured on a

Multiskan EK ELISA spectrophotometer (Thermo Electron

Corporation, Courtaboeuf, France). A calibration curve was

established using standard dilutions of mouse anti-MOG IgG

and individual values of serum anti-MOG IgGs were then

calculated and expressed as ng/ml.

Statistical analyses
Statistical analyses were performed with the non-parametric

Mann and Whitney test. Alternatively, the Student’s t test was

performed when the n reached at least 10 in each group and only if

values had a Gaussian distribution as assessed by the Shapiro and

Wilk test.

Supporting Information

Data Supplement S1 Microspheres+/MBP+ cells in a periven-

tricular demyelinating lesion. EAE rats were injected intra-CSF

with fluorescent microspheres (red in A and D, white in C) and

were then sacrificed on day 8 post-injection. Brain sections were

immunostained with an anti-MBP antibody in order to visualize

myelin (green in A and D, white in B). Microphotograph in A

shows that a large demyelinated area adjacent to the third

ventricle, is filled with microspheres+ cells. Within this large

demyelinated area, a partially demyelinated area (solid square)

contains micropheres+/MBP+ cells. Higher magnification views of

this area are shown in B (MBP staining), C (microspheres) and D

(merge). V3: third ventricle. Scale bars: 100 mm (A), 10 mm (B–D)

Found at: doi:10.1371/journal.pone.0003321.s001 (0.92 MB TIF)
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