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ABSTRACT: As greenhouse gases such as CO2 continue to
promote global warming, the reduction of CO2 emissions is
attracting increasing attention. In this study, we design a process
for producing dimethyl ether (DME), which is a promising means
of using CO2 as a resource. Design variables such as temperature
and pressure need to be optimized to reduce CO2 emissions while
maintaining high product purity and DME production. Conven-
tional process designs determine these design variables from the
chemical background and through trial-and-error simulations,
which are very time-consuming. The proposed method optimizes
the design variables efficiently by repeating the process simulations
and selecting promising candidates for the design variables using
machine learning. For an adaptive design of experiments, Bayesian
optimization is used to achieve the objectives of the DME process while efficiently optimizing the design variables. In addition, we
also optimize the design variables considering variations in the temperature and pressure data, meaning robust Bayesian
optimization. The proposed method successfully identifies design variables that satisfy all experimental targets in an average of 54
simulations while achieving 100% of the targets with product purity 0.95−1.00, amount of DME in the product 350−845 kmol/h,
and CO2 emissions 0−835 kmol/h, confirming the effectiveness of the proposed robust Bayesian optimization method.

1. INTRODUCTION
As the problem of global warming, caused by greenhouse gases
such as CO2, becomes more serious, the reduction of CO2
emissions is attracting increasing attention.1,2 One approach is
the development and introduction of renewable energy
sources, and a second possibility is the separation and
utilization of the CO2 emitted from power plants. The
synthesis of dimethyl ether (DME) via methanol is a promising
synthetic route whereby CO2 is used as a resource.3,4 DME can
be generated from a wide range of raw materials, including
fossil resources such as petroleum, natural gas, and coal, as well
as renewable raw materials such as biomass.5−7

In recent years, DME has attracted attention as an
alternative fuel for household use and diesel engines.8−10

Various studies have attempted to improve the production
capacity of methanol and DME. Otalvaro et al. performed
kinetic modeling, model-based optimization, and experimental
validation for the direct synthesis of DME from CO2-rich
syngas. They used the nonlinear Interior Point OPTimizer
solver to optimize the temperature and composition of the
catalyst bed and succeeded in increasing the carbon conversion
and DME yield. Askari et al. developed a dynamic modeling
and optimization method for an autothermal dual-type
methanol synthesis unit in the presence of catalyst
deactivation. By optimizing the length ratio and feed
temperature of the reactor, the methanol production capacity

was increased by 5.8% compared with a conventional single
reactor.11 Masoudi et al. succeeded in increasing the methanol
production capacity by 6.45% over a conventional dual-type
reactor through the dynamic modeling of a dual-type methanol
synthesis section. They considered catalyst deactivation and
optimization of the feed temperature, cooling water temper-
ature, and other factors to manage the heat.12 Peŕez-Fortes et
al. developed a technology for converting CO2 to DME
through the three-stage reformation of methane, a low-cost
feedstock, with a DME synthesis unit.13

In this study, we design a DME production process using
CO2 as a raw material. In process design, simulation software is
used to determine the design variables.14 Although the design
variables can be determined from the chemical background
and through trial-and-error process simulations, as in conven-
tional process designs, it takes a lot of time to optimize the
process as the number of design variables increases. Thus,
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there is a need to improve the efficiency of optimizing the
design variables.

The objective of this study is to design a DME production
process with low environmental impact. To optimize the
design variables efficiently, we use machine learning. Askari et
al. and Masoudi et al. applied a genetic algorithm to a
methanol synthesis section and improved the methanol
production capacity.11,12 Omata et al. combined a genetic
algorithm with a neural network to optimize the temperature
profile of a temperature gradient reactor, thus improving the
conversion of CO under low-pressure conditions.15 Previous
studies have optimized the design variables for certain
subprocesses, but the entire process has not been considered
in the optimization. We optimize the design variables of the
entire process using machine learning, resulting in an efficient
DME production process.

To create an adaptive design of experiments, Bayesian
optimization (BO),16,17 which is based on Gaussian process
regression (GPR)18−20 and uses not only predicted y values
but also their standard deviations to find candidates for the
next experiments, was proposed. The GPR model Y = f(X) is
constructed between the design variables X and the objective
variables Y. Based on predicted Y values and their standard
deviations, acquisition functions such as the probability of
improvement, expected improvement,21 mutual information,22

and probability in target range (PTR)23 are calculated, and the
X candidates with the highest values of the functions are
selected. BO allows us to properly search not only for
interpolation of existing data sets but also for extrapolation
regions, thus reducing the possibility of falling into local
optimal solutions. BO has been applied to process
simulation,23 molecular simulation,24−27 and live experimental
optimization.28−30

In this study, BO is used to achieve the objectives of the
DME process while efficiently optimizing the design variables,
and we develop a robust optimization method by considering
not only the candidate design conditions but also the
surrounding simulation results in the BO acquisition function,
which is proposed as robust BO.

The effectiveness of the model is verified by comparing the
number of simulations required to achieve the objective with
BO and with randomly selected design variables. We also
confirm that the design variables can be optimized efficiently in
the event of changes in the initial samples.

The main contributions of this study can be summarized as
follows.

• The DME process with both low CO2 emission and high
product purity and DME production can be automati-
cally and efficiently designed with a small number of
process simulations by using Bayesian optimization.

• The proposed robust Bayesian optimization can design
variables with variations in the variables around the
optimized candidate by considering not only candidates
of the variables but also the surrounding simulation
results.

2. METHODS
2.1. Process Summary. A schematic diagram of DME

production and related processes is shown in Figure 1. These
processes cover the power plant, the CO2 purification process,
and the DME production process. The power plant generates
electricity using natural gas (NG: CH4, 100%) as fuel. The flue

gas emitted by the power plant is sent to the CO2 purification
process. In addition to CO2, N2 is present in the flue gas
emitted by the power plant. To use CO2 as a raw material, it is
necessary to separate and recover the CO2 from the flue gas.

In the CO2 refinery process, CO2 is separated and recovered
from the flue gas using a Benfield solution.31 The flue gas is
cooled by a water scrubber, pressurized by a compressor, and
fed to the Benfield process. The CO2 in the flue gas is absorbed
by the Benfield fluid, and the off-gas, which is mainly
composed of nitrogen, is released to the atmosphere after
energy recovery in the flue gas turbine because of its high
pressure. The absorbed CO2 is dissipated under nearly
atmospheric pressure and sent to the DME production
process. The refined CO2 is sent to the DME production
process, whereby DME is produced via methanol. The CO2
emitted by the power plant for the generation of electricity,
which is sold externally, is used as the raw material. The
process of synthesizing DME also requires power from
compressors and pumps, which is supplied by the power
plant. In other words, in addition to the CO2 emissions
required for power generation, the power plant emits
additional CO2 to supply the electricity and utility steam
required for CO2 purification and DME production. In this
study, a DME production process is designed, in which the
CO2 emitted to produce 100,000 kW electricity and the CO2
emissions from the CO2 purification process (854.55 kmol/h)
are less than the feedstock CO2 (1689.93 kmol/h). The DME
production process needs to produce DME with CO2
emissions of 835.38 kmol/h or less.

The CO2 reduction per unit DME production can be
calculated using the following formula.

=

CO reduction per unit DME production
1689.93 CO emissions in the DME production process

DME production

2

2

(1)

A block flow diagram of the designed DME production
process is shown in Figure 2. In the feedstock boosting section,
the pressure of the feedstock CO2 and H2 is enhanced by
repeatedly boosting the pressure using a compressor and then
cooling the feedstock using cooling water. In the methanol
synthesis section, the raw materials mixed in the feedstock
boosting section are heated to the reaction temperature using a
heat exchanger with utility steam, and then, methanol is
synthesized in the methanol reactor. The outlet gas of the
methanol reactor contains a large amount of H2, CH4, and
CO2 in addition to the synthesized methanol. In the gas−liquid
separation and recycling section, the superheated gas at the
outlet of the methanol reactor is depressurized by an expander,
cooled by a heat exchanger using cooling water, and then
separated into gas and liquid components. The gas separated

Figure 1. Schematic diagram of the DME production process and
related processes.
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by gas−liquid separation is partially purged to recycle the CH4
contained in the raw material without concentrating it. The gas
that is not purged is pressurized by a compressor and mixed
with the CO2 and H2 for recycling. In the methanol
purification section, the liquid separated by gas−liquid
separation is depressurized by a valve, and then, H2O and
methanol are separated in a distillation column. The H2O is
discharged as liquid from the bottom of the column, and the
methanol is discharged as gas from the top of the column. In
addition, the remaining material has its pressure increased by a
compressor and is then cooled by cooling water, before the
methanol and impurities such as CO2 and CO that could not
be separated by gas−liquid separation are separated in a
distillation column. The methanol is discharged as a liquid
from the bottom of the column.

In the DME synthesis section, the methanol obtained from
the methanol purification section is pressurized by a pump, and
the temperature is raised to the reaction temperature using the
product (high-temperature fluid) discharged from the DME
reactor and utility steam. In the DME reactor, DME is
synthesized from methanol. In the DME purification section,
the DME synthesized in the DME reactor is separated from
H2O in a distillation column. The H2O is discharged from the
bottom of the column as liquid, and the DME is discharged
from the top of the column as gas. The process flow diagram of
the designed DME production process is shown in Figure S1.

2.2. Reaction Equation and Reaction Kinetics Equa-
tion. In the DME production process considered in this study,
DME is produced through a two-step reaction process. The
first reaction step is the methanol reaction step, which involves
the following two reactions.

+ +VCO (g) 3H (g) CH OH(g) H O(g)2 2 3 2 (2)

+ +VCO (g) H (g) CO(g) H O(g)2 2 2 (3)

Equation 2 describes the synthesis reaction of methanol
from CO2, which is an exothermic reaction. Equation 3
describes the reverse aqueous gas shift reaction, which is
endothermic.

The second step of the reaction process involves the
following synthesis reaction of DME from methanol.

+V2CH OH(g) CH OCH (DME)(g) H O(g)3 3 3 2 (4)

The kinetic equations for each reaction are as follows.
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= [ ]r k p p p p K( )/( )E3 3 MeOH DME H O MeOH 3
2 (9)

=k Tln( ) 1.7954 9680/3 (10)

= +K Tln( ) 2.8086 3061/E3 (11)

where ri is the reaction rate constant in equation (i), pi is the
pressure of component i, R is the gas constant, and T is the
temperature.

2.3. Creating the Initial Data Set. In machine learning, a
regression model of the form Y = f(X) is constructed between
the design variables X and the objective variables Y using a data
set. Because there is no data set including Y values or
simulation results for the reaction considered in this study, we
design the experiments based on the D-optimality criterion.32

In the design of experiments, candidates of X are selected such
that a good model Y = f(X) can be constructed. The task of
preparing the initial data set is illustrated in Figure 3. First,

1,000,000 candidates of X are randomly generated. Second, the
process of randomly selecting 10 samples out of these
1,000,000 candidates is repeated 10,000 times, and the 10
samples with the maximum D-optimality criterion are selected
(in this study, the number of samples in the initial data set is
set to 10). The Y values are then calculated by conducting
simulations using the selected candidates of X. This completes
the preparation of the initial data set.

Figure 2. Block flow diagram of the designed DME production
process.

Figure 3. Initial data-set creation.
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2.4. Optimization Method. An adaptive design of
experiments based on BO is used to optimize the design
variables. The flow of the adaptive design of experiments is
shown in Figure 4. The regression model Y = f(X) is
constructed by GPR between the design variables X (see Table
1) and the objective variables Y (see Table 2). GPR can be
used for both linear and nonlinear regressions. One of its major
features is that it calculates both the estimated value and
variance of Y, allowing us to consider the variability of the
estimated value. We input the 1,000,000 candidate design
variables generated when creating the initial data set into the

constructed model Y = f(X) and calculate the estimated value
and variance of Y. From the estimated value and variance of Y,
we calculate the value of the acquisition function. In this study,
we use the PTR as the acquisition function�this is the
probability that the predicted value of Y will fall within a set
target range. In this analysis, we set three objective variables:
product purity, amount of DME in the product, and CO2
emissions. We set a target range for each of these objectives.
Note that when probabilities are multiplied together, the result
is the probability that the individual events will occur
simultaneously (i.e., simultaneous probability). In this study,
the PTR of each objective variable is calculated, and then a
logarithmic transformation is applied to the values. The sum of
these transformed values is used as the simultaneous
probability. Next, the candidate with the largest simultaneous
probability is selected and simulated. If all of the simulation
results are within the target range, the BO process is complete.
If even one of the simulation results does not fall within the
target range, new candidate design variables and results are
added to the data set. The operation described above is then
repeated using the updated data set.

2.5. Robust Bayesian Optimization under Variations
in Design Variables. Design variables such as temperature
and pressure do not remain constant but fluctuate continu-
ously. We optimize the design variables to account for such
temperature and pressure variations. The optimization process
is described below. Most of the process is the same as for the
adaptive design of experiments based on BO, as shown in
Figure 4. A regression model between the design variables X
and the objective variables Y is constructed using GPR. The
1,000,000 candidate design variables generated for the initial
data set are input into the constructed model Y = f(X), and the
estimated value and variance of Y are obtained. The PTR
values are then calculated. The next step is to select the
candidate design variables that have the highest PTR values.
Based on the design variable candidates selected here, 10 new
design variable candidates are generated within a range of ±3%

Figure 4. Flow of the adaptive design of experiments.

Table 1. Design Variables

variable
number variable name

equipment
name units min max

X01 compressor outlet
pressure

K6 bar 20.00 65.00

X02 hydrogen flow rate SRC2 kmol/h 3000.0 10000
X03 methanol reactor

temperature
R1 °C 200.0 260.0

X04 purge ratio SP1 0.001 0.060
X05 valve outlet pressure XV1 bar 0.50 1.50
X06 number of distillation

column stages
C1 12 14

X07 distillation column
feed stage

C1 2 4

X08 distillation column
reflux ratio

C1 0.100 2.000

X09 compressor outlet
pressure

K8 bar 1.50 2.10

X10 number of distillation
column stages

C2 9 11

X11 distillation column
feed stage

C2 1 3

X12 distillation column
reflux ratio

C2 0.100 1.500

X13 condenser outlet
temperature

E11 °C 30.0 50.0

X14 pump outlet pressure P1 bar 10.00 15.00
X15 DME reactor

temperature
R2 °C 250.0 380.0

X16 number of distillation
column stages

C3 12 14

X17 distillation column
feed stage

C3 6 8

X18 distillation column
reflux ratio

C3 0.100 1.000

X19 condenser outlet
temperature

E14 °C 45.0 55.0

Table 2. Objective Variables

variable
number variable name units min max

Y01 product purity 0.95 1.00
Y02 amount of DME in the

product
kmol/h 350 845

Y03 CO2 emissions kmol/h 0 835
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for each design variable. For example, if the temperature of the
base design variable is 50 °C, the newly generated temperature
candidates will be in the range [48.5, 51.5 °C].

Because the numbers of distillation column stages and feed
stages do not vary, they provide the candidate design variables.
As shown in Figure 5, simulations are performed with the new

candidate design variables, and the worst result is treated as the
actual value of the objective variables. This makes it possible to
search for a solution that is not affected by small changes in the
design variables. If the values of all of the objective variables
are within the target range, the BO process is considered
complete. If even a single objective variable does not fall within
the target range, the candidate design variables and results are
added to the data set. The operation described above is then
repeated using the updated data set.

3. RESULTS AND DISCUSSION
3.1. Optimization of Design Variables Based on

Adaptive Design of Experiments. The adaptive design of
experiments based on BO was used to optimize the design
variables. To verify the effectiveness of BO, we also randomly
selected the design variable candidates. We performed BO 3
times with different initial samples and performed random
selection 3 times as well. An example of the three trials is
shown below. Figures 6 and 7 show examples of the
optimization results for BO and random selection, respectively.
The horizontal axis is the number of simulations, and the
vertical axis is the value of the objective variable. The orange

region is the target range. As shown for the last sample in
Figure 6, all of the objective variables are within the target
range. By using adaptive design of experiments based on BO,
we were able to find the design variables that satisfy the target
range for product purity, amount of DME in the product, and
CO2 emissions after 48 simulations out of 1,000,000
candidates. The product purity was found to be 0.962, the
amount of DME in the product was 512.43 kmol/h, and the
CO2 emissions were 800.10 kmol/h. In the case of random
selection, Figure 7 shows that in some simulations certain
objective variables were in the target range, but there was no
simulation result in which all three objective variables were in
the target range at the same time. Even after 100 iterations of
randomly selecting design variables from 1,000,000 candidates,
we could not find design variables that satisfied the target
ranges of all three objective variables.

In the three verifications, BO was able to find design
variables that satisfied the target ranges of all three objective
variables in 48, 31, and 54 simulations, separately. In contrast,
random selection was not able to find design variables that
satisfied all of the target ranges after 110 simulations, the
maximum number of simulations permitted in the verifications.
The values of each objective variable and the number of
simulations are presented in Table 3, and the values of the
design variables optimized by BO are listed in Table 4. The
methanol reactor temperature (X03) is 202.1 °C, which is
close to the lower limit of 200 °C. By using the adaptive design
of experiments based on BO, it was possible to find design
variables that satisfied all target ranges after an average of 44.3
simulations from among 1,000,000 candidates. In the case of
randomly selected design variable candidates, it was not
possible to find design variables that satisfied all of the targets
after 110 simulations, suggesting that the adaptive design of
experiments based on BO is an effective method for efficiently
optimizing design variables. Even when the initial samples
changed, the number of simulations did not increase
significantly, indicating that the adaptive design of experiments
based on BO is robust.

3.2. Optimization Accounting for Variations in
Design Variables. As shown in Figure 8, we were able to
find design variables that satisfy the target ranges for product
purity, DME content, and CO2 emissions after 54 simulations
from among 1,000,000 candidates. The product purity was

Figure 5. Robust Bayesian optimization for variations in design
variables.

Figure 6. Result example of BO. Red points are the objective variable values for the initial 10 samples, blue points are the objective variable values
during BO, and orange areas are the target ranges.
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0.969, the amount of DME in the product was 361.79 kmol/h,
and the CO2 emission was 832.93 kmol/h. Even in the event of
variations in temperature and pressure, it was possible to
identify design variables that would satisfy all of the target
ranges. The CO2 reduction per unit DME production was 2.37
[-] from eq 1. The optimized design variables are listed in
Table 5. The methanol reactor temperature (X03) is 202.1 °C,
which is close to the lower limit of 200 °C. Low temperature
and high pressure are advantageous for the synthesis of

methanol from CO2,
33 which is consistent with the results of

this study.

4. CONCLUSIONS
An adaptive design of experiments based on BO has been
developed to find design variables that satisfy the target ranges
for product purity, amount of DME in the product, and CO2
emissions. The proposed method successfully identified design
variables that satisfied all targets in an average of 44.3
simulations. In comparison, a random search method could not
find design variables that would satisfy all of the target ranges
in 110 simulations. This result confirms the effectiveness of the
optimization method.

We also conducted the optimization process considering
variation in certain design variables. By using the adaptive
design of experiments, we could identify design variables that
simultaneously achieved all of the targets in an average of 54
simulations. Because the proposed method can be applied to
any process design, it is expected to achieve efficiency
improvements in a range of industrial settings.

Figure 7. Result example of random selection. Blue points are the objective variable values. Orange areas are the target ranges.

Table 3. Comparison of BO and Random Selection

method

product
purity
[-]

DME in the
product
[kmol/h]

CO2
emissions
[kmol/h]

number of
simulations average

BO ① 0.962 512.43 800.10 48 44.3
BO ② 0.963 437.70 773.60 31
BO ③ 0.970 354.20 834.71 54
Random ① 110 (fail) 110

(fail)Random ② 110 (fail)
Random ③ 110 (fail)

Table 4. Optimized Design Parameters

variable number variable name equipment name unit BO1 BO2 BO3

X01 compressor outlet pressure K6 bar 45.78 63.85 34.02
X02 hydrogen flow rate SRC2 kmol/h 6415.4 7305.4 8455.3
X03 methanol reactor temperature R1 °C 201.9 209.7 202.2
X04 purge ratio SP1 0.006 0.020 0.055
X05 valve outlet pressure XV1 bar 1.42 1.41 0.55
X06 number of distillation column stages C1 12 12 13
X07 distillation column feed stage C1 4 3 3
X08 distillation column reflux ratio C1 1.859 1.114 0.818
X09 compressor outlet pressure K8 bar 1.96 1.94 1.54
X10 number of distillation column stages C2 11 10 11
X11 distillation column feed stage C2 1 1 3
X12 distillation column reflux ratio C2 0.396 0.195 0.416
X13 condenser outlet temperature E11 °C 43.5 30.5 31.7
X14 pump outlet pressure P1 bar 11.98 12.69 14.30
X15 DME reactor temperature R2 °C 251.6 250.0 270.5
X16 number of distillation column stages C3 12 14 14
X17 distillation column feed stage C3 8 6 7
X18 distillation column reflux ratio C3 0.184 0.500 0.773
X19 condenser outlet temperature E14 °C 47.3 49.9 54.1
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