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ABSTRACT 

 

INTRODUCTION:  Discovery of the associations between brain structural connectivity and 

clinical and demographic variables can help to better understand the vulnerability and resilience 

of the brain architecture to neurodegenerative diseases and to discover biomarkers. 

METHODS:  We used four diffusion-MRI databases, three related to Alzheimer’s disease, to 

exploratorily correlate structural connections between 85 brain regions with non-MRI variables, 

while stringently correcting the significance values for multiple testing and ruling out spurious 

correlations via careful visual inspection. We repeated the analysis with brain connectivity 

augmented with multi-synaptic neural pathways. 

RESULTS:  We found 34 and 37 significant relationships with direct and augmented connectivity, 

respectively, which were generally stronger for augmented connectivity. Age was consistently 

linked to decreased connectivity, and healthier clinical scores were generally linked to increased 

connectivity. 

DISCUSSION:  Our findings help to elucidate which structural brain networks are affected in 

Alzheimer’s disease and aging and highlight the importance of including indirect connections. 

  

Keywords: Structural brain connectivity, human connectome, multi-synaptic neural pathways, 

diffusion MRI, Alzheimer’s disease, dementia, aging. 
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1. Introduction 

Normal aging, as well as debilitating neurodegenerative diseases such as Alzheimer’s disease 

(AD), affect not only individual brain regions, but also connectivity between them [1, 2]. Focus 

on brain regions, but not interregional connectivity, may have hindered progress in understanding 

and treating diseases such as AD that are characterized as disconnection syndromes [3]. Mapping 

the complex brain networks through which information flows – i.e., the human connectome [4] – 

can help to better understand the vulnerability and resilience of these networks to the effects of 

AD, potentially leading to the discovery of diagnostically and therapeutically important 

connectomic biomarkers. Analysis of structural brain networks, by means of noninvasive 

diffusion-weighted magnetic resonance imaging (dMRI), has proved valuable in revealing the 

structural basis of dysfunction in mild cognitive impairment (MCI) and AD, demonstrating 

changes distinct from those with healthy aging [5-9]. 

Brain connectivity is often represented as a graph adjacency matrix of connection strengths 

between the brain regions of interest (ROIs), with its number of elements (graph edges) growing 

quadratically with respect to the number of ROIs (graph nodes). In population connectomic 

studies, it is often desired to find links between brain connectivity and non-MRI (clinical and/or 

demographic) variables. Such a study typically has sufficient statistical power to test pre-

hypothesized relationships involving specific brain connections and variables. In contrast, an 

exploratory investigation to discover previously unknown relationships would require correlating 

the connectivity strength of every brain ROI pair with every available variable, amounting to 

hundreds of thousands (sometimes millions) of tests. In that scenario, the correction for multiple 

comparisons would make the study statistically less powerful and consequently less desirable to 

conduct. Alternatively, one could reduce the number of tests considerably by focusing on network 

summary features [10] rather than brain connections, which would inform about how the variables 

relate to the network as a whole [7, 11] but not to individual brain connections. 

Structural connectivity between two brain regions is commonly defined based on the dMRI 

tractography-derived [12, 13] streamlines between them. The direct fiber bundle connecting two 

brain areas is expected to be the major signal carrier between them; however, multi-synaptic neural 

pathways (those mediated through other regions) also provide connectivity [14, 15]. We have 

previously developed computational methods to augment direct structural connectivity graphs with 

indirect connections [16] as well as quantify brain structural connectivity while accounting for 

indirect pathways [17], and have shown the importance of these pathways in predicting functional 

connectivity [17] and deriving connectomic biomarkers for MCI and AD [18]. 

In this short report, we take an exploratory approach to discovering relationships that individual 

structural connections in the brain may have with clinical and demographic variables. We use 

anatomical and diffusion MR images along with non-MRI data from four public databases (three 

of which are related to AD) to find links between brain connections – both direct and augmented 
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– and non-MRI variables that remain significant after stringent correction for multiple testing and 

visual inspection. 

We describe our processing and analysis methods in Section 2, report our results in Section 3, 

discuss them in Section 4, and conclude the paper in Section 5. 

 

2. Methods 

2.1. Datasets 

We used the following four public dMRI databases. The number of subjects indicates the subset 

of subjects that were processed and included in our analysis, and the number of non-MRI variables 

indicates variables that were available for at least some of the included subjects. 

• The second phase of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-2) [19]:  217 

subjects (from cognitively normal to AD), 47 non-MRI variables from the ADNIMERGE 

table (demographics, CSF markers, dementia/cognitive exam scores, PET, ApoE4, 

diagnosis, …). 

• The third release in the Open Access Series of Imaging Studies (OASIS-3) [20]:  771 

subjects (from cognitively normal to AD), 23 non-MRI variables (demographics, 

dementia/cognitive exam scores, ApoE, …). 

• The Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer’s 

Disease (PREVENT-AD) [21]:  340 cognitively unimpaired older individuals with a 

parental or multiple-sibling history of AD, 199 non-MRI variables (demographics, medical 

history, vitals, CSF markers, dementia/cognitive exam sub-scores, genetics, lab results, 

auditory/olfactory processing, …). 

• The WashU-UMN Human Connectome Project (HCP) [22]:  617 healthy young adults, 

488 non-MRI variables (demographics, medical history, family history, 

dementia/cognitive exam scores, personality/emotion tests, motor/sensory tests, task 

performance, …). 

 

2.2. Data processing 

Anatomical MR images of the databases were processed with FreeSurfer [23]. All time points of 

PREVENT-AD were also more robustly processed using the FreeSurfer longitudinal pipeline [24]. 

Nevertheless, for all databases, we included each subject only once, i.e. the earliest visit containing 

dMRI (frequently the baseline), in order to keep our analyzed data points independent and our 

study cross-sectional. We then ran the FreeSurfer dMRI processing pipeline, which also includes 
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commands from the FMRIB Software Library (FSL) [25], and propagated the 85 automatically 

segmented cortical and subcortical regions from the structural to the diffusion space using 

boundary-based image registration [26]. 

Next, we used our public toolbox (www.nitrc.org/projects/csaodf-hough) to:  1) reconstruct the 

diffusion orientation distribution function in constant solid angle [27],  2) run Hough-transform 

global probabilistic tractography [13] to generate 10,000 fibers per subject,  3) compute a 

symmetric structural connectivity matrix (with positive elements) for each subject by summing the 

tracts passing through each pair of ROIs weighted by the tract score, and  4) augment the raw 

matrices with indirect connections (see Section 2.3) [16]. We transformed the connectivity value 

𝑐 (each element in the raw or augmented connectivity matrix) as 𝑐 ← 1 − exp(− 𝑐 𝑐̅⁄ ), where 𝑐̅ is 

the cross-subject average of 𝑐, thereby confining the connectivity values to the range [0,1). 

 

2.3. Augmentation of structural connectivity with indirect connections 

Strong functional connectivity between brain regions are commonly observed between regions 

with no direct structural connection [14, 28-34]. Some variance in functional connectivity 

unexplained by direct connections can be accounted for by indirect structural connections [14, 15, 

17], implying that the network nature of the brain makes the interaction between two brain areas 

sensitive to influences from other remote areas [29]. 

We have previously developed a method to augment a tractography-generated structural 

connectivity matrix with indirect connections via the mathematics of circuits laws [16], thereby 

producing a new matrix that additionally reflects multi-synaptic pathways. This approach is based 

on the intuition that total connectivity for multiple direct connections is expectedly their sum if 

they are parallel, or smaller than each connection if they are in series (as total connectivity is 

presumably bottlenecked by the weakest link along the way). These conditions are accommodated 

by modeling the brain similarly to a resistive electrical circuit, where a resistor represents each 

direct connection, with its conductance (inverse of resistance) being the tractography-measured 

strength of the connection [16, 35]. Total (augmented) connectivity is then calculated via 

Kirchhoff’s laws as the overall conductance among regions, using graph Laplacian methods. 

 

2.4. Analysis 

We used the cross-sectional data of each database to independently test if there is a statistically 

significant relationship between each non-MRI (clinical or demographic) variable and the 

computed structural brain connection between each ROI pair. To deal with data source 

heterogeneity, we analyzed the databases and report their results separately. The homogeneity 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.30.547308doi: bioRxiv preprint 

http://www.nitrc.org/projects/csaodf-hough
https://doi.org/10.1101/2023.06.30.547308
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

within each database is expected to lead to findings that would be strengthened if they 

independently replicated in several databases. 

If a non-MRI variable had categorical (rather than numeric) values, we converted it to numeric by 

assigning a natural number to each category, while making our best effort to sort the categories (if 

more than two) in a monotonic order; for instance, for Baseline Diagnosis in ADNI-2, we assigned: 

Control Normal → 1, Significant Memory Concern → 2, Early MCI → 3, Late MCI → 4, and AD 

→ 5. We then computed the Pearson correlation coefficient (r), along with its significance (p) 

value, between each variable and each connection. The p-values were corrected for multiple 

comparisons via the conservative Bonferroni method (pb); i.e., they were multiplied by the number 

of (undirected) connections, #ROIs×(#ROIs-1)÷2 = 85×84÷2 = 3570, as well as by the number of 

studied variables (see Section 2.1). Since the quantified structural connectivity, which is the score-

weighted number of streamlines passing through a pair of ROIs, is affected by the tract length, we 

controlled for the extraneous variable of intracranial volume (ICV) by computing the partial 

correlation instead. For robustness of the correlation [36], we removed connectivity values that 

were marginal outliers from the correlation analysis by excluding any element in the connectivity 

matrix of a subject (but not the subject’s entire matrix) that was larger than 0.9 (recall the range 

[0,1) of values). Therefore, slightly different numbers of subjects contributed to the correlation 

analysis of different brain connections. 

For each variable, we selected the connection most significantly correlating with it, i.e. with the 

lowest pb-value. If pb was smaller than the threshold α=0.05, then we scatter-plotted the connection 

strength with respect to the variable and visually inspected it to ensure the significant Pearson 

correlation was real and not spurious due to some outliers, thus avoiding situations with most data 

points clustered together with no obvious relationship [36]. The correlations surviving the 

Bonferroni correction and passing the visual inspection are reported as follows. 

 

3. Results 

We correlated 3570 brain structural connections with 47, 23, 199, and 488 non-MRI variables for 

each of the ADNI-2, OASIS-3, PREVENT-AD, and HCP databases, respectively, while 

controlling for the ICV. Out of those variables, 15, 19, 32, and 82, respectively, were found to 

have significant Pearson correlation (pb < 0.05) with raw connections, and 20, 16, 1, and 0 

variables, respectively, had significant correlation with augmented connections. After visual 

inspection to remove spurious correlations, variables with significant correlation with raw 

connectivity were reduced to 15, 14, 3, and 2, respectively, whereas the variables significantly 

correlated with augmented connectivity remained unchanged. The findings are detailed in the four 

Tables for the four databases. 

Controlling for ICV had several effects on the results, e.g., it made the correlation of brain 

connectivity with ECog SP – Memory in ADNI-2 significant (see Table 1). Without separating the 
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effects of ICV, conversely, we would observe significant negative correlations of brain 

connectivity with weight in OASIS-3 and with grip strength and the maximum number of drinks 

consumed in a single day in HCP. The confounding effect of ICV was especially drastic on the 

correlation with sex. Significant correlation of connectivity (of the most related brain connection) 

with the male sex was: 

• initially not found in ADNI-2 but appeared as positive by including ICV as a covariate, 

• negative in OASIS-3 regardless of controlling for ICV (but stronger without), 

• initially positive in PREVENT-AD but disappeared after including ICV as a covariate, 

• initially negative in HCP but disappeared after including ICV as a covariate. 

 

 

 

Table 1:  Significant correlations of non-MRI variables with brain connectivity in ADNI-2. 

Non-MRI variable Most correlated brain structural connection 

Baseline Diagnosis 
L. Lingual cortex – L. Entorhinal cortex 

Augmented, r = -0.41, pb = 0.0005 

Age 

L. Ventral diencephalon – L. Hippocampus 

Raw, r = -0.42, pb = 0.0002 

R. Superior frontal cortex – L. Hippocampus 

Augmented, r = -0.47, pb = 7 × 10-7 

Sex 
R. Putamen – Brainstem 

Raw, r = 0.36 (with the male sex), pb = 0.04 

FDG-PET 

Mean of angular, temporal, and 

posterior cingulate 

R. Fusiform cortex – R. Hippocampus 

Raw, r = 0.43, pb = 0.0001 

R. Precuneus cortex – R. Hippocampus 

Augmented, r = 0.46, pb = 4 × 10-6 

AV45 PET (binding to β-amyloid) 

Mean of whole cerebellum 

R. Precuneus cortex – R. Hippocampus 

Augmented, r = -0.43, pb = 8 × 10-5 

Clinical Dementia Rating (CDR) 

Sum of boxes 

R. Fusiform cortex – R. Hippocampus 

Raw, r = -0.38, pb = 0.007 

R. Entorhinal cortex – L. Pallidum 

Augmented, r = -0.43, pb = 6 × 10-5 

AD Assessment Scale (ADAS) 

11 items 

R. Fusiform cortex – R. Hippocampus 

Raw, r = -0.37, pb =0.03 

R. Precuneus cortex – R. Hippocampus 

Augmented, r = -0.43, pb = 0.0001 

AD Assessment Scale (ADAS) 

13 items 

R. Hippocampus – R. Fusiform cortex 

Raw, r = -0.39, pb = 0.005 

R. Precuneus cortex – R. Hippocampus 

Augmented, r = -0.44, pb = 4 × 10-5 
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AD Assessment Scale (ADAS) 

Delayed Word Recall 

R. Ventral diencephalon – R. Hippocampus 

Raw, r = -0.38, pb = 0.01 

R. Caudal anterior cingulate cortex – L. Entorhinal cortex 

Augmented, r = -0.40, pb = 0.0008 

Mini-Mental State Examination 

(MMSE) 

R. Entorhinal cortex – R. Hippocampus 

Raw, r = 0.37, pb = 0.02 

R. Entorhinal cortex – L. Amygdala 

Augmented, r = 0.42, pb = 0.0003 

Rey Auditory Verbal Learning 

Test (RAVLT) Immediate 

Sum of 5 trials 

R. Entorhinal cortex – R. Hippocampus 

Raw, r = 0.39, pb = 0.006 

R. Isthmus cingulate cortex – L. Entorhinal cortex 

Augmented, r = 0.41, pb = 0.0005 

Functional Assessment 

Questionnaire (FAQ) 

R. Fusiform cortex – R. Hippocampus 

Raw, r = -0.38, pb = 0.01 

R. Rostral middle frontal cortex – R. Hippocampus 

Augmented, r = -0.46, pb = 10-6 

Montreal Cognitive Assessment 
(MoCA) 

L. Middle temporal cortex – L. Hippocampus 

Raw, r = 0.39, pb = 0.01 

R. Isthmus cingulate cortex – R. Hippocampus 

Augmented, r = 0.44, pb = 6 × 10-5 

ADNI modified Preclinical 

Alzheimer's Cognitive Composite 

(PACC) 

with Digit Symbol Substitution 

R. Entorhinal cortex – R. Hippocampus 

Raw, r = 0.40, pb = 0.001 

R. Hippocampus – L. Rostral middle frontal cortex 

Augmented, r = 0.44, pb = 2 × 10-5 

ADNI modified Preclinical 

Alzheimer’s Cognitive Composite 
(PACC) 

with Trails B 

R. Parahippocampal cortex – R. Fusiform cortex 

Raw, r = 0.41, pb = 0.0005 

R. Hippocampus – L. Rostral middle frontal cortex 

Augmented, r = 0.44, pb = 10-5 

Everyday Cognition Study Partner 

Report (ECog SP) – Memory 

L. Entorhinal cortex – L. Banks of superior temporal sulcus 

Augmented, r = -0.37, pb = 0.02 

Everyday Cognition Study Partner 

Report (ECog SP) – Language 

L. Middle temporal cortex – L. Isthmus cingulate cortex 

Augmented, r = -0.38, pb = 0.01 

Everyday Cognition Study Partner 
Report (ECog SP) – Plan 

R. Isthmus cingulate cortex – L. Inferior temporal cortex 

Augmented, r = -0.39, pb = 0.009 

Everyday Cognition Study Partner 

Report (ECog SP) – Total 

L. Entorhinal cortex – L. Hippocampus 

Raw, r = -0.37, pb = 0.04 

R. Isthmus cingulate cortex – L. Inferior temporal cortex 

Augmented, r = -0.39, pb = 0.006 

Logical Memory 
Delayed Recall 

R. Hippocampus – L. Rostral middle frontal cortex 

Augmented, r = 0.37, pb = 0.01 

Trail Making Test, Part B 

Time to complete 

R. Parahippocampal cortex – R. Fusiform cortex 

Raw, r = -0.40, pb = 0.001 

R. Isthmus cingulate cortex – R. Hippocampus 

Augmented, r = -0.37, pb = 0.04 
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Table 2:  Significant correlations of non-MRI variables with brain connectivity in OASIS-3. 

Non-MRI variable Most correlated brain structural connection 

Age 

L. Hippocampus – L. Thalamus 
Raw, r = -0.48, pb = 6 × 10-36 

R. Lingual cortex – L. Hippocampus 

Augmented, r = -0.50, pb = 2 × 10-42 

Age at entry 

R. Hippocampus – R. Thalamus 
Raw, r = -0.47, pb = 7 × 10-33 

R. Hippocampus – L. Superior frontal cortex 

Augmented, r = -0.49, pb = 2 × 10-40 

Sex 
L. Thalamus – R. Thalamus 

Raw, r = -0.21 (with the male sex), pb = 0.001 

Uniform Data Set (UDS) 

L. Superior parietal cortex – L. Precuneus cortex 

Raw, r = 0.37, pb = 2 × 10-19 

R. Inferior parietal cortex – L. Inferior parietal cortex 
Augmented, r = 0.34, pb = 10-14 

Neuropsychological Assessment 

L. Superior parietal cortex – L. Precuneus cortex 

Raw, r = 0.38, pb = 4 × 10-14 

L. Pericalcarine cortex – L. Parahippocampal cortex 
Augmented, r = 0.41, pb = 6 × 10-18 

Mini-Mental State Examination 

(MMSE) 

R. Hippocampus – R. Putamen 

Raw, r = 0.29, pb = 2 × 10-10 

R. Superior frontal cortex – R. Hippocampus 
Augmented, r = 0.35, pb = 5 × 10-17 

Clinical Dementia Rating (CDR) 

R. Hippocampus – R. Putamen 

Raw, r = -0.29, pb = 10-10 

R. Hippocampus – L. Thalamus 
Augmented, r = -0.37, pb = 7 × 10-20 

Clinical Dementia Rating (CDR) 

Community affairs 

R. Hippocampus – L. Thalamus 

Augmented, r = -0.33, pb = 4 × 10-15 

Clinical Dementia Rating (CDR) 
Home and hobbies 

R. Superior frontal cortex – R. Hippocampus 
Augmented, r = -0.34, pb = 4 × 10-16 

Clinical Dementia Rating (CDR) 

Judgment and problem-solving 

R. Hippocampus – L. Hippocampus 

Augmented, r = -0.36, pb = 2 × 10-18 

Clinical Dementia Rating (CDR) 

Memory 

R. Amygdala – R. Hippocampus 
Raw, r = -0.3, pb = 10-10 

R. Hippocampus – L. Thalamus 

Augmented, r = -0.38, pb = 9 × 10-21 

Clinical Dementia Rating (CDR) 

Orientation 

R. Amygdala – R. Hippocampus 
Raw, r = -0.26, pb = 2 × 10-7 

R. Superior frontal cortex – R. Hippocampus 

Augmented, r = -0.32, pb = 4 × 10-14 

Clinical Dementia Rating (CDR) 

Sum of boxes 

R. Amygdala – R. Hippocampus 
Raw, r = -0.29, pb = 6 × 10-10 

R. Hippocampus – L. Thalamus 

Augmented, r = -0.37, pb = 5 × 10-20 

Number of MRI Sessions 
R. Middle temporal cortex – R. Hippocampus 

Raw, r = 0.35, pb = 10-16 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.30.547308doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.30.547308
http://creativecommons.org/licenses/by-nd/4.0/


10 
 

R. Precuneus cortex – R. Hippocampus 
Augmented, r = 0.38, pb = 5 × 10-22 

Number of PET Sessions 

R. Hippocampus – R. Fusiform cortex 

Raw, r = 0.3, pb = 10-8 

R. Cuneus cortex – L. Hippocampus 
Augmented, r = 0.34, pb = 3 × 10-12 

Number of CT Sessions 

R. Hippocampus – R. Fusiform cortex 

Raw, r = 0.23, pb = 0.03 

R. Superior frontal cortex – R. Hippocampus 
Augmented, r = 0.25, pb = 0.0004 

ADRC Clinical Data 

L. Superior parietal cortex – L. Precuneus cortex 

Raw, r = 0.31, pb = 2 × 10-12 

R. Inferior parietal cortex – R. Fusiform cortex 
Augmented, r = 0.31, pb = 9 × 10-13 

 

 

Table 3: Significant correlations of non-MRI variables with brain connectivity in PREVENT-AD. 

Non-MRI variable Most correlated brain structural connection 

Age 

R. Hippocampus – R. Thalamus 

Raw, r = -0.32, pb = 0.003 

R. Thalamus – L. Hippocampus 

Augmented, r = -0.33, pb = 0.001 

Age of mother at AD-like 

dementia onset 

R. Ventral diencephalon – L. Banks of superior temporal sulcus 

Raw, r = -0.36, pb = 0.006 

Tau phosphorylated at Thr181 

(P-tau) concentration in CSF 

R. Caudate – L. Caudal middle frontal cortex 

Raw, r = 0.45, pb = 0.04 

 

 

Table 4: Significant correlations of non-MRI variables with brain connectivity in HCP. 

Non-MRI variable Most correlated brain structural connection 

Height 
Brainstem – L. Lingual cortex 

Raw, r = -0.25, pb = 0.02 

Weight 
R. Ventral diencephalon – L. Ventral diencephalon 

Raw, r = -0.26, pb = 0.006 
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4. Discussion 

Although more correlations were initially found to be significant with raw than augmented 

structural connectivity (in three out of four databases), visual inspection of the data led to 

discarding many of the former – but none of the latter – as spurious, implying more robustness and 

reliability of the augmented structural connections. Spuriousness was often because raw (direct) 

connectivity between an ROI pair was zero for all except a few subjects that dramatically 

influenced the correlation calculation, in contrast to augmented connectivity that is always positive 

in a network with a single connected component. Eventually, a total of 34 relationships with raw 

connectivity and 37 with augmented connectivity passed the Pearson correlation, Bonferroni 

correction, and visual inspection. Out of 28 variables correlated with both types of connectivity, 

26 were more significantly correlated with augmented than raw connectivity. 

More variables were found to be significantly related to brain connectivity in ADNI-2 and OASIS-

3 than in PREVENT-AD and HCP, possibly due to many more variables that were tested in the 

latter databases (hence more aggressive correction for multiple comparisons), as well as the fact 

that PREVENT-AD and HCP included only healthy subjects, with more limited ranges of clinical 

scores (e.g. MMSE) than ADNI-2 and OASIS-3. 

The most prominent non-MRI variable that was consistently correlated with structural connectivity 

was age. A negative correlation was observed between age and hippocampal connectivity in all 

databases except HCP. The limited age range in the young population of HCP may be the reason 

why this relationship was not detected in this database, given that the standard deviations of age 

were (in decreasing order) 9.1 years in OASIS-3, 6.9 years in ADNI-2, 5.1 years in PREVENT-

AD, but only 3.6 years in HCP. In fact, the statistical significance of the age correlation decreased 

in the same database order. 

Clinical scores that were found to be significantly related to brain connectivity showed the 

consistent trend of healthier score being linked to increased connectivity. The only exception was 

the significant relationship of P-tau with the connection between the right caudate and the left 

caudal middle frontal cortex in PREVENT-AD, which was unanticipatedly positive. Nonetheless, 

we had already observed – in a different database with a different connectivity quantification 

method – a similarly unexpected strengthening of caudal structural connectivity with worsening 

cognitive status [18, 37]. In fact, volume [38] and fractional anisotropy (FA) [39] of the caudate 

have been reported to increase in pre-symptomatic familial AD, which might have also led to the 

aforementioned relationship we observed in PREVENT-AD (that includes healthy subjects at risk 

of AD). Such an increase in the measured structural connectivity in pre-symptomatic subjects may 

indicate a compensatory effect [40], or could stem from other factors (e.g., selective axonal loss 

can increase FA in regions with fiber crossing [39, 41, 42]). 

The number of imaging sessions and data available for a subject in OASIS-3 was positively related 

to (mostly) hippocampal connectivity. This could be attributable to a higher follow-up rate for 
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those with healthier hippocampi, as individuals with MCI and dementia have been shown to have 

lower retention rates in research studies than those with normal cognition [43, 44]. 

With larger ICV, brain regions become farther apart from each other, thus harder to reach by 

streamline tractography. Therefore, we decided to control for ICV in our regression analysis to 

avoid underestimation of brain connectivity. Doing so eliminated (in some databases) possibly 

spurious correlation of brain connectivity with variables that might be correlated with ICV, i.e., 

weight, strength, sex, and alcohol consumption. Correlation of brain connectivity with sex [45], in 

particular, remained inconclusive, given that it disappeared after ICV adjustment in PREVENT-

AD and HCP, as is typically seen in neuroimaging studies [46, 47], and appeared in ADNI-2 only 

after ICV adjustment, which could be a sign of an introduced (previously absent) ICV bias [48] 

(especially as the direction of the relationship was opposite to that in OASIS-3). 

 

5. Conclusions 

We conducted a retrospective exploratory study to examine the associations between brain 

structural connectivity and non-MRI variables, using data from four (including three AD-related) 

public dMRI databases. Unlike hypothesis-driven research, where conjectured relationships 

between specific variables are tested, we calculated the correlation between all brain connections 

and non-MRI variables in our dataset without prior assumption, while stringently correcting for 

multiple comparisons, with the aim of discovering connectomic relationships. Replication of our 

findings in other databases and with other connectivity quantification methods is a subject of future 

research. 
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