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Abstract

Medical decision-making processes can be enhanced by comprehensive biomedical knowledge 

bases, which require fusing knowledge graphs constructed from different sources via a uniform 

index system. The index system often organizes biomedical terms in a hierarchy to provide the 

aligned entities with fine-grained granularity. To address the challenge of scarce supervision in 

the biomedical knowledge fusion (BKF) task, researchers have proposed various unsupervised 

methods. However, these methods heavily rely on ad-hoc lexical and structural matching 

algorithms, which fail to capture the rich semantics conveyed by biomedical entities and terms. 

Recently, neural embedding models have proved effective in semantic-rich tasks, but they rely 

on sufficient labeled data to be adequately trained. To bridge the gap between the scarce-labeled 

BKF and neural embedding models, we propose HiPrompt, a supervision-efficient knowledge 

fusion framework that elicits the few-shot reasoning ability of large language models through 

hierarchy-oriented prompts. Empirical results on the collected KG-Hi-BKF benchmark datasets 

demonstrate the effectiveness of HiPrompt.
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1 INTRODUCTION

In the biomedical field, there exists a lot of knowledge acquired from clinical practice 

guidelines, medical records, and publications, accumulated from different research 

laboratories and healthcare institutions [8, 34, 36]. Recently, knowledge graphs (KGs) 

have emerged as a compelling technique to efficiently represent, organize, and distribute 

knowledge. A biomedical KG stores the properties of biomedical entities and their relations. 

Researchers’ constant endeavors in manually curating biomedical KGs have led to the 

existence of many domain-specific and application-oriented KGs. However, these well-

annotated biomedical KGs are scattered in various data formats, which hinders their off-the-

shelf usability.

Fusing KGs from multiple sources into an accurate and comprehensive knowledge base 

can greatly support clinical decision-making [13, 28]. A common practice is to align 

entities of KGs with standard hierarchical index systems (i.e. biomedical hierarchies) [4, 

14, 30, 44]. The hierarchy allows entities to be aligned and analyzed more precisely with 

fine-grained granularity, which is beneficial to many downstream tasks [21, 31, 32, 40, 43]. 

Moreover, the biomedical hierarchy is well maintained with periodic upgrades to incorporate 

newly emerging biomedical terms, thus enabling scalable integration with multiple KGs. 

In this work, we study the biomedical knowledge fusion (BKF) problem that aims to 

align entities from biomedical KGs into terms from the biomedical hierarchy. Figure 1 

gives a toy example of the BKF task. The BKF task is challenging due to the following 

characteristics. First, inconsistent naming vocabularies are used in different resources, as 

they are developed independently by different groups of specialists. Second, unlike the 

existing KG entity alignment problem [38, 47] that contains many labeled entity-entity 

pairs as training samples, biomedical knowledge integration is supervision-scarce. Third, the 

topology of a KG and a hierarchy are very different, where the KG is a general graph, while 

the hierarchy is a directed acyclic graph.

Existing research.

Pioneer studies on BKF mainly rely on the biomedical thesaurus to normalize words and 

match lexical to establish alignment between KGs and the hierarchy [13, 24, 28, 36]. Later, 

researchers explore combing first-order logic [15], probabilistic alignment [37], or non-

literal string comparisons [11] with lexical matching for unsupervised BKF. However, these 

methods fail to capture the rich semantics conveyed in entities and terms (e.g., synonyms, 

definitions, types), which are essential to handle the inconsistent naming conventions from 

multi-sources. Another line of work leverage neural embedding models [9, 19, 20, 38, 

46] to represent entities as dense vectors using semantic attributes, structural properties, 

and alignment supervisions. These models perform better than unsupervised models when 

sufficient training samples are available. However, the scarcity of supervision in the BKF 

problem leads to the underfitting of these data-eager neural models. Moreover, none of the 

existing methods explicitly leverages the hierarchical structure of terms in the biomedical 

hierarchy.
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Present work.

To address above challenges, we present HiPrompt, a few-shot BKF framework via 

Hierarchy-Oriented Prompting. HiPrompt employs a large language model (LLM) to 

generatively propose terms from the hierarchy to be aligned with entities from the KG. 

The key insight is that LLMs [7, 10, 39, 48] can be rapidly adapted to an unseen task 

via the gradient-free “prompt-based learning” [35, 41], thus removing the dependencies 

on the task-specific supervision. HiPrompt applies prompt-based learning with a curated 

task description for the BKF task and a tiny number of demonstrations generated from 

the few-shot samples. This mimics the procedure of how humans accomplish a new task 

by learning from previous experiences and generalizing them to a new context. Moreover, 

we add the hierarchical context to the prompts to further improve the performance of 

HiPrompt. To evaluate the performance of our proposed HiPrompt, we create KG-Hi-BKF, 

a new benchmark for BKF with two datasets collected from two biomedical KGs [6, 50] 

and one disease hierarchy [30] with manual verification. Empirical results demonstrate the 

effectiveness of our HiPrompt framework, which largely outperforms both conventional 

unsupervised lexical matching models and neural semantic embedding models.

2 BIOMEDICAL KNOWLEDGE FUSION

2.1 Problem Definition

BKF aims at aligning existing specialized biomedical KGs into a uniform biomedical index 

system that can be represented by a hierarchy. We define the biomedical KG and hierarchy 

as follows: A biomedical KG is a multi-relation graph  = (E, R, RT), where E, R, RT are 

a set of various types of entities, a set of relation names, and RT ∈ E × R × E is the set 

of relational triples, respectively. A biomedical hierarchy is a directed acyclic graph (DAG) 

 = (T,TP), where T is a set of terms, and TP ∈ T × T is a set of Hhypernym-hyponymy 

term pairs, respectively. The topology differences between KG and hierarchy distinguish 

our BKF task from other related tasks (e.g., entity alignment, KG integration). Moreover, 

both entities E and terms T contain rich associated semantic attributes (e.g., definition, 

synonyms). Finally, we define our task as follows:

Definition 2.1 (biomedical knowledge fusion). Given a biomedical KG , a biomedical 

hierarchy , a set of pre-aligned entity-term pairs ea, ta a = 1
M , and a set of unaligned entities 

[e1, e2, · , eN] ∈ . The goal is to link each unaligned entity to the hierarchy LK = {(ei, tj)|ei 

∈ , tj ∈ } such that tj is the most specific term in the hierarchy for entity ei in KG. In our 

work, we focus on the few-shot settings where the sample size M is very small to reflect the 

scarcity of labeled data that is ubiquitous in the biomedical field.

2.2 Technical Details of HiPrompt

Figure 2 shows the overall architecture of our proposed HiPrompt framework. To tackle 

the BKF task with limited training samples, our key insight is to utilize LLMs via hierarchy-

oriented prompting. However, LLMs can not accommodate very lengthy input prompts (e.g., 

GPT-3 only supports up to 4096 tokens) that contain all candidate terms along with their 

hierarchy contexts. A feasible workaround is to exhaustively examine each candidate term 
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given the query entity, but the inference cost would be dramatic [23]. Therefore, we propose 

to use the retrieve and re-rank [12, 22, 42] approach to resolve the above challenges.

Retrieval Module.—The retriever provides an efficient solution for coarse-grained 

candidate filtering, thus reducing the overall inference cost of HiPrompt. Given one entity 

query ei from the KG G and all candidate terms T from the hierarchy , the retriever 

produces a coarsely ranked candidate list (t1
′ , t2

′ , ⋯, tK
′ ), to avoid unnecessary computations 

for the LLM-based re-ranker. HiPrompt framework is flexible so that any unsupervised 

ranking function (e.g., TF-IDF [27], LDA [3]) can be used to generate the ranked list. In 

practice, we choose the unsupervised BM25 [26] as the ranking function. Since entities and 

concepts have rich attributive and structural information, we further utilize these two types 

of information to expand [2] query entities and candidate terms.

Re-Ranking Module.—Given the query entity ei and the coarsely ranked candidate list 

(t1
′ , t2

′ , ⋯, tK
′ ), we request the LLM to rerank the list to (t1, t2,…tK) where t1 is the most 

specific term of ei via the gradient-free prompt-based learning. Figure 2 provides an example 

of the input prompt and the response of the re-ranker. The input prompt is composed of 

(1) curated textual task description, (2) illustrative demonstration from few-show samples, 

and (3) the test prompt constructed from the query entity and the coarsely ranked list. 

The LLM-based re-ranker essentially tackles the BKF task by estimating the conditional 

probability: PLLM (w1, w2, …, wn|prompt), where (w1,…,wn) is the output word sequence 

with variable lengths. The desired re-ranked list can be converted from the output sequence 

by a simple mapping function (t1, t2,…, tK) = f(w1,w2,…,wn.).

For the template of demonstration, we use the query entity to form the question string 

“Query: {ei}”, the coarse candidate list to form the choice string “Choices: t1
′; t2

′; …tK
′ ”, 

and the ground truth to form the answer string “Answer: {t1; t2;…, tK}”. While there is 

no such ground truth sample in the zero-shot setting, we propose the pseudo demonstration 
technique which adopts out-of-domain entity-term pairs to showcase what is the perspective 

format. Both real and pseudo demonstrations are essential to generate output sequences 

in the consistent format [16, 29]. For the test prompt, we use the same template of the 

demonstration, while leaving the answer string as “Answer:” for LLM to predict what comes 

next. To further elicit LLMs with hierarchical constraints and dependencies of candidate 

terms, we propose the novel test prompt with hierarchy context where hypernyms of 

each candidate term are included in the context string. More specifically, we traverse the 

biomedical hierarchy  to locate the hypernym terms ti, p1
′ , ⋯, ti, pj

′  of a candidate term ti
′. 

Therefore, the context string is formed as “Contexts: t1
′  isA t1, p

′ ; …; tK
′  isA tK, p

′ ”.

3 EXPERIMENTS

Benchmark Datasets.

We use the following data sources to create our KG-Hi-BKF benchmark1: (1) SDKG [50]: 

a disease-centric KG that covers five cancers and six non-cancer diseases. (2) repoDB [6]: 

1KG-Hi-BKF benchmark is available at https://doi.org/10.6084/m9.figshare.21950282.
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we adopt their original triples, and generate entity attributes by querying DrugBank [44] and 

UMLS Metathesaurus [4]. (3) DzHi [30]: a hierarchy derived from the widely used Disease 

Ontology [30] which has a depth of 13. We first use the mapping existing in the resources 

themselves, which leads to many-to-many linkages between two KBs. We further manually 

verify the correctness of the many-to-many linkages and curate the datasets to the correct 

stage. Table 2 shows the statistics of the created benchmark. As can be seen, the linkages 

follow the one-to-one assumption [38], and the scale of labeled entity-term pairs is very 

small.

Compared Models.

We compare HiPrompt to the following two sets of baselines: (a) Non-neural conventional 
models: (a.1) Edit Dist [25] that quantifies the distance between entities and terms by the 

edit distance of their names. (a.2) BM25 [26] that ranks a set of documents based on the 

query tokens appearing in each document. (a.3) LogMap [15] that matches entities and 

terms via logical constraints and semantical features. (a.4) PARIS [37] that provides a off-

the-shelf fusion tool empowered by a parameter tuning-free probabilistic model. (a.5) AML 
[11] that is based on non-literal string comparison algorithms. is a probabilistic matching 

system based on probability estimates. (b) Neural embedding models: (b.1) SapBERT 
[17] that learns to self-align synonymous biomedical entities through a Transformer. (b.2) 

MTransE [9] that extends the translational KG embedding method TransE [5] to multi-

language system entity alignment by axis calibration and linear transformations. (b.3) 

SelfKG [18] that designs a self-negative sampling strategy to push sampled negative pairs 

far away from each other when no labeled positive pairs are available.

Quantitative evaluations.

We mainly focus on zero-shot and one-shot settings, and utilize the remaining labeled 

samples as the test set to report quantitative results. Several strict and lenient evaluation 

metrics are used. For strict metrics that appreciate only the exact correct prediction, we 

adopt Hits@k and mean reciprocal rank (MRR). For lenient metrics that also reward 

near-hits, we adopt nDCG@k with exponential decay [1] and hierarchy-based term 

relatedness score WuP [45]. All compared baselines are executed with their recommended 

hyperparameters. For all non-neural conventional models, we only report the zero-shot 

results as they are unsupervised methods. For neural embedding methods, we report the 

zero-shot results utilizing released model weights (SapBERT) or conducting self-supervised 

training (SelfKG), while reporting the one-shot results by fine-tuning these models 

(SapBERT, MTransE) on the one demonstrative training sample. For our HiPrompt, we 

use GPT-3 [7] as the LLM for re-ranker and set its temperature hyperparameters as 0 

to lower the completion randomness. Using a single prompt template is sufficient since 

initial exploration shows that various templates do not have a significant impact on model 

performance. We exclude the use of automatic prompt generation techniques [33, 49] due to 

the limited availability of training data.
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Main Results.

Table 1 shows the quantitative results for zero-shot and one-shot settings. HiPrompt 

largely outperforms all other methods in all evaluation metrics under both settings, which 

demonstrates the effectiveness of the proposed hierarchy-oriented prompting. Under the 

zero-shot setting, the non-neural unsupervised baseline LogMap achieves the second-best 

performance. All examined models can successfully generate predictions except AML 

throws out-of-memory (OOM) errors on the SDKG-DzHi dataset. PARIS performs worst in 

the zero-shot setting because it can not predict aligned terms for each query entity. Instead, 

PARIS produces the alignment based on its own ad-hoc threshold. MTransE performs worst 

in the one-shot setting since it is underfitting using just one training sample. Comparing the 

same models (SapBERT, HiPrompt) between zero-shot and one-shot settings, we observe 

the performance differences are negligible, thus indicating that effectively eliciting the 

adaptive reasoning ability is one of the key factors to tackling supervision-scarce BKF 

problem.

Ablation Studies.

We further conduct ablation studies to evaluate the impact of our hierarchy-oriented 

techniques. Table 3 compares the different expansion strategies for HiPrompt’s retrieval 

module. As can be seen, if expanding the KG entities and hierarchy terms with both 

attributive and structural features (“+Atr.+Str.” variant), the retriever can achieve the 

best Hits@K performance. Table 4 compares different LLMs and different prompts for 

HiPrompt’s reranking module. Among the examined LLMs, GPT-3 with 175 billion 

parameters surpasses GPT-JT [39] with 6B parameters and OPT-6.7B [48] with 6.7B 

parameters due to its large parameter space. When adding the proposed hierarchy context 

to the name-only prompts, every LLM achieves better performance on all metrics, thus 

demonstrating the importance of explicit hierarchy-oriented information. We also observe 

that improvements for GPT-JT and OPT-6.7B are more significant than GPT-3, since GPT-3 

may already have such hierarchical information encoded.

Case Studies.

Figure 3 shows the fusion results from BM25, EditDist, and HiPrompt. In general, HiPrompt 

can find the most specific terms in the hierarchy for the query entities, by satisfying the 

semantic similarities and hierarchical constraints simultaneously. For instance, HiPrompt 

recognizes that “immune system disease” is the most appropriate for the query “immune 
suppression”, rather than its hypernym “disease of anatomical entity” that is too general, 

or hyponyms such as “immune system cancer” or “allergic disease” that are too specific. 

On the other hand, EditDist only considers lexical matching, thereby ignoring the different 

naming conventions of the same biomedical concepts. BM25 also mainly relies on lexical 

matching, but it incorporates the names, definitions, and synonyms of biomedical terms 

during the matching, resulting in better performance in handling various names. However, 

BM25 ignores the hierarchical information, which leads to the inappropriate granularity of 

aligned terms (e.g., the term “epidemic typhus” is too broad for the query entity “typhus, 
epidemic Louse-Borne”).
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4 CONCLUSIONS

This paper studies how to automatically fuse KGs into a standard hierarchical index 

system with scarce labeled data. Our novel framework, HiPrompt, uses hierarchy-oriented 

prompts to elicit the few-shot reasoning ability of large language models and is designed 

to be supervision-efficient. Performance comparison on the newly collected KG-Hi-BKF 

benchmark with two datasets demonstrates the effectiveness of HiPrompt. Interesting future 

directions for BKF include: (1) exploring an automatic way to generate hierarchy-aware 

prompts to further reduce manual intervention; (2) expanding the scope of biomedical 

knowledge fusion to allow the hierarchy to dynamically grow with the aligned entities.
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Figure 1: 
A toy example of BKF to find entity-term alignment between KG and hierarchy. Left: A KG 

containing biomedical entities. right: A hierarchy containing biomedical terms.

Lu et al. Page 11

Int ACM SIGIR Conf Res Dev Inf Retr. Author manuscript; available in PMC 2024 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Overview of our HiPrompt framework, with a zoom-in on the LLM-based re-ranker.
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Figure 3: 
Case Studies on unlabeled data. Terms highlighted in violet denote the correct alignments 

for query entities.
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Table 2:

Statistics of the KG-Hi-BKF benchmark.

Dataset Source #Disease #Entities #Links

SDKG-DzHi
SDKG 841 19,416 635

DzHi 11,159 11,159 635

repoDB-DzHi
repoDB 2,074 3,646 709

DzHi 11,159 11,159 709
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Table 3:

Retriever with various expansion strategies.

Expan.
SDKG-DzHi repoDB-DzH

Hits@5 Hits@10 Hits@20 Hits@5 Hits@10 Hits@20

Name 88.66 89.61 90.55 85.05 88.72 90.27

+Atr. 94.96 96.85 98.11 89.00 92.52 95.20

+Str. 90.08 90.71 91.81 88.15 90.27 92.24

+Atr.+Str. 96.85 97.64 98.74 91.11 93.65 95.63
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Table 4:

Re-ranker with various LLMs and prompts.

LLMs
SDKG-DzTaxo repoDB-DzTaxo

Hits@l Hits@3 MRR Hits@l Hits@3 MRR

One-shot (prompt w/o Hi. Context)

GPT-3 91.80 94.32 93.45 87.85 91.24 89.92

GPT-JT 75.08 86.44 81.80 58.33 69.77 66.42

OPT-6.7B 68.93 80.44 76.38 60.73 73.59 69.33

One-shot (prompt w/ Hi. Context)

GPT-3 92.11 95.11 93.91 88.28 91.53 90.28

GPT-JT 80.76 93.69 87.45 69.07 82.91 77.24

OPT-6.7B 72.40 84.86 79.64 63.70 77.68 72.41
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