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1  | INTRODUC TION

Stress refers to internal state of threatened homeostasis caused 
by threat or challenge to the organism's well‐being (Ulrich‐Lai & 
Herman, 2009). In recent stress studies, the term stress is often re‐
stricted to “conditions where an environmental demand exceeds the 

natural regulatory capacity of an organism, in particular situations 
that include unpredictability and uncontrollability” (Koolhaas et al., 
2011). Stress responses cause pathological conditions through mul‐
tiple systems, including the sympathetic nervous and adrenocortical 
system (Goldstein & Kopin, 2007). Stress negatively influences not 
only the development but also the progression of various disorders, 
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Abstract
Introduction: Experimental studies and clinical observations have shown that stress 
can damage hepatic tissue both directly and indirectly. Many studies have partially 
revealed the contributors of stress‐induced liver injury; however, the whole process 
has not yet been uncovered. This review aims to summarize the mechanisms that 
have been proposed to be involved.
Methods: A	 literature	search	was	conducted	using	PubMed	 (http://www.ncbi.nlm.
nih.gov/pubmed) in its entirety up to March 2018, and analyzed the animal‐derived 
mechanistic studies on stress‐induced liver injury.
Results: The liver is the organ that meets and filters a mass of alien material, and then 
maintains immune tolerance under physiological conditions. Under stress conditions, 
however, immune tolerance is interrupted, which results in the induction of inflam‐
mation in the liver. Contributors to this process can be categorized as follows: hy‐
poxia‐reoxygenation, over‐activation of Kupffer cells and oxidative stress, influx of 
gut‐derived lipopolysaccharide and norepinephrine, and over‐production of stress 
hormones and activation of the sympathetic nerve.
Conclusions: Psychological stress is associated with a variety of pathological condi‐
tions resulting in liver injury through multiple systems, including the sympathetic 
nervous and adrenocortical system. Mechanistic understanding of this phenomenon 
is important for the clinical practice of managing patients with hepatic disorders and 
should be explored further in the future.
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such as cardiovascular, psychiatric, endocrine, and cancerous dis‐
orders	 (Cohen,	 Janicki-Deverts,	 &	Miller,	 2007;	 Reiche,	 Nunes,	 &	
Morimoto,	2004).

On the other hand, liver receives blood from the hepatic ar‐
tery and the portal vein. In human, former and latter contribute 
20%–25% and 75%–80% of the blood, respectively (Rappaport, 
1980). The portal vein in particular delivers alien substances and 
antigens, such as digested products, old or damaged cells, and mi‐
crobial products, to the liver, which may result in a high risk of ex‐
cessive	immune	activation	(Racanelli	&	Rehermann,	2006).	Under	
physiological conditions, the liver ignores the immune challenge of 
various antigens, which is termed liver immune tolerance (Tiegs & 
Lohse, 2010). However, this immune tolerance process can be dis‐
torted by any pathological circumstance including psychological 
stress	(Liu,	Wang,	&	Jiang,	2017).

An	 episode	 of	 stress	 has	 also	 been	 recognized	 to	 worsen	
clinical symptoms and hepatic biochemistry parameters in pa‐
tients with chronic type B or C viral hepatitis (Kunkel et al., 
2000;	 Nagano,	 Nagase,	 Sudo,	 &	 Kubo,	 2004),	 alcoholic	 hepati‐
tis	 (Fukudo,	 Suzuki,	 Tanaka,	 Iwahashi,	 &	Nomura,	 1989),	 nonal‐
coholic	steatohepatitis	(Elwing,	Lustman,	Wang,	&	Clouse,	2006),	
and autoimmune hepatitis (Srivastava & Boyer, 2010). In addition, 
many animal studies have provided evidence that restraint stress 
and electric foot shock stress are the direct causes of liver injury 
(Chida,	Sudo,	Motomura,	&	Kubo,	2004;	Fernández	et	al.,	2000;	
Tseilikman	 et	 al.,	 2012;	 Zhu	 et	 al.,	 2014),	 and	 foot	 shock	 stress	
exaggerates hepatotoxicity in a chemical‐induced mouse model 
(Shimazu,	1986).	These	 liver	 injuries	were	observed	as	 substan‐
tial damage of the hepatocytes in the form of elevated liver en‐
zymes and liver histologic abnormalities. In current society, stress 
is an inevitable factor, and evidence for a link between the brain 
and the liver has accumulated (Campbell et al., 2003; D'Mello & 
Swain, 2011).

Liver injury (i.e., substantial damage of hepatocytes) can occur 
only by stress without other medical conditions; however, little 
is known regarding the underlying mechanisms. In this study, we 
aimed to provide an overview of the corresponding mechanisms 
for stress‐induced liver injury from the animal studies conducted 
to date.

2  | METHODS

2.1 | Data collection

In order to collect data on mechanisms of stress‐induced liver 
injury, a literature search was conducted using PubMed (http://
www.ncbi.nlm.nih.gov/pubmed) in its entirety up to March 2018. 
These searches were performed using combinations of the fol‐
lowing keywords: “stress”, “liver injury”, “liver damage”, and 
“hepatitis”	 respectively.	 Additional	 survey	 was	 performed	 by	
screening references of the selected articles. References of these 
additional investigated articles have also been researched for 
their usefulness.

2.2 | Data analysis

Three hundred and seventy‐four articles at initial screen, twenty‐
five papers were finally selected, which contained any mechanistic 
information of stress‐induced liver injury by mainly experimental 
researches.	Authors	have	reviewed	carefully	the	contents,	and	clas‐
sified those findings.

3  | RESULTS

3.1 | Features of the liver immune tolerance

The most well‐known mechanism of immune tolerance of the liver 
is the prominent secretion of interleukin 10 (IL‐10) by Kupffer cells. 
Under physiological levels of lipopolysaccharide (LPS) from the in‐
testinal canal, Kupffer cells consistently secrete IL‐10 to suppress 
the activation of other immune cells and the production of proin‐
flammatory cytokines (Knolle & Gerken, 2000). The secretion of 
IL‐10 by Kupffer cells occurs rapidly within 2 hr of LPS stimulation, 
contrary	to	other	monocytes	that	secrete	IL-10	within	24	hr,	only	as	
a	compensatory	reaction	(Kamei,	Callery,	&	Flye,	1990;	Knolle	et	al.,	
1998). The key role of Kupffer cells in hepatic tolerance was demon‐
strated by animal experiments with the depletion of Kupffer cells by 
chemical compounds, in which immunologic tolerance disappeared 
(Kamei	et	al.,	1990;	Roland,	Mangino,	Duffy,	&	Flye,	1993).

Kupffer	cells	have	various	toll-like	receptors	(TLRs).	Among	them,	
TLR3 can be activated by other antigens, including necrotic debris or 
double	 stranded	Ribonucleic	Acid	 (dsRNA)	 of	 a	 virus,	which	 leads	
to IL‐18 production via the TIR–domain containing adapter‐inducing 
interferon‐β	 (TRIF)	pathway	in	Kupffer	cells	and	the	sequential	ac‐
tivation	of	natural	killer	cells	 (NK	cells)	 (Tu	et	al.,	2008).	 Interferon	
gamma	(IFN-γ)	secreted	by	activated	NK	cells	induces	the	polariza‐
tion of Kupffer cells into M1 macrophages that produce proinflam‐
matory	 cytokines	 (Chávez-Galán,	 Olleros,	 Vesin,	 &	 Garcia,	 2015).	
Under general circumstances, however, physiological levels of LPS 
bind	TLR4	on	Kupffer	cells	and	consequently	produce	IL-10,	inhibit‐
ing the activation of hepatic immune cells via the myeloid differen‐
tiation primary‐response gene 88 (Myd88) pathway, referred to as 
M2 macrophage polarization (Biswas & Mantovani, 2010; Martinez 
&	Gordon,	2014).

3.2 | Major contributors to liver injury under 
stress conditions

3.2.1 | Hypoxia‐reoxygenation

Stress leads to the reduction in hepatic blood flow, which is medi‐
ated by the hypothalamus–hepatic sympathetic nerve–norepi‐
nephrine axis and hypothalamus–adrenal medulla–epinephrine axis 
(Chida,	Sudo,	&	Kubo,	2006).	Using	rat	experimental	models,	Chida	Y	
et al.	showed	a	60%	reduction	in	hepatic	blood	flow	after	exposure	
to electric foot shock or psychological stress (Chida, Sudo, & Kubo, 
2005). Hypoxia in hepatic tissue causes the production of reactive 

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed


     |  3 of 8JOUNG et al.

oxygen species (ROS), mainly in the mitochondria, leading to endo‐
plasmic reticulum stress and to the necrosis of cells (Chandel et al., 
2000; Xu, 2005). In addition, upon reperfusion of the blood flow, 
Kupffer cells and endothelial cells are activated to produce ROS and 
to secrete various inflammatory cytokines (Carden & Granger, 2000; 
Teoh	&	Farrell,	2003).	These	blood	flow	alterations	involve	the	se‐
cretion	of	corticotropin-releasing	factor	(CRF)	from	the	hypothala‐
mus.	From	Chida	Y's	acute	stress	mouse	experiment,	the	reduction	
in hepatic blood flow was significantly ameliorated by an injection 
of	the	CRF	receptor	antagonist	(Chida	et	al.,	2005).	Yoneda	M	et al. 
found	that	the	central	administration	of	CRF	inhibited	hepatic	blood	
circulation through sympathetic and noradrenergic nerve pathways 
and	proposed	CRF	as	 a	 neurotransmitter	 regulating	hepatic	 blood	
flow in the central nervous system (Yoneda et al., 2005). In a chronic 
immobilization stress model by Bonaz B et al., the hepatic blood 
flow	was	not	 observed,	 but	 the	CRF	 and	CRF	 receptor	 activity	 in	
the chronic stress condition were less than that under acute stress 
(Bonaz & Rivest, 1998). This result suggests that blood flow altera‐
tion due to stress is more noticeable under acute stress rather than 
chronic	stress	conditions	through	the	over-secretion	of	CRF.

The hypoxia‐reperfusion damage in liver mainly causes necrosis 
of hepatocytes rather than apoptosis. Using a partial ischemia rat 
model,	Gujral	JS	et al. found that the major injury is initiated by ne‐
crosis in hepatocytes and sinusoidal epithelial cells after reperfusion, 
and a small minority of those cells undergo apoptosis (Gujral, Bucci, 
Farhood,	&	Jaeschke,	2001).	The	hypoxic	condition	is	unable	to	pro‐
duce oxidative phosphorylation, resulting in a deficiency in adenos‐
ine	triphosphate	(ATP)	production;	then,	this	insufficient	ATP	supply	
generally shifts apoptosis into necrosis of hepatocytes. If blood is 
reperfused	in	the	ischemic	hepatic	tissues,	and	the	ATP	level	is	par‐
tially restored, hepatic necrosis is switched to apoptosis, and the 
hepatic inflammation gradually lessens (Guicciardi, Malhi, Mott, & 
Gores,	2013).	Actually,	low	level	of	ATP	exacerbate	ischemia-reper‐
fusion injury in human hepatic transplantation (Lanir et al., 1988). 
Under	 stress	 conditions,	 reduced	 hepatic	 ATP	 levels	 have	 been	
shown	in	both	rats	and	mice	(Berglund	et	al.,	2009;	Bravo,	Vargas-
Suárez,	 Rodríguez-Enríquez,	 Loza-Tavera,	 &	 Moreno-Sánchez,	
2001).	This	 stress-induced	depletion	of	ATP	would	 cause	necrosis	
rather than apoptosis, leading to more severe liver injury. In addition, 
hypoxic conditions release various tissue‐derived inflammatory me‐
diators such as endothelial monocyte‐activating polypeptide II, en‐
dotheline, vascular endothelial growth factor, and mitogen‐activated 
protein kinase phosphatase‐1, which is followed by the recruitment 
of macrophages resulting in inflammatory injury (Chanmee, Ontong, 
Konno,	&	Itano,	2014).

3.2.2 | Over‐activation of Kupffer cells and 
oxidative stress

Under stress conditions, the decrease in hepatic blood flow in‐
duces mitochondrial hypoxia, which activates the production 
of ROS, resulting in cell necrosis. Imbalance between oxidative 
stressors and antioxidant components, called as oxidative stress, 

is known to be an initiator or common mediator under various he‐
patic damages including stress‐induced liver injury (Tseilikman et 
al., 2012). Oxidative stress can also lead to the over‐production of 
proinflammatory cytokines that induce the infiltration and acti‐
vation of inflammatory cells such as neutrophils, monocytes, and 
lymphocytes. These activated inflammatory cells produce more 
ROS, which exacerbates the oxidative stress as well as triggering 
inflammation	and	hepatic	necrosis	 (Mittal,	 Siddiqui,	Tran,	Reddy,	
&	Malik,	2014).

The necrosis of liver cells also initiates the progression of liver 
injury, which provides a signal to the surrounding tissue, especially 
immune	cells	(Kono	&	Rock,	2008).	Necrotic	cells	in	the	hepatic	tis‐
sue	 leak	 damage/danger-associated	 molecular	 patterns	 (DAMPs).	
DAMPs,	such	as	high	mobility	group	box	1	(HMGB),	messenger	RNA	
(mRNA),	heat	shock	proteins	and	IL-1α, are derived from hosts and 
are	unrelated	to	the	pathogen.	DAMPs	are	generally	hidden	within	
host cells and are ignored by the immune system, but when released 
outside of the cell, they activate the immune system and induce in‐
flammation (Kubes & Mehal, 2012). In particular, the IL‐1α, one of 
the	DAMPs,	stimulates	Kupffer	cells	to	produce	both	IL-1α and IL‐1β 
in	large	amounts	through	the	NF-κB pathway (Dinarello, 2011). The 
IL‐1α and IL‐1β act on hepatocytes to induce the secretion of chemo‐
kine (C‐X‐C motif) ligand 1 (CXCL1), causing the infiltration of neu‐
trophils	around	the	hypoxic	 region	 (Chen	&	Nuñez,	2010;	Rider	et	
al., 2011). Kupffer cell‐derived IL‐1 has been known to play a key role 
in	the	production	of	ROS	and	TNF-α	by	neutrophils.	From	two	isch‐
emia-reperfusion	rat	models	by	Shirasugi	N's	and	Shito	M's	groups,	
preinjection with an IL‐1 receptor antagonist blocked the production 
of endogenous IL‐1 and ROS production, and protected the liver tis‐
sue along with reducing leukocyte attachment to endothelial cells 
and the tumor necrosis factor‐α	 (TNF-α) level in the hepatic tissue 
(Shirasugi	et	al.,	1997;	Shito	et	al.,	1997).	Another	mouse	restraint	
stress	experiment	by	Tseilikman	V	et al. showed that pretreatment 
with an IL‐1 antagonist reduced liver injury as demonstrated by sig‐
nificantly lower levels of hepatic enzymes and infiltrated immune 
cells (Tseilikman et al., 2012).

In	 addition,	 the	mRNA	 that	 leaks	 from	 necrotic	 cells	 activates	
the TLR3 pathway in Kupffer cells, which leads to IL‐18 secretion by 
Kupffer	cells	and	sequentially	activates	NK	cells	 to	produce	 IFN-γ 
(Karikó,	Ni,	Capodici,	Lamphier,	&	Weissman,	2004;	Tu	et	al.,	2008).	
The	IFN-γ, with or without LPS, differentiates Kupffer cells into M1 
macrophages that accelerate the inflammatory reaction in hepatic 
tissue. When Kupffer cells are polarized to M1, immunologic tol‐
erance in the liver is disrupted through the imbalanced secretion 
of anti‐ and proinflammatory cytokines, with IL‐10 likely secreted 
in small amounts but IL‐12 secreted in large amounts (Martinez & 
Gordon,	2014).	IL-12	is	a	proinflammatory	cytokine	that	stimulates	T	
cells and other lymphocytes. Overproduction of IL‐12 activates he‐
patic	Th1	cells	 to	secrete	both	 IFN-γ	and	TNF-α, which stimulates 
Kupffer	cells	and	induces	inflammation	(Hammerich	&	Tacke,	2014).	
In contrast, IL‐10 is a major anti‐inflammatory cytokine with import‐
ant roles in protecting cells and organs by inhibiting excessive im‐
mune	responses	(Borish	et	al.,	1996).	Increased	IL-12	and	decreased	
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IL‐10 can cause the liver to become vulnerable to an inflammatory 
reaction.

3.2.3 | Influx of gut‐derived LPS and norepinephrine

Under	stress	conditions,	hypothalamus-secreted	CRF,	neuron-re‐
leased acetylcholine and glucocorticoids from the adrenal cortex 
increase the permeability of the intestinal canal and make the por‐
tal vein prone to an influx of LPS or other antigens (Castagliuolo 
et	 al.,	 1996;	 Meddings	 &	 Swain,	 2000;	 Santos	 et	 al.,	 1999).	 In	
particular,	 CRF	 and	 acetylcholine	 mediate	 stress-induced	 mast	
cell activation and ion secretion, leading to increases in intracel‐
lular permeability and transcellular uptake in the gastrointestinal 
tract	 (Söderholm	 &	 Perdue,	 2001).	 Santos	 J	 et al. demonstrated 
that mast cell‐deficient mice do not display an increase in gut per‐
meability under stress. Bioactive chemicals (not yet identified) 
secreted from mast cells are suggested to play a major role in in‐
creasing gut permeability (Santos, Benjamin, Yang, Prior, & Perdue, 
2000). The stress‐induced increase in gut permeability has been 
observed in both humans and mice. In human, under public speech 
stress, gut permeability was approximately twice that of the con‐
trol	(Vanuytsel	et	al.,	2014).	In	animal	studies,	the	degree	of	the	in‐
crease in gut permeability varied from 1.5‐ to 2‐fold depending on 
the intensity of the restraint stress (Santos et al., 1999; Saunders, 
Kosecka,	McKay,	&	Perdue,	1994).

The above stress‐induced increase in gut permeability aug‐
ments the influx of gut‐derived LPS and alien substances into the 
liver	 (Frazier,	DiBaise,	&	McClain,	2011).	Contrary	 to	physiological	
levels of LPS, over‐influx of LPS from the gut shifts the polarization 
of Kupffer cells into M1 macrophages, leading to vulnerability of the 
liver to inflammation, and the increased levels of alien substances 
easily	damage	the	liver	(Li	et	al.,	2015;	Nguyen-Lefebvre	&	Horuzsko,	
2015). The role of gut LPS in hepatic inflammation has been sup‐
ported	by	an	ethanol-induced	hepatic	injury	experiment.	Adachi	Y	et 
al. demonstrated a significant reduction in ethanol‐induced hepatic 
injury	by	administering	antibiotics	to	deplete	gut	microbiota	(Adachi,	
Moore, Bradford, Gao, & Thurman, 1995). Moreover, the mice in‐
jected with ethanol along with zinc (as an inhibitor of gut permeabil‐
ity) showed neither an increase of LPS in the blood nor liver injury 
(Lambert et al., 2003).

Psychological stress also decreases intestinal blood flow through 
a combination of sympathetic activation and parasympathetic 
suppression, as well as the release of stress hormones, such as 
neuropeptide Y (Matheson, Wilson, & Garrison, 2000). When the re‐
duction and reperfusion of blood flow occurs in the gut, the intestine 
responds and secretes a high level of norepinephrine that enters the 
liver	(Aneman,	Medbak,	Watson,	&	Haglind,	1996).	Norepinephrine	
in	 liver	can	 induce	Kupffer	cells	 to	secrete	TNF-α at levels four to 
sevenfold that of controls, which is completely blocked by treatment 
with the α‐2 adrenergic antagonist yohimbine (Zhou et al., 2001). 
These results suggest the important roles of gut‐derived norepi‐
nephrine in stress‐related hepatic injury via activation of Kupffer 
cells	to	produce	the	inflammatory	cytokine	TNF-α in the liver.

3.2.4 | Over‐production of stress hormones and 
activation of the sympathetic nerve

Stress	provokes	the	activation	of	the	HPA	axis,	leading	to	a	re‐
lease of stress hormones that are known as glucocorticoids. In a 
mouse	restraint	stress	model,	Nair	A	showed	that	serum	corti‐
costerone increased 3–5 times compared with that in the control 
(Nair	&	Bonneau,	2006).	In	humans,	Rohleder	N	et	al.	reported	
that	the	cortisol	 level	was	 increased	twofold	 in	saliva	and	1.6-
fold in plasma in subjects stressed via tasks such as a free speech 
in front of an audience and a mental arithmetic task of 10‐min 
duration (Rohleder, Kudielka, Hellhammer, Wolf, & Kirschbaum, 
2002). Glucocorticoids are known to generally play a role of 
immune suppressants (Coutinho & Chapman, 2011). However, 
some studies have reported the opposite actions of cortisol or 
corticosterone, especially on liver inflammation. There are clini‐
cal observations of hepatic injury after the administration of 
corticosteroid	(D'Agnolo	&	Drenth,	2013;	Gutkowski,	Chwist,	&	
Hartleb,	2011).	An	animal	study	has	also	shown	glucocorticoid-
induced hepatotoxicity (Rogers & Ruebner, 1977). Moreover, 
Chensue SW et al. demonstrated an aggravation of liver damage 
and	 proinflammatory	 cytokines	 (IL-6	 and	 TNF-α) by stress‐re‐
lated doses of corticosterone in LPS‐challenged mice (Chensue, 
Terebuh, Remick, Scales, & Kunkel, 1991). However, the under‐
lying mechanisms responsible for the proinflammatory action 
of glucocorticoids are still uncertain. One possibility follows. 
The stress hormones, particularly corticosterone, are known 
to distribute immune cells into inflammatory regions and to ac‐
celerate the initial inflammatory reaction. Using an adrenalec‐
tomy	 and	 corticosterone-replacement	 rat	 model,	 Dhabhar	 FS	
et al. demonstrated that stress‐derived corticosterone induces 
the trafficking of leukocytes to battle stations in acute stress 
but	not	 in	chronic	stress	 (Dhabhar,	Malarkey,	Neri,	&	McEwen,	
2012).

Stress	stimulates	the	sympathetic-adrenal-medullary	(SAM)	
system to secrete the two catecholamines epinephrine and 
norepinephrine. Many studies have reported that catechol‐
amines are involved in cytotoxicity and tissue damage, includ‐
ing in the liver. Epinephrine has been reported to promote the 
production of hydroxyl radicals in isolated rat hepatocytes 
(Yang	 et	 al.,	 2012).	 From	 animal	 experiments,	 norepinephrine	
administration has been shown to increase the production of 
two	 proinflammatory	 cytokines,	 TNF-α	 and	 IL-6,	 by	 Kupffer	
cells	and	hepatocytes,	respectively	(Jung	et	al.,	2000;	Zhou	et	
al., 2001). Surgical and chemical hepatic sympathectomy no‐
tably	 inhibited	 the	 restraint	stress-induced	production	of	 IL-6	
in	 hepatic	 tissue	 (Nukina	 et	 al.,	 2001;	 Takaki,	 1996;	 Takaki,	
Huang,	 Somogyvári-Vigh,	 &	Arimura,	 1994).	 Zhu	Q	 et	 al.	 also	
showed the important action of catecholamines on stress‐in‐
duced hepatic apoptosis using catecholamine receptor antag‐
onists, where α‐1 and α‐2 (but not β‐1 and β‐2) adrenoreceptor 
antagonists resisted liver injury under restraint stress (Zhu et 
al.,	2014).
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4  | CONCLUSION

From	the	experimental	data	described	above,	we	can	summarize	the	
underlying mechanisms for stress‐induced liver injury as follows. Stress 
conditions can induce hepatic hypoxia and reperfusion, the over‐influx 
of gut LPS, and an increase in the release of stress hormones, includ‐
ing corticosteroids and catecholamines. This systemic alteration of 
the hepato‐intestinal blood flow first causes the partial necrosis of 
hepatocytes, which can leak intracellular substances. The leakage of 
unwanted	antigens,	called	DAMPs,	initiates	the	inflammatory	reaction	
surrounding	the	hypoxic	region	and	consequently	activates	NK	cells	to	
produce	IFN-γ, leading to M1 polarization of Kupffer cells.

This condition indicates the break of the tolerance of Kupffer cells, 
which is accelerated by the over‐influx of gut LPS and norepineph‐
rine. Over activation of Kupffer cells begins to substantially provoke 
the inflammatory environment in hepatic tissue, mainly via the pro‐
duction of IL‐1 and ROS with other cells, including immigrated neu‐
trophils. Moreover, the stress‐related over‐release of corticosteroids 
and catecholamines can promote the further migration of peripheral 
leukocytes into hepatic tissue and the production of inflammatory 
cytokines	such	as	TNF-α	and	IL-6.	The	activation	of	the	sympathetic	

nerve may also augment the susceptibility of hepatic tissue to stress‐
related	inflammation.	This	study	is	summarized	in	Figure	1.

The present review has limitations, especially its reliance on re‐
sults from mainly animal studies. Moreover, there is still insufficient 
evidence to explain the mechanisms responsible for stress‐associ‐
ated	hepatic	damage.	Further	researches	are	warranted	from	both	
human studies and animal models. Prospective clinical studies could 
be helpful, for example such as demonstrating a positive correla‐
tion between psychological stress index and hepatic biochemistry 
parameters. The adaptations of animal models with adrenalectomy, 
germ-free	 guts	 or	 depletion	 of	 NK	 cells	 or	 Kupffer	 cells	 are	 rec‐
ommended to explore these areas in the future. In addition, there 
should be consideration regarding the intensity and mode of the 
stress period on the risk of hepatic damage.

The psychiatric influence of stress is garnering more attention in 
medical practice. Clinical cases with elevated liver enzymes without 
any known causes are often observed. Obviously, stress response 
could be a possible reason, which has been overlooked so far. We 
hope that the present review boosts future studies addressing the 
entire molecular mechanisms for the stress‐induced hepatic damage 
or stress‐associated influence on liver disorders.

F I G U R E  1  Summary	of	stress-induced	liver	injury.	SAM:	sympathetic-adrenal-medullary,	HPA:	hypothalamic-pituitary-adrenal,	ROS:	
reactive	oxygen	species,	LPS:	lipopolysaccharide,	IFN-γ: interferon gamma, IL: interleukin
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