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Abstract

Solanum lycopersicoides is a wild nightshade relative of tomato with known resistance to a

wide range of pests and pathogens, as well as tolerance to cold, drought and salt stress. To

effectively utilize S. lycopersicoides as a genetic resource in breeding for tomato improve-

ment, the underlying basis of observable traits in the species needs to be understood. Molec-

ular markers are important tools that can unlock the genetic underpinnings of phenotypic

variation in wild crop relatives. Unfortunately, DNA markers that are specific to S. lycopersi-

coides are limited in number, distribution and polymorphism rate. In this study, we developed

a suite of S. lycopersicoides-specific SSR and indel markers by sequencing, building and

analyzing a draft assembly of the wild nightshade genome. Mapping of a total of 1.45 Gb of

S. lycopersicoides contigs against the tomato reference genome assembled a moderate

number of contiguous reads into longer scaffolds. Interrogation of the obtained draft yielded

SSR information for more than 55,000 loci in S. lycopersicoides for which more than 35,000

primers pairs were designed. Additionally, indel markers were developed based on sequence

alignments between S. lycopersicoides and tomato. Synthesis and experimental validation of

345 primer sets resulted in the amplification of single and multilocus targets in S. lycopersi-

coides and polymorphic loci between S. lycopersicoides and tomato. Cross-species amplifi-

cation of the 345 markers in tomato, eggplant, silverleaf nightshade and pepper resulted in

varying degrees of transferability that ranged from 55 to 83%. The markers reported in this

study significantly expands the genetic marker resource for S. lycopersicoides, as well as for

related Solanum spp. for applications in genetics and breeding studies.

Introduction

Solanum lycopersicoides (2n = 2x = 24) from the Lycopersicoides section of the genus Solanum
is a wild nightshade species that is distantly related to the cultivated tomato (S. lycopersicum)
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[1]. It is endemic to the west Andes by the Chile-Peru border and thrives at high altitudes of

up to 3800 m above sea level [2]. The species has known adaptation to cold, drought and salt

stress [3–5], as well as resistance to phytophagous pests (i.e. leafminers) [6] and pathogenic

fungi (e.g. Botrytis cinerea and Phytophthora parasitica) [7,8], bacteria (e.g. Xanthomonas cam-
pestris, Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato)

[6,9] and viruses (e.g. tomato mosaic virus, tomato yellow leaf curl virus and tomato crinivirus)

that commonly afflict the cultivated tomato [10–12].

Early efforts to introgress desirable traits from S. lycopersicoides to tomato have led to the

successful generation of diploid F1 hybrids via embryo rescue following wide hybridization.

Unfortunately, the resulting F1s are functionally male-sterile and unilaterally incompatible

with tomato pollen and hence cannot be used directly for backcrossing [13]. Despite the initial

challenges, introgression of S. lycopersicoides chromosomes in the genetic background of

tomato was achieved through various strategies developed to overcome reproductive barriers

associated with the interspecific crossing. These included the combined use of male-fertile

amphidiploids from the interspecific F1 hybrids and bridging lines of S. pennellii to circumvent

the issue of unilateral incompatibility [14], modification of bud pollination to systematically

avoid or suppress crossability barriers [8], and synthesis of a partially male-fertile F1 hybrid by

pollinating tomato with pollen pooled from several S. lycopersicoides plants [6]. Adoption of

these techniques led to the successful generation of S. lycopersicoides-derived monosomic alien

addition lines (MAALs) and chromosome segment substitution lines (CSSLs) [6,14,15].

MAALs are plants having the full chromosome complement of the cultivated species used as

the recipient parent in an interspecific cross and an extra chromosome from the wild relative

donor (2n + 1) [16]. CSSLs on the other hand, comprise a set of plants in the genetic back-

ground of an elite cultivar that represent the whole genome of the wild species in small, contig-

uous or overlapping chromosome segments [17–19]. These pre-breeding materials are unique

genetic resources that capture novel genetic variations from the wild nightshade species in the

tomato background. To date, these lines have been extensively evaluated for a range of agro-

nomic characteristics [7,20] but the limited availability of DNA-based markers that can unlock

the genetic basis of the observed phenotypes has restricted their efficient utilization in actual

breeding programs to improve tomato.

Marker systems that have been used to characterize pre-breeding materials derived from S.

lycopersicoides include morphological, biochemical and molecular markers. The DNA markers

are in the form of restriction fragment length polymorphism (RFLP) and simple sequence

repeats (SSRs) that are based solely on the tomato genome [6,14,15,21]. More recently, PCR-

based, cleaved amplified polymorphic sequence (CAPS) markers developed based on existing

RFLPs have also been used to map chromosome introgressions from S. lycopersicoides in the

tomato background [22]. Despite the availability of DNA markers to characterize pre-breeding

stocks developed from S. lycopersicoides, the marker resource available for the species remains

limited in number, genome coverage and polymorphism rate. In case of the RFLP and CAP

markers, digestion reactions that add to the cost, time and labor necessary to complete the gen-

otyping make them less ideal for genetics and breeding studies.

Advances in molecular biology and instrumentation have facilitated the development of

next generation, technological platforms for the rapid sequencing and assembly of whole

genomes of several species [23,24]. With the availability of sophisticated but user-friendly

computational tools, interrogation of new genome assemblies for sequence variations such as

SSRs, insertions/deletions (indels) and single nucleotide polymorphism (SNPs) that can be

used as targets for molecular marker development has become mainstream [25–27].

SSRs are tandemly arranged, repetitive sequences that make up a significant portion of

eukaryote genomes [28], whereas indels are genomic insertions and deletions resulting from
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replication slippage, simple sequence replications, unequal crossovers, retrotransposon inser-

tions and segmental duplications [29–31]. Markers based on SSRs and indels are co-dominant,

highly polymorphic and abundant in the genome. They are easily assayed by PCR and the

amplicons directly resolved by agarose gel electrophoresis without any additional steps, mak-

ing them more economical [32–34]. The robustness and technical simplicity of these markers

for routine genotyping make them the marker of choice for genetics and breeding applications

in many laboratories.

In this study, we aim to expand the limited genetic marker resource for S. lycopersicoides by

developing SSR and indel markers based on whole genome sequence analysis. The molecular

markers generated in this study are expected to accelerate basic research on the discovery and

functional validation of genes/quantitative trait loci (QTL) conditioning traits of agronomic

value in S. lycopersicoides towards their utilization in breeding for trait improvement in

tomato.

Materials and methods

Plant materials, DNA extraction and whole genome sequencing

Seeds of the wild nightshade species, S. lycopersicoides (Acc LA1964) were provided by the

Tomato Genetics Resource Center of the University of California, Davis (http://tgrc.ucdavis.

edu). Seeds were surface-sterilized with 1% hypochlorite solution, plated in petri dishes lined

with moist, sterile paper towels and germinated at an ambient temperature of 25˚C in the labo-

ratory. The germinated seeds were transferred individually in 1-litre pots containing conven-

tional potting media (composed of 45–50% composted pine bark, vermiculite, Canadian

sphagnum, peat moss, perlite and dolomitic limestone) supplemented with slow-release NPK

fertilizers and maintained in the greenhouse of the Horticultural Gardens of the Department

of Plant and Soil Science (PSS) at Texas Tech University. Total genomic DNA was isolated

from young leaves of S. lycopersicoides following a modified CTAB method [35]. The quality

and quantity of purified genomic DNA were estimated using the NanoDrop™ One Microvo-

lume UV-Vis Spectrophotometer (ThermoFisher, USA). Library preparation and whole

genome sequencing using the Illumina HiSeq 3000 PE150 platform was outsourced to the

Clinical Genomics Center of the Oklahoma Medical Research Foundation.

Whole genome analysis for repetitive sequence detection and primer design

Raw sequence data composed of 151-bp paired end reads were filtered using the Trimmomatic

tool [36] to remove the Illumina adapter sequences and reads with poor quality. The trimmed

reads were then assessed for quality using FastQC [37] before de novo assembling them into

contigs using the short-read assembler, ABySS 2.0 [38]. Guided by the Build 3.0 of the refer-

ence genome for tomato (cv. Heinz), the contigs were used to generate longer scaffolds using

the post-assembly genome improvement toolkit or PAGIT [39]. The quality of the newly built,

draft assembly in comparison to the tomato reference genome was assessed using the quality

assessment tool for genome assemblies or QUAST [40].

Genomic features in the draft assembly that can be used as basis for primer design were

identified using various computational tools. Families of repetitive sequences were determined

de novo based on existing Repbase libraries and collated into a species-specific database using

RepeatModeler [41]. Repbase is maintained by the Genetic Information Resource Institute

(GIRI) and is used as a reference for the annotation of eukaryotic repetitive DNA [42].

Repbase has libraries that are specifically available for the RepeatMasker software. The identi-

fied repeats were classified and annotated as retrotransposons, DNA transposons, small RNAs,

satellites, simple repeats or low complexity DNA sequences using the RepeatMasker program
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[43]. Mining the assembly for SSRs was carried out using the GMATA software [44]. SNPs

and indels were identified based on sequence alignment between the S. lycopersicoides assem-

bly and the tomato reference genome using the NUCmer (nucleotide MUMmer) package of

the MUMmer program [45]. All programs used in the study ran on default settings.

The Primer3 program integrated into the GMATA software was used to generate primers

for the SSRs that were identified in the draft assembly. To design the indel markers, compara-

tive sequence alignment between the draft S. lycopersicoides and reference tomato genomes

was generated using the Burrows-Wheeler aligner (BWA) [46]. The output file was then con-

verted into a binary file that can be viewed using the Integrative Genomics Viewer [47]. Prim-

ers targeting the indels were manually designed using open source software and following

specifications for standard primer design (i.e. 40–60% GC content, 20–25 bp in length). The

GC content of the primer sequences were validated using the EndMemo-DNA/RNA GC con-

tent calculator [48]. The reverse primers were generated by reverse complementing DNA

sequences through http://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html

[49].

All SSRs and indel primers were designed at an average chromosome interval of 2–2.6 Mb.

The specificity of the designed primers was validated in silico by BLAST searches [50] against

the available tomato sequences curated at the NCBI database. Synthesis of all SSR and indel

primers was outsourced to Sigma, USA.

Target amplification and cross-species transferability of S. lycopersicoides
DNA markers

The ability of the newly designed markers to amplify targets in S. lycopersicoides was validated

following a standard PCR protocol [51]. Adjustments in annealing temperature from 53˚C to

55˚C were carried out to optimize target amplification in S. lycopersicoides. PCR amplicons

were resolved in 3% agarose gel in 1X Tris-Borate-EDTA buffer [51].

Additionally, the transferability of the S. lycopersicoides-specific markers to two other S.

lycopersicoides accessions (LA2951 and LA2387) and other Solanaceous plants including

tomato (Acc LA3122), eggplant (S. melongena) cv. Black Beauty, pepper (Capsicum annuum)

cv. California Wonder and silverleaf nightshade (S. elaeagnifolium) was also determined.

Young leaves from tomato, eggplant and pepper were sampled from seedlings germinated in

the greenhouse as previously described. Leaf tissues of silverleaf nightshade were randomly

sampled from populations growing at the Horticultural Gardens of PSS. Total genomic DNA

for PCR was extracted from the young leaves of each of the Solanaceous species following a

modified CTAB method [35].

Results and discussion

Whole-genome assembly and sequence repeats analysis

Illumina sequencing generated a total of 15.8 Gb of raw data containing 88,457,926 paired end

reads that are 151 bp long (SRA accession SRX9292807). After trimming the adapters and

removal of the poor-quality reads, the calculated average genome coverage [52] based on the

tomato reference genome was 25X. De novo assembly generated a total of 6,874,225 contigs

spanning a total length of 1,452,602,585 bp (Table 1).

Reference-guided assembly of the contigs into longer scaffolds mapped 589,717,391 bp

(40.59%) of the S. lycopersicoides sequence data against the tomato genome. S. lycopersicoides
and tomato are distant relatives that belong to different sections under the genus Solanum.

The former belongs to the section Lycopersicoides which also includes one other species, S.
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sitiens, whereas the latter belongs to the section Lycopersicon which includes twelve other wild

relatives [53]. Throughout the course of evolution, the genomes of these plants have been sub-

jected to mutations, chromosomal rearrangements, transposon amplifications, gene duplica-

tions and extensive genome expansion/contraction. The genetic differentiation of each species

that resulted from such genomic events may explain the moderate alignment of the S. lycoper-
sicoides contigs against the tomato reference genome. This observation is consistent with the

high proportion (17–25%) of paired sequence reads generated for S. arcanum, S. pennellii and

S. habrochaites that also did not map against Build 2.40 of the tomato cv. Heinz reference

genome, despite the three species belonging to the same section as tomato [54]. Given the 1.45

Gb total contig length obtained for S. lycopersicoides in this study, assembly of a draft that is

guided by a genome of a closer relative other than tomato has the potential to generate a longer

consensus sequence for the species. Alternatively, the draft assembly can be improved by refin-

ing, gap filling and expanding the initial assembly with long reads generated by third-genera-

tion sequencing technology such as the PacBio SMRT.

Interrogation of the draft assembly for repetitive sequences using the RepeatModeler in con-

junction with the RepeatMasker detected a total of 712,011 repeats, covering 164,390,084 bp

(18.83%) of the draft. The interspersed repeats consisted of short interspersed nuclear elements

(0.06%), short interspersed nuclear elements (0.85%), long terminal repeats (6.63%), DNA ele-

ments (1.24%) and unclassified repeats (9.63%). The proliferation and deletion of transposable

elements (TEs) are key determinants of genome size variation in eukaryotes [55]. The loss of TEs

in tomato during domestication may be one of the primary reasons behind the genome size differ-

ence between S. lycopersicoides and tomato. RepeatMasker also classified the repeats into small

RNAs (0.05%), satellites (0.01%), simple repeats (0.39%) and low complexity repeats (0.08%) (Fig

1). With the draft assembly capturing less than 50% of the S. lycopersicoides genome, analysis of an

improved assembly is expected to increase the proportion of these repeats in the genome.

SSR mining identified 56,901 SSRs with motifs ranging from 2 to 9 bp (Table 2). SSRs with

di-nucleotide motifs were the most abundant (74.05%), whereas those having penta-, hexa-,

hepta-, octo- and nona-nucleotide repeats comprise only approximately 1.26% of the total SSRs

identified in the assembly. Among the di-nucleotide motifs, AT and TA make up more than

50% of the total SSRs with 2-bp repeats (Fig 2A). In terms of length, 10-bp SSRs were the most

predominant (37.9%), whereas those that are 34-bp long were the scarcest (0.5%) (Fig 2B).

Primer design and target DNA amplification

The built-in Primer3 software in the GMATA tool was used to design primer pairs for 35,801

SSR loci with 34,198 unique markers (Table 3). To validate the ability of primer pairs to

Table 1. General statistics obtained for S. lycopersicoides genome assembly using ABySS.

Descriptive statistics Value (bp)

Number of contigs 6,874,225

Total length 1,452,602,585

Largest contig size 46755

Number of contigs that are�500bp 394658

Reference lengtha 828,076,956

Total length of contigs aligned to the reference 589,717,391

N50b 2141

alength of the Build 3.0 of tomato cv. Heinz reference genome.
bN50 is the length for which the collection of all contigs of that length or longer covers at least 50% of the assembly.

https://doi.org/10.1371/journal.pone.0242882.t001
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amplify targets in S. lycopersicoides, primers targeting 196 SSRs with di-nucleotide to hexa-

nucleotide repeat motifs were selected (S1 Table). All primer pairs were 20–25 bp long and

have an estimated amplicon size of 150–350 bp. Of the 196 SSRs, 182 successfully amplified

targets in S. lycopersicoides Acc LA1964, with 148 annealing at 55˚C and two at 53˚C (Tables 4

and S2). Fifty-nine of the SSRs were multilocus, with 33 amplifying two bands and 26 amplify-

ing more than two bands.

In addition, 149 indel markers (Tables 4 and S1) were also manually designed based on the

alignment between the S. lycopersicoides draft assembly and the available reference genome for

tomato. Of the 149 primer pairs, 143 successfully amplified targets in S. lycopersicoides

Fig 1. Circular view of the S. lycopersicoides genome assembly used for sequence variation mining. The outermost to the innermost

rings represent the 12 representative pseudomolecules, contigs (�500 bp), transposable elements, SSRs, and indels and SNPs. Color keys

for the transposable elements and SSRs indicate the density of the repeats. The more intense the color, the more repetitive sequences in

the pseudomolecule position. The indel and SNP density was determined based on sequence alignments between S. lycopersicoides and

tomato. All tracks show binned data with a window size of 1 Mb.

https://doi.org/10.1371/journal.pone.0242882.g001
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Table 2. SSRs mined from assembled Solanum lycopersicoides genome using GMATA software.

Motif(-mer) a Total Percentage (%)

2 42,135 74.05

3 12,691 22.30

4 1,353 2.38

6 350 0.62

5 303 0.53

7 64 0.11

9 3 0.01

8 2 0.00

arange of motif length was chosen while running the software.

https://doi.org/10.1371/journal.pone.0242882.t002

Fig 2. Distribution of the different (A) SSR motifs and (B) SSR lengths throughout the draft assembly of S. lycopersicoides
based on GMATA data.

https://doi.org/10.1371/journal.pone.0242882.g002
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genome, with 127 annealing at 55˚C and 16 annealing at 53˚C (S2 Table). Ten primer pairs

amplified two bands, whereas two amplified more than two bands, indicating multilocus tar-

gets for the designed primers.

In summary, a total of 345 markers composed of 196 SSRs and 149 indels that are distrib-

uted across the 12 draft pseudomolecules of S. lycopersicoides were designed at an average map

interval of 2.6 bp (Fig 3). Of these, 326 (94.50%) amplified targets in S. lycopersicoides Acc

1964. A slightly lower transferability of the markers was observed for S. lycopersicoides acces-

sions LA2951 (68.00%) and LA2387 (70.00%), although multilocus amplifications were also

observed. Of the total number of indels and SSRs tested, 11 and 24% amplified multiple targets

in LA2951, and 27 and 49% in LA2387, respectively.

Previous studies on S. lycopersicoides have relied heavily on the use of RFLPs, SSRs and

CAPS designed based on the tomato genome [15,21,56,57]. While these markers have been

useful for genetic diversity studies and for monitoring wild chromosome introgressions, their

distribution and number are not sufficient for mapping and cloning useful genes/QTLs in S.

lycopersicoides. The newly designed markers in this study, 94% of which amplified their target

loci, offers a much broader marker resource that can be used in genetics and breeding studies

on S. lycopersicoides.

Cross-species transferability of S. lycopersicoides-specific markers

Cross-species amplification of all 345 S. lycopersicoides-specific markers in tomato, eggplant,

silverleaf nightshade and pepper resulted in varying degrees of transferability ranging from

55% to 83% (Table 4 and Fig 4). In tomato, 148 SSRs and 138 indels amplified, with 20 markers

showing multilocus targets. A total of 206 (59.71%) SSRs and indels amplified polymorphic

targets between S. lycopersicoides and tomato, indicating the potential of these markers in map-

ping genes/QTLs in pre-breeding materials derived from crosses between the two species.

After tomato, silverleaf nightshade recorded the most number of target loci for the markers

followed by eggplant and pepper. Section Lycopersicoides to which S. lycopersicoides belongs is

an immediate outgroup of the tomato clade [53], making S. lycopersicoides closest to tomato.

In contrast, pepper, which belongs to a separate genus, is the most distant to S. lycopersicoides.

Table 3. Summary of primer pairs designed by Primer3 of GMATA based on the SSRs mined.

Total Percentage (%)

total no. of loci detected 56,901 -

no. of SSR loci with designed primer pairs 35,801 62.90

no. of SSR loci without designed primer pairs 21,100 37.00

no. of unique markers 34,198 -

https://doi.org/10.1371/journal.pone.0242882.t003

Table 4. Target amplification and cross-species transferability of S. lycopersicoides-specific SSR and indel markers.

Plant species No. of markers tested No. of markers that amplified Transferability rate (%)

SSR indel SSR indels

S. lycopersicoides (Acc LA1964) 196 149 182 143 94.20

S. lycopersicoides (Acc LA2951) 196 149 123 114 68.69

S. lycopersicoides (Acc LA2387) 196 149 124 119 70.43

S. lycopersicum 196 149 148 138 82.90

S. melongena 196 149 111 90 58.26

S. elaeagnifolium 196 149 148 115 76.23

C. annum 196 149 105 83 54.49

https://doi.org/10.1371/journal.pone.0242882.t004
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The degree of the genetic relatedness of S. lycopersicoides to either species is consistent with the

highest and lowest rate of marker cross-transferability recorded for tomato and pepper, respec-

tively. In a similar manner, the phylogenetic relationship of S. lycopersicoides to eggplant and

silverleaf nightshade reflects the observed rate of marker transferability to the latter two spe-

cies. Silverleaf nightshade and eggplant belong to the subgenus Leptostemonum of the genus

Solanum. Compared to tomato, silverleaf nightshade and eggplant are more distantly related

Fig 3. Chromosome distribution of S. lycopersicoides-specific SSR and indel markers. Map position of all the markers is based on their position in tomato

chromosomes. Red markers are SSRs and blue markers are indels. Red triangle = centromere.

https://doi.org/10.1371/journal.pone.0242882.g003
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to S. lycopersicoides [58] hence the lower rate of marker transferability in these two species

compared to tomato. Comparative genomic studies in eggplant, potato, pepper and tomato

indicate the highly conserved linkage order for markers despite the occurrence of major inver-

sion events that drove the evolution of these related genomes [59–61]. This further support the

relatively high transferability of S. lycopersicoides markers in the closely related species.

The generally high rates of cross-species amplification of S. lycopersicoides markers indicate

their potential use in genetics and breeding applications in related Solanaceous plants. In fact,

a subset of 54 S. lycopersicoides-specific, indel markers have been successfully used to assess the

genetic diversity in silverleaf nightshade populations from different localities in Texas, USA.

Genetic profiling using the indels, along with other DNA markers from related species, estab-

lished the genetic differentiation of silverleaf nightshade populations in response to variations

in selection pressures that are unique to the ecological habitats selected in the study [62].

Conclusions

Tomato production amidst worsening agro-environments can be sustained by harnessing nat-

ural genetic variation from wild tomato relatives that can provide durable forms of adaptation

to the crop against both biotic and abiotic stresses. S. lycopersicoides is a distant tomato relative

with known adaptation to marginal environments. Exploiting the genetic potential of S. lyco-
persicoides for tomato breeding will require understanding of the genetic basis of the adaptabil-

ity of this wild species.

We designed and validated a total of 345 SSR and indel markers that are specific to S. lyco-
persicoides using whole genome sequence analysis. These markers, together with the more

than 30,000 SSRs that are available for validation significantly expands the genetic marker

resource that can be used for QTL analysis, mapping and positional cloning of genes in S.

Fig 4. Cross-species amplification of S. lycopersicoides-specific markers in other members of Solanaceae. One SSR and one indel marker for each

chromosome were used to amplify targets in tomato, silverleaf nightshade, eggplant and pepper. SLM = SSR marker, SLYD = indel marker, 1 = S.

lycopersicoides, 2 = tomato, 3 = silverleaf nightshade, 4 = eggplant, 5 = pepper, L = 100 bp-ladder.

https://doi.org/10.1371/journal.pone.0242882.g004
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lycopersicoides that can be utilized towards value-added trait improvements in tomato. The

transferability of the S. lycopersicoides markers to tomato, eggplant, pepper and silverleaf night-

shade indicate their applicability in similar genetics and breeding studies in these Solanaceous

species.
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