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Abstract: Differentiated thyroid cancer (DTC) from follicular epithelial cells is the most common
form of thyroid cancer. Beyond the common papillary thyroid carcinoma (PTC), there are a number
of rare but difficult-to-diagnose pathological classifications, such as follicular thyroid carcinoma
(FTC). We employed deep convolutional neural networks (CNNs) to facilitate the clinical diagnosis
of differentiated thyroid cancers. An image dataset with thyroid ultrasound images of 421 DTCs and
391 benign patients was collected. Three CNNs (InceptionV3, ResNet101, and VGG19) were retrained
and tested after undergoing transfer learning to classify malignant and benign thyroid tumors. The
enrolled cases were classified as PTC, FTC, follicular variant of PTC (FVPTC), Hürthle cell carcinoma
(HCC), or benign. The accuracy of the CNNs was as follows: InceptionV3 (76.5%), ResNet101 (77.6%),
and VGG19 (76.1%). The sensitivity was as follows: InceptionV3 (83.7%), ResNet101 (72.5%), and
VGG19 (66.2%). The specificity was as follows: InceptionV3 (83.7%), ResNet101 (81.4%), and VGG19
(76.9%). The area under the curve was as follows: Incep-tionV3 (0.82), ResNet101 (0.83), and VGG19
(0.83). A comparison between performance of physicians and CNNs was assessed and showed
significantly better outcomes in the latter. Our results demonstrate that retrained deep CNNs can
enhance diagnostic accuracy in most DTCs, including follicular cancers.

Keywords: thyroid cancer; artificial intelligence; deep learning; CNNs

1. Introduction

Most thyroid tumors are incidentally discovered via palpation by clinical physicians.
It has been estimated that the prevalence of thyroid cancer can reach 65% [1] and is more
common among females. Fortunately, most tumors are benign thyroid nodules; that is, only
a small number of them are malignant [2]. Roughly 5–10% of these tumors are identified
as thyroid cancer. In Taiwan, thyroid cancer is becoming increasingly common with most
cases identified in individuals between 40 and 65 years old, and it is currently the fourth
most prevalent form of cancer among women, as well as the most common cancer of the
endocrine system. The Health Promotion Administration of Taiwan has reported a 9.67%
annual increase in the number of newly diagnosed cases of thyroid cancer. This may be
due in part to advances in ultrasound and imaging technology over the past decade, which
have greatly facilitated diagnostic procedures [3], particularly when dealing with tumors
measuring less than 1 cm. The prognosis in cases of thyroid cancer is generally good. At
present, the long-term prognosis after standard treatment for differentiated thyroid cancers
(DTC) is excellent, with a 10 year survival rate of 96% [4].
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Risk factors of thyroid cancer include exposure to radiation in one’s youth, a history of
thyroid goiter, and a family history of cancer [5]. The histopathology of thyroid cancers can
be classified according to the state of follicular epithelial cells as DTC, poorly differentiated
thyroid carcinoma, and anaplastic thyroid carcinoma (ATC) [6], as well as medullary
thyroid cancer (MTC) derived from C cells [7]. DTC is the most common form of thyroid
cancer, which appears as papillary thyroid carcinoma (PTC) in 90–92% of cases and the
follicular variant of papillary thyroid carcinoma (FVPTC; the most common subtype of
PTC). Rare forms include follicular thyroid carcinoma (FTC) and Hürthle cell carcinoma
(HCC), both of which have proven difficult to diagnose [8]. At present, the prognosis for
rare variants other than differentiated thyroid cancer is very poor, due to a lack of effective
treatment options [6].

Currently, the gold standard for the clinical diagnosis of thyroid cancers is ultrasound-
guided fine-needle aspiration or core-needle biopsy combining cytological and pathological
analysis [9]. Unfortunately, this method is applicable only to PTC. Identifying other types
of DTC (FVPTC, FTC, and HTC) is hampered by a lack of distinguishing cytological char-
acteristics in ultrasound images (Figure 1), such as hypo-echogenicity, irregular margins,
or microcalcifications [10]. In many cases, surgical resection of the tumor is necessary to
confirm DTC subtypes, such as FTC and HCC. Molecular biology and genetic analysis
can be used to facilitate diagnosis [11]; however, the tools and expertise required for such
analysis are generally available only in medical centers. Note that the invasive nature of
fine-needle aspiration and core-needle biopsy inevitably leads to complications, such as
bleeding or infection. Furthermore, the effectiveness of the procedures depends largely on
the experience and skill of the operator [12].
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Figure 1. Ultrasound images of (a) papillary thyroid carcinoma, (b) follicular variant of papillary thyroid carcinoma, (c) 
follicular thyroid carcinoma, (d) Hürthle cell carcinoma, and (e) benign thyroid nodule. 
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nosis of thyroid cancer were enrolled. Furthermore, patients with surgically confirmed 
benign thyroid nodules between January 2016 and July 2020 were also enrolled. Patients 
with non-DTC were excluded (Figure 2). Patients who had not undergone an ultrasound 
examination within 12 months prior to surgical intervention were also excluded, as were 
patients without recognizable cancer lesions in ultrasound images. This study was ap-
proved by the Institutional Review Board of the Chang Gung Medical Foundation (IRB 
No. 202001440B0, 31 August 2020). The requirement for informed consent was waived 
due to the retrospective nature of this analysis. 

 
Figure 2. Flowchart of study population. A total of 421 differentiated thyroid cancer patients and 
391 patients with benign nodules enrolled after excluding other cancer types and patients without 

Figure 1. Ultrasound images of (a) papillary thyroid carcinoma, (b) follicular variant of papillary thyroid carcinoma,
(c) follicular thyroid carcinoma, (d) Hürthle cell carcinoma, and (e) benign thyroid nodule.

Artificial intelligence (AI) is a key technology in the on-going personalization and
development of precision medicine. Musko [13] claimed that artificial intelligence (AI)
allows doctors and researchers to make predictions of greater accuracy, thereby making
it easier to identify the treatment and prevention strategies best suited to a particular
disease and/or groups of patients. Deep learning algorithms are increasingly being used
to facilitate the diagnosis of tumors. Chi [14] reported that the retrained GoogleNet
outperformed conventional machine learning approaches, such as support vector machine
(SVM). Using InceptionV3, Song [15] achieved diagnostic performance comparable to
that of experienced professional radiologists. Various deep learning models have also
been trained to differentiate between malignant and benign thyroid tumors [16–23]. A
number of studies have addressed the issue of training AI systems in the analysis of thyroid
ultrasound images; however, most of this work has focused on PTC. Diagnosing other
pathological types (FVPTC, FTC, and HCC) is hindered by their rarity in clinical practice
and their similarity to benign lesions in ultrasound images. The prognosis for DTCs should
be similar to that of PTC as long as they are identified early. Ideally, clinicians should be
able to confirm diagnosis prior to surgical intervention.

In this study, transfer learning was used to train a deep convolutional neural network
(CNN) [24] for the analysis of ultrasound images with the aim of differentiating between
malignant and benign thyroid lesions, and facilitating the identification of other DTCs (e.g.,
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FTC). We anticipate that such CNN models could help to eliminate unnecessary invasive
examinations or surgical interventions.

2. Materials and Methods
2.1. Data Sources

This retrospective study was based on medical records and clinical data from the
cancer registry of Chang Gung Memorial Hospital (Linko branch) covering the period from
January 2008 to July 2020. Patients aged >20 years with surgically confirmed diagnosis
of thyroid cancer were enrolled. Furthermore, patients with surgically confirmed benign
thyroid nodules between January 2016 and July 2020 were also enrolled. Patients with non-
DTC were excluded (Figure 2). Patients who had not undergone an ultrasound examination
within 12 months prior to surgical intervention were also excluded, as were patients
without recognizable cancer lesions in ultrasound images. This study was approved by the
Institutional Review Board of the Chang Gung Medical Foundation (IRB No. 202001440B0,
31 August 2020). The requirement for informed consent was waived due to the retrospective
nature of this analysis.
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Figure 2. Flowchart of study population. A total of 421 differentiated thyroid cancer patients and
391 patients with benign nodules enrolled after excluding other cancer types and patients without
recognizable lesion in sonography. Papillary thyroid carcinoma (PTC), follicular thyroid carcinoma
(FTC), follicular variant of papillary thyroid carcinoma (FVPTC), Hürthle cell carcinoma (HCC).

2.2. Data Collection

Demographic and clinical data included the age of the patient at the time of diagnosis,
gender, lesion location (left, right, both, or isthmus), ultrasound manufacturer (e.g., Aloka,
Hitachi, and Siemens) (Table 1), the distribution of pathological groups as a function
of ultrasound brand (Table 2), and histopathological data (Table 3). All images were
downloaded and stored in TIFF format. Every patient included in the study presented
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at least one thyroid tumor in ultrasound images (longitudinal or horizontal view) when
assessed using the models of multiple ultrasound manufacturers. An ultrasound image
may be formed by a nodule in two views as long as they were saved in double-view mode.
After a manual review of the examination data, researchers collected 1791 ultrasound
images for analysis. Note that the regions of interest (ROIs) in the ultrasound images were
marked by the author as rectangle bounding boxes (Figure 3). The ROI was meant to
include the entire tumor except in cases where the tumor exceeded the image boundary,
such that the bounding box included only the visible part of the tumor. Ultrasound
images were subsequently cropped according to the bounding boxes, which resulted in
2308 images of nodules for training (Figure 4). The images were divided into a training
set (80%) and a test set (20%). Images from each patient were placed in either the training
set or the test set, but not in both. Image data underwent preprocessing to compensate
for the relatively small number of images and reduce the likelihood of overfitting. As
shown in Figure 5, data augmentation based on histogram equalization/normalization
and horizontal flipping increased the number of images by four times, as follows: original
image, image with histogram equalization, image with horizontal flipping, and images
with histogram equalization and horizontal flipping. The training set included 3316 images
showing malignant tumors and 4044 images showing benign tumors. All images showing
Hürthle cell adenoma (HA) were included in the training set. The test set (used to assess
diagnostic performance) included 204 images showing malignant tumors and 264 images
showing benign tumors.

2.3. Study Design

The diagnoses of all tumors in this study were subject to surgical and pathological
confirmation; therefore, training was implemented as supervised learning. Transfer learn-
ing and fine-tuning of hyperparameters were implemented on three pretrained CNNs,
namely, InceptionV3, ResNet101, and VGG19. Note that the classification accuracy of these
CNNs has been demonstrated in the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). The MATLAB 2021a platform was used for the retraining of the three CNNs
to classify benign and malignant thyroid tumors in ultrasound images. The size of the
input images was adjusted according to the CNN settings. Stochastic gradient descent
with momentum (SGDM) was applied as the solver. The maximum epochs were as follows:
InceptionV3 (26), ResNet101 (21), and VGG19 (32). The learning rate was as follows: Incep-
tionV3 (0.001), ResNet101 (0.001), and VGG19 (0.0001). Fivefold cross-validation was used
to ensure the stability of the results.

2.4. Statistical Analysis

This study compared the diagnostic capability of CNNs with that of two endocri-
nologists with over 20 years of experience in performing fine-needle aspiration and the
interpretation of ultrasound images on the test set. In estimating the diagnosis perfor-
mance of physicians, the images were classified as malignant and benign according to
sonographic patterns and estimated risk of malignancy, as suggested in the American
Thyroid Association (ATA) classification system [25]. The CNNs were assessed in terms of
accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV), as well as the receiver operating characteristic (ROC) curve, area under the
curve (AUC), and confusion matrix. We also assessed accuracy in identifying tumors with
various histopathologies. Continuous variables were presented as the mean and standard
deviation (SD), as indicated. Categorical data were expressed in terms of actual frequencies
and percentages. Statistical analysis was performed using the chi-square test and analysis
of variance (ANOVA). p-Values < 0.05 were considered significant. All statistical analysis
was conducted using the SAS Suite, version 9.4 (SAS Institute, Cary, NC, USA).
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Table 1. Baseline demography of five pathology types divided into malignant and benign groups.

Pathological Types

Malignant Group
(n = 421)

Benign Group
(n = 391)

PTC FVPTC FTC HCC Benign p-Value

Number of patients 214 114 70 23 391
Age (years), mean (SD) 47.36 ± 13.70 44.90 ± 15.12 46.61 ± 17.10 51.17 ± 15.62 54.18 ± 13.15 <0.0001

Sex (n, %)
Male 53 (25) 28 (25) 15 (21) 4 (17) 80 (20) 0.6985

Female 161 (75) 86 (75) 55 (79) 19 (83) 311 (80)
Number of US images 470 215 131 38 937

Number of cropped images 533 272 175 53 1275
Location (n, %)

Left 88 (41.12) 52 (45.61) 39 (55.71) 13 (56.52) 143 (36.57) 0.0017
Right 109 (50.93) 57 (50.00) 27 (38.57) 10 (43.48) 192 (49.10)

Both (Left + Right) 11 (5.15) 4 (3.51) 1 (1.43) 0 (0.00) 47 (12.03)
Isthmus 6 (2.80) 1 (0.88) 3 (4.29) 0 (0.00) 9 (2.30)

Ultrasound brands (%)
Aloka 3.93 2.46 6.67 0.00 7.57 <0.0001

GE Healthcare 37.12 62.30 64.01 78.26 45.87
Hitachi 7.42 2.46 1.33 0.00 7.34
Philips 4.37 0.82 8.00 8.70 2.06

Siemens 28.82 10.66 5.33 8.70 18.81
Toshiba 17.90 16.39 13.33 4.34 18.12
Others 0.44 4.91 1.33 0.00 0.23

Continuous data are expressed as the mean and standard deviation (SD); categorical data are expressed as a percentage (%). Papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), follicular
variant of papillary thyroid carcinoma (FVPTC), Hürthle cell carcinoma (HCC), ultrasound (US).
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Table 2. Distribution of pathological groups as a function of ultrasound brands.

Aloka GE Healthcare Hitachi Philips Siemens Toshiba Others p-Value

PTC 18.00 19.90 32.07 35.72 39.52 27.15 11.11 <0.0001
FVPTC 6.00 17.80 5.66 3.57 7.78 13.25 66.67 <0.0001

FTC 10.00 11.24 1.89 21.43 2.40 6.62 11.11 <0.0001
HCC 0.00 4.22 0.00 7.14 1.20 0.66 0.00 <0.0001

Benign 66.00 46.84 60.38 32.14 49.10 52.32 11.11 <0.0001

Categorical data are expressed as a percentage (%). Papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), follicular variant of papillary thyroid carcinoma (FVPTC), Hürthle cell carcinoma (HCC).

Table 3. Distribution of histopathological and ultrasonic features among groups.

Histopathology Number (%)

Malignant group (n = 421)

PTC features
(n = 214)

Classic PTC 208 (97.19)
Diffuse sclerosing variant 3 (1.40)

Tall cell variant 1 (0.47)
Cribriform morular variant 1 (0.47)

Encapsulated variant 1 (0.47)

FTC features
(n = 207)

Follicular variant of PTC 106 (51.21)
Follicular carcinoma, minimally invasive 70 (33.82)

Hürthle cell carcinoma 23 (11.11)
Encapsulated follicular variant of PTC 8 (3.86)

Benign group (n = 391)

Nodular hyperplasia 289 (73.91)
Follicular adenoma 48 (12.28)

Cyst 47 (12.02)
Hürthle cell adenoma 7 (1.79)

Papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC).
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fivefold cross-validation; then, the diagnostic performance using the test set was evaluated. Region of interest (ROI),
convolution neural network (CNN).
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3. Results
3.1. Study Population

A total of 791 patients were identified in our initial analysis (Figure 1). From this
group, 17 patients were excluded due to non-DTC, including anaplastic cancer (n = 6),
medullary cancer (n = 7), and metastatic cancer (n = 4). Patients who had not undergone
ultrasound examinations within 12 months prior to surgery were also excluded, as were
those without recognizable lesions (n = 353). This left 421 DTC patients and 391 patients
with benign thyroid nodules who met the enrollment criteria for this study.

3.2. Demographics

As shown in Table 1, the patients were divided into a malignant group (comprising a
PTC group, FTC group, FVPTC group, and HCC group) and a benign group. The mean age
of patients was 44.9–54.2 years old. The average age at the time of diagnosis was lower in
the malignant groups (p < 0.0001). We observed a higher proportion of females in all groups;
however, the female-to-male ratio between groups did not differ significantly. We observed
statistically significant between-group differences in terms of lesion location (p = 0.0017)
with very few instances of bilateral lesion. In malignant groups, the PTC group presented
the highest proportion of simultaneous bilateral lesions (5.14%), whereas the FTC group
presented the highest proportion of isthmus lesions (4.29%). We observed statistically
significant between-group differences in terms of ultrasound manufacturer (p < 0.0001).
The most common brands in the PTC group were GE Healthcare (37.12%) and Siemens
(28.82%), and the most common brand in the other groups was GE Healthcare. Table 2 lists
the distribution (percentages) of pathological groups as a function of ultrasound brand.
Statistically significant differences were observed between all pathological groups as a
function of ultrasound brand (p < 0.001).

Table 3 lists the histopathological distribution of tumors among groups. On the basis
of ultrasonic features, the malignant group was divided into PTC and FTC subgroups. The
PTC subgroup included classic PTC, the diffuse sclerosing variant, the tall cell variant, the
cribriform morular variant, and the encapsulated variant. The FTC sub-group included
FTC, FVPTC, HCC, and the encapsulated follicular variant of PTC. The benign group
included nodular hyperplasia (NH), follicular adenoma (FA), cysts, and HA. Classic PTC
and FVPTC were the most common pathology types in the PTC and FTC subgroups,
respectively. Nodular hyperplasia was the most common feature in the benign group.

3.3. Performance Assessment on CNNs and Physician

The training set contained a total of 7360 nodule images after data augmentation,
including 1744 in the PTC group, 852 in the FVPTC group, 568 in the FTC group, 152 in the
HCC group, and 4044 in the benign group. Following the completion of transfer learning,
the test set was used to assess the performance of the CNNs and obtain a confusion
matrix, as shown in Figure 6. Table 4 presents the accuracy of the CNNs and physicians
in terms of diagnostic performance, as follows: InceptionV3 (76.5%), ResNet101 (77.6%),
VGG19 (76.1%), Endocrinologist 1 (58.8%), and Endocrinologist 2 (62%). The sensitivity
was as follows: InceptionV3 (83.7%), ResNet101 (72.5%), VGG19 (66.2%), Endocrinologist 1
(38.7%), and Endocrinologist 2 (35.3%). The specificity was as follows: InceptionV3 (83.7%),
ResNet101 (81.4%), VGG19 (76.9%), Endocrinologist 1 (72.4%), and Endocrinologist 2
(82.6%). A confusion matrix illustrating multiclass classification using ResNet101 in the
test set is shown in Figure S1. Due to the small number of cases in the malignant groups
(e.g., FVPTC, FTC, and HCC), the accuracy of the CNN was only 65%.



Biomedicines 2021, 9, 1771 9 of 14

Biomedicines 2021, 9, x FOR PEER REVIEW 9 of 15 
 

Table 2 lists the distribution (percentages) of pathological groups as a function of ultra-
sound brand. Statistically significant differences were observed between all pathological 
groups as a function of ultrasound brand (p < 0.001). 

Table 3 lists the histopathological distribution of tumors among groups. On the basis 
of ultrasonic features, the malignant group was divided into PTC and FTC subgroups. 
The PTC subgroup included classic PTC, the diffuse sclerosing variant, the tall cell variant, 
the cribriform morular variant, and the encapsulated variant. The FTC sub-group in-
cluded FTC, FVPTC, HCC, and the encapsulated follicular variant of PTC. The benign 
group included nodular hyperplasia (NH), follicular adenoma (FA), cysts, and HA. Clas-
sic PTC and FVPTC were the most common pathology types in the PTC and FTC sub-
groups, respectively. Nodular hyperplasia was the most common feature in the benign 
group. 

3.3. Performance Assessment on CNNs and Physician 
The training set contained a total of 7360 nodule images after data augmentation, 

including 1744 in the PTC group, 852 in the FVPTC group, 568 in the FTC group, 152 in 
the HCC group, and 4044 in the benign group. Following the completion of transfer learn-
ing, the test set was used to assess the performance of the CNNs and obtain a confusion 
matrix, as shown in Figure 6. Table 4 presents the accuracy of the CNNs and physicians 
in terms of diagnostic performance, as follows: InceptionV3 (76.5%), ResNet101 (77.6%), 
VGG19 (76.1%), Endocrinologist 1 (58.8%), and Endocrinologist 2 (62%). The sensitivity 
was as follows: InceptionV3 (83.7%), ResNet101 (72.5%), VGG19 (66.2%), Endocrinologist 
1 (38.7%), and Endocrinologist 2 (35.3%). The specificity was as follows: InceptionV3 
(83.7%), ResNet101 (81.4%), VGG19 (76.9%), Endocrinologist 1 (72.4%), and Endocrinolo-
gist 2 (82.6%). A confusion matrix illustrating multiclass classification using ResNet101 in 
the test set is shown in Figure S1. Due to the small number of cases in the malignant 
groups (e.g., FVPTC, FTC, and HCC), the accuracy of the CNN was only 65%. 

 
Figure 6. Confusion matrix of CNNs in test set. (a) InceptionV3, (b) ResNet101, and (c) VGG19. M: malignant group, B: 
benign group. 

  

Figure 6. Confusion matrix of CNNs in test set. (a) InceptionV3, (b) ResNet101, and (c) VGG19. M: malignant group, B:
benign group.

Table 4. Performance of CNNs and endocrinologists in test set.

Sensitivity Specificity PPV NPV Accuracy AUC

InceptionV3 76.0 76.9 71.8 80.6 76.5 0.82
ResNet101 72.5 81.4 75.1 79.3 77.6 0.83

VGG19 66.2 83.7 75.8 76.2 76.1 0.83
Endocrinologist 1 38.7 74.2 53.7 61.1 58.8 -
Endocrinologist 2 35.3 82.6 61.0 62.3 62.0 -

Positive predictive value (PPV), negative predictive value (NPV), area under curve (AUC).

Table 5 lists the accuracy of the CNNs and physicians in identifying tumors with
various pathological types. In the identification of malignant tumors, the highest accuracy
in diagnosing PTC was 81.4% (InceptionV3), the highest accuracy in diagnosing FVPTC
was 74.6% (ResNet101), the highest accuracy in diagnosing FTC was 72.7% (InceptionV3),
and the highest accuracy in diagnosing HCC was 66.7% (InceptionV3 and ResNet101). In
identifying benign tumors, the highest accuracy in diagnosing NH was 82.4% (VGG19),
the highest accuracy in diagnosing FA was 80% (ResNet101), and the highest accuracy in
diagnosing cysts was 95% (VGG19). In terms of the performance of physician diagnosis,
Endocrinologist 1 showed better accuracy in diagnosing PTC (58.8% vs. 53.6%), FVPTC
(20.3% vs. 17%), HCC (13.3% vs. 6.7%), and FA (80% vs. 75%), while Endocrinologist 2
showed higher accuracy in FTC (30.3% vs. 27.3%), NH (81.9% vs. 73%), and cyst (90% vs.
80%). Figure 7 presents the ROC curve of CNNs and performance of physicians. As shown
in Table 3, the area under the curve (AUC) was as follows: InceptionV3 (0.82), ResNet101
(0.83), and VGG19 (0.83).

Table 5. Diagnostic accuracy of CNNs and endocrinologists on different pathological types in test set.

Malignant Group Benign Group
PTC FVPTC FTC HCC NH FA C

InceptionV3 81.4 72.9 72.7 66.7 75.0 65.0 92.5
ResNet101 73.2 74.6 69.7 66.7 79.4 80.0 90.0

VGG19 64.9 71.2 63.6 60.0 82.4 75.0 95.0
Endocrinologist 1 58.8 20.3 27.3 13.3 73.0 80.0 80.0
Endocrinologist 2 53.6 17.0 30.3 6.7 81.9 75.0 90.0

Papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), follicular variant of papillary thyroid carcinoma (FVPTC), Hürthle
cell carcinoma (HCC), Nodular hyperplasia (NH), Follicular adenoma (FA), Cyst (C).
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4. Discussion

In this study, deep convolutional neural networks (CNNs) were used to classify
thyroid tumors as malignant or benign. Note that the accuracy achieved in the current study
was slightly lower than in previous studies [15–17,21,22]. To the best of our knowledge,
this was the first study focusing on the use of CNNs for the classification of DTCs other
than PTC (FVPTC, FTC, and HCC). Diagnosing malignant thyroid tumors (e.g., FTC) prior
to surgical intervention remains an unresolved problem [26]. A definitive diagnosis of
FTC requires surgical intervention. This issue is largely due to similarities between the
ultrasonic features of malignant and benign nodules [27]. From a microscopic point of
view, the major difference between malignant FTC and benign follicular tumors (FAs) is
the occurrence of vascular or capsular invasion. Furthermore, cytopathological analysis
is often inconclusive due to a lack of distinguishing characteristics, such as the “clear cell
border” and “pseudo-inclusion body” observed in PTC cells. Note that most of these cases
would eventually be classified as follicular neoplasms (FNs) [28]. Technical advances in
molecular biology and genetic engineering have revealed a link between BRAF mutations
and PTC, as well as a link between RAS mutations and FTC [11]. Unfortunately, the cost
of molecular and genetic testing is prohibitive in most cases and unavailable except in
the best-equipped medical centers. Due to the low incidence of malignant thyroid tumor,
the inclusion of advanced diagnostics in routine thyroid examinations is unreasonable.
More importantly, diagnostic accuracy is strongly influenced by the number of successful
punctures in fine-needle aspiration.

In one recent study, machine learning methods proved highly effective in diagnosing
FNs [29]. In fact, a thyroid CAD named AmCAD-UT has already been approved by the
United States Food and Drug Administration (FDA) and Taiwan Medical Device Marketing
Approval for the assessment of thyroid tumors using feature extraction/selection. AI is
proving highly effective in overcoming the difficulties associated with the diagnosis of
malignant tumors.

The ImageNet project has been instrumental in advancing computer vision and deep
learning research. ImageNet provides an image database based on the WordNet hierarchy,
and data are freely available to researchers for noncommercial applications [30]. The
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database has been manually annotated with more than 14 million images. Between 2010
and 2017, ImageNet held an annual competition (referred to as ILSVRC) to evaluate
algorithms used in object detection and image classification. The CNNs used in this study
for transfer learning achieved the highest classification accuracy in 2014 (Inception), the
highest detection results in 2014 (VGG), and the highest classification accuracy in 2015
(ResNet). Since 2015, the accuracy of deep learning image classification has exceeded
95%, far exceeding the capabilities of humans. In the intervening years, new CNNs (e.g.,
SEnet) have achieved even higher accuracy; however, the difference is negligible. Most of
the previous thyroid cancer imaging studies using Inception, ResNet, and VGG achieved
acceptable accuracy and were, therefore, deemed suitable for transfer learning in the current
study. We discovered that the less complex CNNs (Inception and ResNet) were slightly
faster than VGG in terms of training and classification; however, overall classification
accuracy was nearly identical.

In identifying cases of PTC, we were unable to achieve the 90% accuracy observed in
previous studies [17,22], due primarily to an insufficient number of cases. Note that most
of the previous CNN studies on classic PTC included at least 1000 patients. According to
the results in previous studies, it appears likely that accuracy in identifying PTC could be
increased simply by including a larger number of cases. It is also possible that the perfor-
mance of the CNN algorithms was hindered by unacceptably low image resolution after
cropping. There is also a possibility that the apparatus used for ultrasonic imaging played
a role in algorithm performance, due to subtle differences in image fineness, brightness,
contrast, and texture output from different ultrasound manufacturers.

In our analysis, accuracy in identifying FVPTC reached 74.6% (ResNet101), which is
similar to the results obtained for classic PTC. FVPTC is the most common PTC variant
and the second largest group in the current study. The ultrasonic characteristics of FVPTC
differ considerably from those of classic PTC and, in many respects, are similar to those
of benign tumors [31]. Our results demonstrated that accuracy in identifying FTC was
only 63.6–72.7% and accuracy in identifying FA was only 65–80%, regardless of the CNN.
Accuracy in identifying HCC was only 60–66.7%, due largely to the small number of cases
in the database. The CNNs seemed not to provide much benefit in the identification or
diagnosis of FTC or HCC, due largely to a lack of cases resulting from low incidence and
prevalence. Note that there is only a slight difference between FTC, HCC, and FA in terms
of gross structure and ultrasound features [32,33].

The performance of classification by retrained CNNs was a lot better than that of
the participating physicians, especially in the malignant groups. The poor diagnostic
performance of physicians in dealing with malignant tumors resulted in poor sensitivity.
In clinical practice, the endocrinologist or radiologist usually considers malignant features
suggested by the image as a whole, not just the cropped area surrounding the tumor with
low resolution. However, with the help of fine-needle aspiration and cytopathological
analysis, the sensitivity of physicians may be comparable to CNNs retrained by ultrasound
images alone. Remarkably low accuracy in the classification of malignant tumors by
physicians also indicates the difficulty in clinical diagnosis, particularly in cases of FTC,
FVPTC, and HCC. Overall, it was demonstrated that the diagnostic performance of the
CNNs exceeded that of the physicians.

Overall, InceptionV3 achieved the highest sensitivity, whereas ResNet101 and VGG19
achieved higher specificity. The concurrent application of all three CNNs appears to be a
viable possibility. InceptionV3 could be used to confirm a diagnosis of malignancy, whereas
ResNet101 and VGG19 could be used to confirm that lesions are indeed benign.

There are numerous situations in which CAD could advantageously be implemented
in conjunction with AI. For example, many developing countries lack the medical resources,
professional radiologists, and endocrinologists required to obtain a reliable diagnosis of
thyroid lesions. CAD could be used to screen for potential thyroid cancers for referral to a
medical center. Even in medical centers, CAD could be used to facilitate the training of
medical students and inexperienced physicians. More importantly, CAD could provide
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helpful advice in dilemmatic cases with inconclusive cytology results. From the perspective
of healthcare and therapeutics, AI has also been shown to play an important role in
treatment quality. Fionda [34] reported that the use of AI-based predictive models and
decision support systems for radiation oncology and interventional radiotherapy can
alleviate many time-consuming repetitive tasks, thereby enabling a corresponding decrease
in healthcare costs.

In the current study, image ROIs were manually cropped by the author using a
bounding box. This method is precise but time-consuming, and different physicians would
no doubt differ in their approach to cropping. Deep learning models with auto-detection
or auto-segmentation (e.g., YOLOV3 and R-CNN) could be developed to increase the
speed of ROI framing before undergoing a manual review and adjustment. In the clinical
application of CAD, it is also necessary to establish a graphical user-interface (GUI) capable
of automating the process of ROI framing and classification.

This study was subject to a number of limitations. Firstly, the retrospective design
of this study made selection bias inevitable. Secondly, an extended acquisition period
was required to obtain a usable number of samples in the malignant groups. Thus, it
was inevitable that the collection period for malignant cases would far exceed that of the
benign control group. Thirdly, the small number of cases in our test set may have also had
a negative effect on accuracy. Fourthly, the process of image selection was complicated
and slow. Unlike computed tomography and magnetic resonance imaging, ultrasound
images do not present a unified arrangement and require extensive manual preprocessing.
In this study, the author had to review all of the ultrasound images in a search for the target
lesions identified surgically. Ultrasound images also tend to vary considerably in terms of
size and zooming ratio. This made it impossible to measure the tumor sizes retrospectively,
leading to instances of missing data and/or mismatch with pathology reports. Note that
this was the reason for the omission of tumor size in this study. Fifthly, we opted not
to include the rarer forms of malignant tumor, such as undifferentiated thyroid cancers
and metastatic cancers. Note that applying the current CAD in clinical practice would
no doubt raise concerns about missed diagnoses. Sixthly, most of the images selected for
CNN training presented identifiable single nodules. Thus, the diagnostic power in dealing
with multinodular goiters with ill-defined margins remains unclear. Lastly, differences in
the output algorithms of ultrasound machines can have a profound effect on training and
classification. However, without raw data, there is no simple way to standardize images.
Thus, the only viable approach to balancing the datasets is to apply histogram equalization
or collect more images from different ultrasound manufacturers.

5. Conclusions

Advanced deep CNN models that are fine-tuned using transfer learning show con-
siderable potential as a noninvasive approach to the diagnosis of DTCs, including FTC.
Clinicians should be able to diagnose thyroid cancer more easily by combining ultrasound
with CAD. Anticipated advances in ultrasound technology and larger databases will greatly
enhance the efficacy of these methods.
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