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Erythropoietin is known as the requisite cytokine for red blood cell production. Its receptor, expressed at a high level on erythroid
progenitor/precursor cells, is also found on endothelial, neural, and other cell types. Erythropoietin and erythropoietin receptor
expression in the developing and adult brain suggest their possible involvement in neurodevelopment and neuroprotection.
During ischemic stress, erythropoietin, which is hypoxia inducible, can contribute to brain homeostasis by increasing red blood
cell production to increase the blood oxygen carrying capacity, stimulate nitric oxide production to modulate blood flow and
contribute to the neurovascular response, or act directly on neural cells to provide neuroprotection as demonstrated in culture and
animal models. Clinical studies of erythropoietin treatment in stroke and other diseases provide insight on safety and potential
adverse effects and underscore the potential pleiotropic activity of erythropoietin. Herein, we summarize the roles of EPO and its
receptor in the developing and adult brain during health and disease, providing first a brief overview of the well-established EPO
biology and signaling, its hypoxic regulation, and role in erythropoiesis.

1. Introduction

Erythropoietin (EPO) is produced primarily in the adult kid-
ney and secreted into the circulation to regulate red blood cell
production in the bone marrow. EPO stimulates erythroid
progenitor cell survival, proliferation, and differentiation
to satisfy the daily requirement of about 200 billion new
red blood cells due in part to the limited red blood cell
lifespan of 120 days. Human recombinant EPO has been used
clinically for more than 2 decades to treat anemia associated
with conditions such as chronic kidney disease, antiviral
HIV therapy, and cancer patients on chemotherapy. EPO
production is hypoxia inducible and thus increases during
anemia and hypoxic stress. Interestingly, EPO production
has also been detected in brain in response to hypoxic
stress. The finding that EPO receptor (EpoR) expression
extends beyond hematopoietic tissue to include neural and
endothelial cells and the accumulating evidence for EPO
antiapoptotic properties such as its neuroprotective activity

have collectively led to investigations of EPO as a pleiotropic
cytokine. In this paper, we review the nonhematopoietic
activity of EPO in the developing as well as adult brain, and
summarize its roles during health and disease.

2. EPO, EpoR Signaling, and Erythropoiesis

EPO is a glycoprotein hormone consisting of a single
polypeptide of 166 amino acids folded into four α-helices
with two disulphide bridges between cysteines 6 and 161
and between cysteines 29 and 33 [1–3]. EPO is composed
of 40% to 60% carbohydrate, with a molecular mass of
30 to 34 kDa, depending on carbohydrate content. Three
N-glycosylation sites at asparagines 24, 38, and 83 can
each accommodate up to four sialic residues and one O-
glycosylation site at serine 126 (absent in rodent EPO),
which does not appear to be necessary for EPO activity [4].
Nonsialated EPO is rapidly cleared from the circulation via
the galactose receptor in the liver [5]. EPO shares structural
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Figure 1: Erythropoietin signaling. EPO binding to the homodimeric EpoR on the cell surface changes the conformation of EpoR and
brings the respective cytoplasmic domains in closer proximity resulting in transphosphorylation and activation of the associated Janus
kinase JAK2 proteins. JAK2 activation results in phosphorylation, dimerization, and translocation of signal transducer and activator of
transcription (STAT) proteins, and activation of other downstream signaling pathways such as mitogen-activated protein kinase (MAPK),
phosphoinositide 3-kinase (PI3K/AKT), and, in neuronal cells, nuclear factor-(NF-) κB (p50 and p65) with dissociation and degradation of
the inhibitory IκB protein.

similarities with growth hormone and other members of the
hematopoietic class 1 cytokine superfamily that include sev-
eral interleukins (e,g, IL-2, -3, -4, -6), granulocyte-colony-
stimulating factor, thrombopoietin, prolactin, oncostatin M,
ciliary neurotrophic factor, and leukocyte inhibitory factor
[6, 7]. The corresponding receptors for the hematopoietic
class 1 cytokines are single transmembrane polypeptides
that associate as homodimers, as is the case with EpoR,
heterodimers, or heterotrimers. These receptors have no
intrinsic catalytic domains and their cytoplasmic regions
associate with Janus kinases (JAK) such as JAK2 for EPO
signaling [8]. The extracellular domain of EpoR has a short
α-helix preceding two seven-stranded β-sheet domains, five
cysteine residues, and a Trp-Ser-X-Trp-Ser motif proximal
to the membrane and characteristic of receptors for the
hematopoietic class 1 cytokines [9]. The human EpoR gene
product is encoded from 8 exons spanning over 6.5 kb, creat-
ing a 508 amino acid protein [10]. The single transmembrane
domain is encoded in exon 6 with much of the cytoplasmic
domain encoded in exon 8 [9, 11]. JAK2 binds to EpoR at
its Box1/Box2 regions, which allows JAK2 to move from an
inactive state when not in contact with EpoR to an active
state following EPO stimulation [12]. EPO binding to EpoR
on the surface of early erythroid progenitor cells causes a
conformational change in the cytoplasmic domain bringing
the two associated JAK2 proteins in close proximity leading
to transphosphorylation of JAK2 and EpoR and activation
of downstream signal transduction pathways (Figure 1)
[13]. Notably, the extent of cell surface EpoR expression
determines EPO response.

Targeted deletion in mice of either EPO or EpoR leads
to a marked decrease in circulating primitive erythroblasts
in utero by day E11.5, and definitive erythroid progenitor
cells at the CFU-E (colony forming unit-erythroid) stage
do not survive resulting in severe anemia and death at
day E13.5 [14, 15]. Studies in rodents have been useful in
understanding erythropoiesis during mammalian develop-
ment, where differentiation of hematopoietic stem cells to
form erythrocytes is initiated extra embryonically. In mice,
primitive erythropoiesis begins in the extra embryonic yolk
sac at around embryonic day E7.5 where EpoR transcripts
are also detected [16]. Primitive erythroid cells are large,
nucleated, and express embryonic globins. In the embryo
proper, hematopoietic stem cells initiate in the aorta-gonad-
mesonephros region around day E10 and subsequently
colonizes the fetal liver [17]. By day E12.5, definitive
erythropoiesis is well established in the fetal liver. Definitive
erythrocytes are enucleated, are smaller than the nucleated
primitive erythroid cells, and express fetal (human) or
adult (mouse) globins [18]. EPO acts as a survival factor
for both primitive and definitive erythroid progenitor cells
and stimulates erythropoiesis by binding to its cell surface
receptor [19]. EPO is actively produced in the fetal liver,
decreases with embryonic maturation, and is minimal and
difficult to detect by day E17.5 in mice, concomitant with
the rapid decrease of erythropoiesis in the fetal liver and
onset of erythropoiesis in fetal spleen accompanied by EPO
expression in fetal spleen and kidney [20]. After birth, the
bone marrow and, in mice, the spleen become the primary
sites of erythropoiesis [21].
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3. Sites of EPO Production

EPO is produced in the fetal liver in hepatocytes surrounding
central veins and in fibroblast-like Ito cells [22]. Mean-
while, EPO production in the kidney begins before birth,
increasing sharply after 30 weeks in human and localizes to
the peritubular interstitial cells with neural characteristics
[21, 23, 24]. Although primary EPO production switches to
the adult kidney after birth, hepatic EPO mRNA can increase
to 20%–50% of total body EPO mRNA in response to
hypoxic-challenge [25, 26]. Hypoxia inducible factor (HIF) is
the primary regulatory factor for hypoxic induction of EPO
resulting in increased production of 150-fold or more. An
HIF motif that regulates induction by hypoxia in the liver
is located immediately 3′ of the EPO gene, and regulatory
elements necessary for hypoxic induction in the kidney are
located 6–14 kb 5′ [22, 27]. In the kidney, hypoxic induction
results in increased number of cells expressing EPO, while
hypoxic induction in the liver increases the amount of EPO
expression per hepatocyte [23, 28].

Beside the kidney and fetal liver, EPO production is
also detected in the reproductive tract and the central
nervous system (CNS). In female rodents, EPO is produced
in the endometrium in a hypoxia-inducible and estrogen-
dependent manner [29, 30]. In male rodents, major sites
of EPO mRNA production in the testis are the Sertoli and
peritubular myoid cells [31]. EPO mRNA is expressed in the
epididymis, is hypoxia inducible, and increases dramatically
with age and sexual maturation [32].

Interestingly, EPO levels in the CNS do not follow EPO
levels in the circulation. Astrocytes produce EPO, pointing
to the possibility that EPO can be available on both sides
of the blood-brain barrier [33, 34]. Not surprisingly, EPO
production in brain is also hypoxia inducible and can persist
for up to 24 hr or more [30]. EPO expression in the CNS is
observed as early as 5 weeks postconception and increases
with development [35–38]. By 7 weeks, EPO is detected
in the spinal cord and localizes midtrimester to ependymal
cells. Hypoxia-inducible EPO is also expressed in the retina
[39]; during the first two trimesters of human development,
EPO is detected in the retina and adrenal cortex [40]. EPO
production localizing to astrocytes and neurons persists
through development and adulthood, decreasing with age
[36, 41]. Moreover, hypoxia-induced EPO production in
astrocytes, in adult human, nonhuman primate, and rodents
has been localized in various brain areas including the
hippocampus, amygdale, and temporal cortex [33].

4. Hypoxic Regulation of EPO

EPO production is regulated primarily at the transcription
level. The HIF binding site located within the highly con-
served 3′ hypoxia-responsive element (HRE) of the EPO gene
is necessary for hypoxia induction in hepatocytes [27, 42–
44]. HIF is an important regulatory factor for the activation
of genes in response to physiologic stress or hypoxia. The
HRE also provides for hypoxic regulation by transcription
factors including hepatocyte nuclear factor 4, an orphan
nuclear receptor expressed in kidney and liver [45]. HIF

is a heterodimer that consists of a constitutive β-subunit
(also called aryl hydrocarbon receptor nuclear translocator
protein; ARNT) that resides in the nucleus and an α-subunit
(HIF-1α, HIF-2α, and HIF-3α) localized to the cytoplasm,
which is transported to the nucleus for HIF activation
[46, 47]. Hypoxia induction of EPO was initially thought to
be regulated primarily by HIF-1α, but increasing evidence
indicates that HIF-2α is primarily responsible for hypoxia
EPO induction [48–52]. Deletion of HIF-2α, but not HIF-1α,
in adult mice gives rise to anemia, indicating its requirement
for EPO regulation in physiologic and stress conditions
[53]. In contrast, HIF-1α plays a critical role in regulation
of hypoxic induction of vascular endothelial growth factor
(VEGF) [54]. The α-subunit of HIF in the cytoplasm under
normoxia is proline hydroxylated and ubiquitinated by the
von Hippel-Lindau protein leading to rapid degradation by
the proteasome. Hypoxia stabilizes the α-subunit of HIF that
is then transported to the nucleus and heterodimerizes with
the β-subunit for transactivation of target genes. Patients
with genetic mutations in proline hydroxylase, von Hippel-
Lindau protein, or HIF-2α have been identified and asso-
ciated with familial erythrocytosis [55]. Regulation of EPO
production by other transcription factors includes negative
regulation by the GATA transcription factors [56] and
activation by GATA-4 in fetal liver [57]. The Wilms tumor
suppressor (Wt1) can upregulate EPO gene expression, and
its colocalization with EPO in developing mice has led to the
suggestion that Wt1 contributes to EPO gene regulation in
hepatocytes and neuronal cells of the dorsal root ganglia [58].

5. Evidence of EPO Activity in
Nonhematopoietic Tissue

Expression of the erythroid form of EpoR in nonhematopoi-
etic tissues was first detected in endothelial cells providing
for a mitogenic and chemotactic response to EPO [59, 60]. In
mice, deletion of EPO (Epo−/−) or EpoR (EpoR−/−) leads to
angiogenic defects detectable at day E10.5, two days prior to
the onset of severe anemia [61]. Although EpoR expression
is not HIF responsive, expression in endothelial cells can be
induced in culture by the combination of EPO treatment and
reduced oxygen tension [62, 63]. Interestingly, the endothe-
lial response appears to contribute to the cardioprotective
effects of EPO in animal models [64, 65]. Furthermore,
EPO was found to enhance reendothelialization and prevent
neointimal hyperplasia [66], and promote survival of pri-
mary human endothelial cells [67].

6. EpoR Expression in Brain

EpoR expression in neuronal cells, and the high level of EpoR
expression in mouse brain midgestation, provided early
evidence for potential EPO activity in brain (Figure 2(a))
[68, 70]. As with erythroid tissue, the extent of EpoR
expression regulates EPO response in brain [71]. Mouse
EpoR expression in the developing brain appears in regions
associated with neurogenesis. For instance, EpoR localizes
to the neural tube midgestation and is expressed at a high
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Figure 2: Erythropoietin receptor expression in mice during brain development. (a) Quantification of EpoR mRNA in mouse brain (circles)
compared with liver (triangles) beginning at embryonic day E10 from Liu et al., [68]. (b) Hypoplasia of neuroepithelium of the fourth
ventricle at embryonic day E12.5 in EpoR−/− embryo (right) compared with EpoR+/+ embryo (left) (bars, 0.4 mm) from Yu et al., [69].

level comparable to adult hematopoietic tissue in mice but
becomes subsequently downregulated by about 100-fold at
birth [72]. EpoR expression and hence Epo signaling in brain
decrease as development progresses in human. For instance,
EpoR expression in adult brain is two orders of magnitude
lower than the adult erythropoietic organ (bone marrow)
[73]. Observations in the developing midbrain show EPO
expression at day E11 in neurons attached to radial glial
cells which transiently express EpoR [74]. At day E12.5,
EpoR appears to shift to EPO expressing neurons adjacent to
apoptotic bodies, and at day E14.5 apoptotic bodies appear
without EPO expression in bands along the rostrocaudal
length of the midbrain, collectively suggesting a role for
EPO in brain morphogenesis. EPO expression in developing
spinal cord and dorsal root ganglia follow EpoR expression
in radial glial cells, providing more evidence that EPO
may contribute to interaction among neurons and between
neurons and radial glial cells, and promote differentiation or
survival of specific subsets of neurons [75]. Both EPO and
the small fraction of nonglycosylated EPO are downregulated
during brain development. A heterodimer complex between
the classical hematopoietic form of EpoR and the common
β chain has been proposed as the receptor binding EPO in
neural cells, but the common β chain does not appear to
localize with EpoR or EPO in the rat brain and is below the
level of detection in EPO responsive neuronal cell lines, SH-
Sy5y and PC12 [76–78].

During the first two trimesters of human development,
EpoR expression appears widespread [40]. In the developing
embryo, EPO and EpoR expressions were detected in spinal
cord and brain, as early as 7-8 weeks [37, 38]. At 20
weeks, EpoR expression in brain was localized on neurons,
astrocytes, and choroids plexus. Meanwhile, EPO was also
localized to neurons and astrocytes and expression of both
EPO and EpoR persists after birth [36]. Lastly, EpoR
expression is detected throughout the human, nonhuman
primate and mouse brains, with EPO binding, particularly
to areas of the hippocampus, capsula interna, cortex, and
midbrain [33, 79].

7. EPO Is Neuroprotective

EPO stimulates proliferation of neural progenitor cells in
culture. Moreover, the increased proliferation at modest
hypoxia is mimicked by EPO treatment and is blocked by
an EPO neutralizing antibody [69, 80–83]. Interestingly,
EPO-stimulated proliferation in neural progenitor cultures
is comparable to but less than FGF, and when added in
combination does not increase proliferation beyond that of
FGF alone [83]. Additionally, EPO was found to mimic in
part the increase in dopaminergic neurons in day E12 rat
mesencephalic precursor cells cultured at low oxygen tension
[81]. Embryonic rat hippocampal and cortical neuron
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cultures demonstrate a protective effect of EPO from glu-
tamate toxicity, and EPO promotes survival in the absence
of trophic factors [69, 82]. EPO also provides protection
to embryonic and postnatal hippocampal neurons from
hypoxia-induced cell death [69, 84]. In the retina, EPO is
inducible by HIF and is protective against light-induced
damage [39], where hypoxia was found to increase EPO
response and EpoR expression [69, 85].

In neural cells, EPO induces GATA-3, a GATA transcrip-
tion family member that is required for brain development,
which is able to transactivate the EpoR promoter [69, 86];
however, GATA-2 and GATA-4 may also contribute to EpoR
expression in neural cells [87]. Brain-derived neurotrophic
factor (BDNF) preconditioning of rat cortical cultures
induced both EPO and sonic hedgehog, and both were
required for BDNF neuroprotection [88]. Correspondingly,
EPO treatment after ischemic stroke resulting in improved
functional recovery induces BDNF and VEGF [89]. Spinal
cord-derived neural progenitor cells also express EpoR that
provides for EPO regulation of cell cycle and stimulation of
proliferation [90].

8. Targeted Deletion of EpoR

Mice with targeted deletion of EpoR (EpoR−/−) exhibit in-
creased apoptosis in the brain as early as day E10.5, thinning
of the neuroepithelium, and smaller brain size prior to death
around day E13.5 due to severe anemia (Figure 2(b)) [69, 74].
EpoR expression in neural progenitor cells is downregu-
lated with differentiation and persists at a lower level in
differentiated neurons [83]. A role for endogenous EPO in
neuron maintenance and survival is suggested by cultures of
neural cells lacking endogenous EpoR that exhibit reduced
proliferative capacity and increased susceptibility to hypoxia
and glutamate toxicity [69, 83]. A human EpoR transgene
rescues the EpoR−/− genotype, normalizes the erythroid
potential and brain development, and rescues the increased
apoptosis observed in the EpoR−/− embryonic brain [91].
EpoR−/− mice rescued with an erythroid restricted EpoR
transgene survive to adulthood with normalized hematocrit
and without any gross abnormal organ morphology [92].
However, adult mice that lack EpoR expression in the brain
exhibit reduced neurogenesis in the subventricular zone
and dentate gyrus and increased susceptibility to glutamate
toxicity [83]. During ischemic stroke, mice that lack EpoR in
neural cells show defective neural cell migration to the peri-
infarct cortex [93]. Collectively, the increased apoptosis in
embryonic brain, reduced neurogenesis in adult brain, and
increased sensitivity to hypoxia and glutamate toxicity exhib-
ited in mice with loss of EpoR expression in brain provide
evidence that endogenous EPO signaling is neuroprotective
throughout mouse development and adulthood.

9. EPO Signaling in Neuronal Cells

EPO stimulation of neuronal cells activates JAK2, STAT5,
AKT, and MAPK signaling pathways [77, 94]. Increased
EPO production in brain by transgene expression during

ischemic injury resulted in activation of JAK2, ERK1/2, and
AKT required for EPO-mediated neuroprotection [95, 96].
In hippocampal neurons, EPO was protective in free radical
injury and maintained mitochondrial membrane potential
[97]. The PI3K signaling pathway was also implicated in EPO
protection to ischemic challenge [98]. Targeted deletion of
STAT5 did not affect the EPO neuroprotective activity in
hippocampal neurons but abrogated the EPO neurotrophic
activity [99]. NF-κB is associated with EPO neural protection
but not with EPO erythroid activity (Figure 1) [100].

10. EPO and Neurovascular Response

Brain capillary endothelial cells express EpoR, where Epo acts
directly as a competence factor [101]. EPO has been reported
to regulate not only neurogenesis but also angiogenesis
[80, 89]. Angiogenesis is a tightly controlled multistep
process through which new blood vessels are formed by
sprouting from the preexisting vasculature in the presence
of VEGF and its receptor (VEGF-R). It is suggested that EPO
may play a role in stimulating angiogenesis in response to
ischemic injury in the brain possibly via VEGF upregulation
[89]. Indeed, EpoR in microvascular/capillary endothelial
cells is induced during evolution of cerebral infarct following
permanent cerebral ischemia in mice and is further enhanced
with EPO treatment [102, 103]. EPO treatment has been
reported to have an antiapoptotic effect in cerebral vascular
cells [104], and EPO-mediated neurovascular response has
been suggested to occur via proangiogenic effects and
through the regulation of cerebral blood flow. For instance,
treatment with EPO was shown to upregulate EpoR expres-
sion in cerebral vascular endothelial cells, which in turn was
suggested to drive neurovascular protection and angiogenesis
and restore local cerebral blood flow in a mouse model of
focal ischemia (Figure 3) [103].

11. Endothelial and Neuronal Cells Cross Talk

In the adult rodent brain, neuronal progenitor cells are
localized adjacent to endothelial cells in the subventricular
zone and the dentate gyrus [105]. Interestingly, cerebral
ischemia has been reported to induce angiogenesis and neu-
rogenesis [89, 106, 107]. Moreover, angiogenesis was shown
to be coupled with neurogenesis [105, 108], whereby sup-
pressing angiogenesis reduces neuroblast migration toward
the ischemic cortex [109], thus indicating that interactive
networks exist between endothelial and neuronal cells.
The migration of new-born neurons toward the ischemic
boundary region was found to be promoted by EPO-
enhanced angiogenesis through matrix metalloproteinase-2
and -9 released by cerebral endothelial cells [110], thereby
further highlighting the involvement of endothelial cell
responses in regulation of neuronal cell responses. Neuronal
progenitor cells can directly promote angiogenesis [111], and
EPO treated neuronal progenitor cells induce angiogenesis
through the production of VEGF and upregulation of VEGF-
R2 in cerebral endothelial cells [112]. VEGF, in turn, was



6 Anatomy Research International

Ischemic brain injury

↑ Neuronal EPO production

↑ Serum EPO crossing BBB

EPO

EPO

EPO

Neuron

Astrocyte

Trophic
factors

↑ Astrocyte EPO production

Ischemic
endothelial cells

Figure 3: Ischemic brain injury and erythropoietin neuroprotec-
tion. EpoR expression by neurons mediates a direct neuroprotective
EPO response. EPO production in astrocytes and neurons and
EPO crossing the blood-brain barrier that is compromised during
injury contribute to increased EPO in the local microenviron-
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proposed to mediate neurogenesis by augmenting prolifer-
ation and neuronal differentiation of neural progenitor cells
[106, 113].

12. Nitric Oxide (NO) and
Neurovascular Response

Basal production of NO by endothelial nitric oxide synthase
(eNOS) is believed to play pivotal roles in the regulation
of cerebral blood flow, vascular tone, vascular resistance,
and vascular growth under resting conditions in various
mammals [114, 115]. In addition, vasodilation is suppressed
with specific inhibition of neuronal NOS (nNOS) and in
mice that lack nNOS [116, 117]. Interestingly, EPO has
been reported to exert neuroprotective effects in vivo, by
regulating neurovascular response resulting in vasodilation
and increased blood flow through increasing NO production
[118]. It is noteworthy that NO can induce EpoR expression
in neuronal cell cultures [119], can improve O2 supply
by means of vasodilation, and thus can provide tissue
protective effects, although excessive production of NO
is neurotoxic [120]. Overproduction of NO by inducible
NOS (iNOS) during inflammation has been implicated in
various pathological processes, including tissue injury and
cell apoptosis caused by ischemia and inflammation [121,
122]. Separate eNOS-, nNOS- or iNOS-deficient mouse
models have been useful in demonstrating that the eNOS
isoform is protective against focal cerebral ischemic injury,
while the nNOS and the iNOS isoforms play roles in
early and later stages of ischemic injury, respectively [122–
124]. nNOS isoform was found to be heavily involved in
hemodynamic response to local neuronal activity, a process
called neurovascular coupling [116]. In relation to the
neuroprotective effects of EPO, using primary dorsal root

ganglion cultures, NO administration was found to protect
against axonal degeneration in a manner dependent on HIF-
mediated transcription of EPO in glial cells [125]. These
findings collectively underscore the link between the EPO
responses in brain and NO.

13. EPO Neuroprotection in Animal Models

Studies using animal models provide ample evidence for the
neuroprotective activity of EPO. EPO stimulation of neural
and endothelial cells and EPO production in brain have been
suggested to contribute to neuroprotection, with the latter
being of particular importance since only low levels of EPO
appear to cross the blood-brain barrier when administered
at high dose intravenously [126]. EPO has been reported to
inhibit neuronal cell apoptosis, stimulate cell survival and
differentiation, and promote neurogenesis and neurotrophic
functions. To date, EPO-mediated neuroprotection has been
shown to occur via (i) antiapoptotic response in neurons,
(ii) endothelial response by increased blood flow and
oxygen delivery through increased vascular relaxation and
angiogenesis, and (iii) anti-inflammatory effects.

In gerbils, exogenous EPO administered directly to the
brain was neuroprotective against brain ischemia, while infu-
sion of soluble EpoR increased susceptibility to ischemia, and
mild ischemia resulted in neural degeneration and impaired
learning [127]. In a rat model of ischemic stroke, direct
infusion of EPO in brain was neuroprotective and improved
performance in the Morris water maze [128, 129]. In mice,
EpoR expression increased with ischemic stroke along with
increased EPO production, and EPO treatment reduced
infarct size [102], suggesting that in ischemic injury, EpoR
increases EPO response and the increase of EPO availability
contributes to neuroprotection. The neuroprotective effect
of intraperitoneally administered EPO in traumatic brain
injury improved mitochondrial function and was demon-
strated to be independent of hematocrit by hemodilution
[130, 131]. Cross talk between EPO and other cytokines
including the requirement for TNF receptor contributes
to EPO neuroprotection [132]. In addition to its effects
on neuronal cells, recent evidence suggests that EPO also
protects nonneuronal cells, namely, oligodendrocytes and
astrocytes via inhibiting apoptosis and promoting survival
[133], and possibly preventing long-term brain damage by
inhibiting glial and astroglial cell swelling [134, 135].

In hypoxic preconditioning when mild brain ischemia
protects against severe ischemic challenge, HIF activation
increases VEGF and EPO expression to promote tolerance
to brain ischemia [129]. Blocking EPO signaling by direct
infusion of soluble EpoR in the brain blocked hypoxic
preconditioning [94, 136, 137]. EPO activity in hypoxic
preconditioning increases survival of neutrally differenti-
ated embryonic stem cells following transplantation in the
ischemic rat brain [138]. Activation of HIF in neurons by
ischemia, iron chelators, or agents that stabilize HIF increases
expression of HIF-regulated genes, such as EPO, glycolytic
enzymes, and p21, and provides neuroprotection in hypoxic
or oxidative stress [139–141]. Knockdown of HIF-1α in
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astrocytes decreased VEGF but not EPO expression, and
targeted deletion of HIF-1α in neural cells in mice reduced
VEGF but not EPO [50, 142]. In contrast, knockdown of
HIF-2α in astrocytes abrogated hypoxic induction of EPO,
consistent with the specificity of HIF-2α in EPO regulation,
which was also indicated by the postnatal targeted deletion
of HIF-2α in mice leading to anemia [50, 53]. EPO also
contributes to hypoxic post-conditioning in a mouse model
of cerebral ischemia [143].

14. EPO Activity in Neonatal Rodent Models

Direct brain injection of EPO provided protection in a
neonatal rat model of hypoxic-ischemic injury and reduced
the size and extent of brain damage [144]. Pretreatment
with intraperitoneally injected EPO in neonatal mice was
also neuroprotective in hypoxic-ischemic injury [145]. In
neonatal rats, EPO neuroprotection was found to provide
a long-term effect in the developing brain that was greater
in females than in males [146]. EPO treatment in neonatal
hypoxic-ischemic brain injury in rats increased brain weight,
decreased apoptosis, protected dopamine neurons, and
improved functional outcomes including long-term spatial
memory deficits [147–150]. EPO administration in ischemic
injury in the developing brain favored neurogenesis and
decreased gliogenesis [151]. EPO also improved auditory
processing and sensorimotor function in hypoxia-ischemic
injury [152, 153].

Neonatal ischemic brain injury in rats induces EpoR
expression in the ischemic area in neurons and microglia/
macrophage [154, 155]. In neonatal rodents subjected to
hyperoxia, exogenous EPO reduced apoptosis, caspase activ-
ity, and proteome changes in brain [156, 157]. Protection
from brain ischemic injury by EPO treatment in neonatal
mice decreased expression of proinflammatory genes [158,
159]. Inflammatory response and white matter damage
in postnatal rats subjected to lipopolysaccharide-induced
injury or E. coli infection in utero are also decreased by EPO
treatment [160, 161]. Interestingly, EPO neuroprotection
is dose dependent and EPO treatment was found to be
ineffective at low dose and at multiple high doses [162].

In a model for human early-third trimester placental
insufficiency, transient systemic hypoxia-ischemia on day
E18 rats demonstrated EpoR increased on oligodendroglial
cells and neurons, and EPO treatment postnatally pro-
tected oligodendrocytes and neurons, minimized histological
damage, and improved motor skill performance in adults
[163]. In hypoxic/ischemic injury in neonatal and adult
rats, delayed EPO treatment beginning 6 hours after injury
reduced lesion volume while treatment beginning 24 to 48 hr
after injury did not affect infarct volume but improved oligo-
dendrogenesis and white matter restoration, neurogenesis
and precursor migration, and neurological function at 2 to
6 weeks after injury [164, 165]. The neuroprotective effects
observed in cell culture and in animal models suggested the
potential of high-dose EPO therapy to protect against brain
injury in extremely low-birth-weight infants [166, 167].

15. EPO and Inflammation

Treatment with recombinant human EPO has been reported
to stimulate anti-inflammatory signaling, which was sug-
gested to contribute to its direct neuroprotective effect
during cerebral ischemia [168]. Inflammation plays a critical
role in the pathogenesis of cerebral ischemia, where the
influx of leukocytes from the blood into the brain and
activation of resident microglial cells to secrete inflammatory
mediators and cytokines result in barrier damage, microvas-
cular occlusion, and, thus, aggravate injury [169, 170]. The
administration of EPO to animals with experimental cerebral
ischemia resulted in the reduction of the local production
of TNF-α, IL-6, and the chemokine MCP-1, subsequently
leading to a marked reduction of infarct size [168]. Although
EPO-mediated reduction of ischemia-induced inflammation
has been proposed to occur via reducing neuronal death
rather than by direct effects upon EpoR-expressing inflam-
matory cells [168], it remains unknown whether or not
EPO can play a direct role in regulating inflammatory cell
responses. In an experimental model of multiple sclerosis,
an autoimmune disease of the CNS, administration of EPO
inhibited the inflammatory response, delayed the onset of
the disease, and decreased its severity [171–174]. Similarly,
in a rat model of optic neuritis, systemic administration of
EPO significantly increased the survival of retinal ganglion
cells [175]. Although the exact mechanisms underlying the
anti-inflammatory effects of EPO remain unknown, EPO
might act by reducing leukocyte transmigration through
endothelial cells, since it enhances the resistance of endothe-
lial cells toward ischemia [104] and could be mediated
by activating immune suppressive lymphocyte response
[174]. In addition, EPO-mediated oligodendrogenesis and
the inhibition of oligodendrocyte cytotoxicity, induced
by inflammatory stimuli, could also contribute to the
observed neuroprotection in experimental multiple sclerosis
[171, 176].

16. EPO and Retinopathy

As previously mentioned, the neuroprotective effect of EPO
extends to the retina and provides protection to mouse
photoreceptor cells against UV light damage [39]. During
human development, EPO mRNA in the retina and EPO
protein in the vitreous at levels greater than in serum were
observed between 12 and 24 weeks gestation and increased
with gestational age [177]. However, concerns about the
angiogenic properties of EPO remain. Association between
elevated EPO in the vitreous and proliferative retinopathy
was observed in adult diabetic patients exhibiting increased
levels of VEGF and EPO in the vitreous fluid compared
with nondiabetic patients with ocular disease [178]. EPO was
found to be more strongly associated with diabetic retinopa-
thy than VEGF, and the level of EPO in the vitreous did
not correlate with plasma level, suggesting local production
of EPO. Indeed, a single nucleotide polymorphism in the
human EPO gene promoter is associated with increased EPO
in the vitreous and severe microvascular complications in
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diabetes, proliferative diabetic retinopathy, and end-stage
renal disease [179].

In animal studies, mice with a green fluorescent protein
transgene driven by EPO regulatory sequences confirm EPO
production in the ganglion cell layer in the developing
retina coincident with newborn-associated anemia [180].
In a murine model of retinopathy related to prematurity,
neovascularization that was induced on the vitreous side of
the inner limiting membrane by hyperoxia-normoxia was
absent in mice with knockdown of HIF-2α and these mice
exhibited degeneration of neural layers in the retina with
subsequent prolonged normoxia and a marked attenuation
of EPO expression [52]. The loss of EPO expression and asso-
ciated degeneration of neural layers relate to the induction of
EPO by hypoxia preconditioning and resultant protection of
photoreceptor cells in the retina [39]. This protective effect is
mimicked by constitutive overexpression of EPO in the retina
[181]. The protective effect of EPO in the retina appears
to be dependent on the timing and extent of treatment
[182]. For instance, in a mouse model of retinopathy, early
EPO administration provided protection to hypoxia-induced
retinal neuron apoptosis, while late administration enhanced
pathological revascularization [182].

17. EPO and Stroke

Attention was drawn to the potential for EPO therapy in
neurological diseases by the initial pilot study of 40 adult
stroke patients that suggested high dose EPO administration
was well tolerated in acute ischemic stroke and was associated
with improved clinical outcome [183]. Subsequently, an
expanded trial of 460 patients revealed that a high number of
stroke patients received tissue plasminogen activator (TPA)
and that there was a significant increase in overall death rate
with EPO treatment (42/256) compared with the placebo
group (24/266) [184]. Further animal studies revealed that
in rodents treated with TPA after middle cerebral artery
occlusion, EPO administered up to 6 hours after reperfusion
showed no reduction in the volume of ischemic injury and
a significant increase in the incidence of brain hemorrhage.
Moreover, the expected EPO-associated reduction in brain
swelling was abolished with TPA, underscoring again the
importance of timing in EPO therapy [185, 186]. Of note,
delayed EPO treatment was neuroprotective in a rat model
of traumatic brain injury [187].

It is noteworthy that clinical trials using EPO to treat
disease associated anemia to achieve a high hemoglobin
level have demonstrated adverse effects associated with
EPO therapy. These include efforts to improve clinical
outcome and reduce cardiovascular events in patients with
congestive heart failure or ischemic heart disease undergoing
dialysis, patients with anemia of chronic kidney disease
not undergoing dialysis, and those with type 2 diabetes
mellitus [188–190]. In the latter trial [189], higher risks
of cardiovascular events or death were associated with
the subgroup of patients with poor initial hematopoietic
response to EPO treatment [191]. In cancer patients, EPO
treatment to increase hemoglobin levels approaching the

normal range resulted in increased adverse events including
venous thromboembolism and cancer progression, particu-
larly in select solid cancers such as metastatic breast cancer
and head and neck cancer [192–194].

With increasing awareness of the potential adverse effects
associated with high dose EPO treatment, investigations
of EPO therapy for neurological disorders such as stroke
and schizophrenia are on-going with consideration given
to exclusion of treatment with TPA, EPO modifications to
minimize changes in hematocrit, and combination therapy
with other hormones [195–199].

18. EPO, Hypothalamus, and
Metabolic Regulation

Recently, several metabolic effects for EPO have been
described. For example, EPO treatment in obese mice
decreased body weight, fat mass and blood glucose in a dose-
dependent manner [200–203] and provided protection in
mouse models of type 1 and type 2 diabetes [204]. These EPO
activities were attributed to EPO response in multiple tissues
including pancreatic beta cells, skeletal muscle, adipose
tissue and brain, independent of changes in hematocrit
[200, 203, 204]. Indeed, the significant decrease in food
consumption in response to high-dose EPO treatment in
association with the decreased body weight and fat mass in
obese animals correlated with EPO activity in the hypotha-
lamus [200, 201]. EpoR expression in hypothalamus was
found to localize to proopiomelanocortin (POMC) neurons
that regulate food intake, and EPO treatment increased
POMC production in the hypothalamus [200]. Conversely,
no increase in POMC production or decrease in fat mass was
observed with EPO treatment in mice with EPO signaling
restricted to erythroid tissue that exhibit an obese phenotype
[200]. These observations suggest a direct link between EPO
and POMC neurons in the hypothalamus during energy and
metabolic regulation.

19. Conclusion

Identification of the spatial and temporal expression of
EPO and EpoR during brain development has facilitated
understanding of the potential range of EPO response in
brain during ischemic/hypoxic stress or disease and provided
insight on the utility of EPO treatment. The pleiotropic
activity of EPO evident in culture and animal studies remain
of continuing interest, particularly its potential treatment
for neurological disease. EpoR expression in neuronal and
endothelial cells and hypoxic-induction of EPO production
in brain likely drive the cytoprotective outcome, through
antiapoptotic, vascular, and anti-inflammatory responses. In
addition, the hypoxic induction of EPO in the kidney drives
the erythroid response to increase blood cell production in
the bone marrow leading to increased oxygen delivery and
neuroprotection. Contributing to increased oxygen delivery
is endothelial response to EPO, which leads to elevated NO
production, vasodilation, and increased blood flow. In con-
clusion, the high level of EpoR expression in the developing
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brain including neural progenitor cells and neurons, and
continued EpoR expression in adult brain can support direct
proliferative and antiapoptotic responses to EPO, suggesting
that local EPO production and/or availability can directly
promote a neuroprotective response involving neural and
endothelial cells collaboration to promote the brain response
to EPO (see Figure 3).
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