
Database, 2025, baae133
DOI: https://doi.org/10.1093/database/baae133
Original article

A change language for ontologies and knowledge graphs
Harshad Hegde 1, Jennifer Vendetti 2, Damien Goutte-Gattat 3, J. Harry Caufield 1,
John B. Graybeal 2, Nomi L. Harris 1, Naouel Karam 4, Christian Kindermann 2,
Nicolas Matentzoglu 5, James A. Overton 6, Mark A. Musen 2, Christopher J. Mungall 1,*

1Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, United
States
2Center for Biomedical Informatics Research, Stanford University, 3180 Porter Dr., Palo Alto, CA 94304, United States
3Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
4Institute for Applied Informatics (InfAI), Leipzig University, Goerdelerring 9, Leipzig 04109, Germany
5Semanticly, Spaces Ermou, Ermou 56, Athens 10563, Greece
6Knocean Inc., 2 - 107 Quebec Ave., Toronto, Ontario M6P 2T3, Canada
*Corresponding author. Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, United
States. E-mail: cjmungall@lbl.gov

Citation details: Hegde, H., Vendetti, J., Goutte-Gattat, D. et al. A change language for ontologies and knowledge graphs. Database (2025) Vol. 2025:
article ID baae133; DOI: https://doi.org/10.1093/database/baae133

Abstract
Ontologies and knowledge graphs (KGs) are general-purpose computable representations of some domain, such as human anatomy, and are
frequently a crucial part of modern information systems. Most of these structures change over time, incorporating new knowledge or information
that was previously missing. Managing these changes is a challenge, both in terms of communicating changes to users and providing mecha-
nisms to make it easier for multiple stakeholders to contribute. To fill that need, we have created KGCL, the Knowledge Graph Change Language
(https://github.com/INCATools/kgcl), a standard data model for describing changes to KGs and ontologies at a high level, and an accompanying
human-readable Controlled Natural Language (CNL). This language serves two purposes: a curator can use it to request desired changes, and
it can also be used to describe changes that have already happened, corresponding to the concepts of “apply patch” and “diff” commonly
used for managing changes in text documents and computer programs. Another key feature of KGCL is that descriptions are at a high enough
level to be useful and understood by a variety of stakeholders—e.g. ontology edits can be specified by commands like “add synonym ‘arm’ to
‘forelimb’” or “move ‘Parkinson disease’ under ‘neurodegenerative disease’.” We have also built a suite of tools for managing ontology changes.
These include an automated agent that integrates with and monitors GitHub ontology repositories and applies any requested changes and a
new component in the BioPortal ontology resource that allows users to make change requests directly from within the BioPortal user interface.
Overall, the KGCL data model, its CNL, and associated tooling allow for easier management and processing of changes associated with the
development of ontologies and KGs.
Database URL: https://github.com/INCATools/kgcl

Received 20 September 2024; Revised 21 November 2024; Accepted 30 December 2024
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Ontologies are structures that encode concepts and entities in
a particular domain in a way that facilitates data standard-
ization as well as a wide variety of inferential tasks. They
are crucial to many modern information systems. Ontologies,
such as the Gene Ontology (GO), are used daily to interpret
high-throughput experimental data. Anatomic and cell type
ontologies, such as the Cell Ontology [1] and Uberon [2], are
crucial for projects like HuBMAP [3] and the Human Cell
Atlas [4] that aim to provide a molecular map of the bodies of
humans and other organisms. In the clinical realm, ontologies,
such as the Human Phenotype Ontology [5], are being used to
standardize the representation of phenotypes in patients and
for supporting applications such as phenotype-based variant
prioritization. Ontologies can be distributed and accessed via
portals such as BioPortal [6], OntoBee [7], and the Ontology
Lookup Service [8].

Ontologies often have a graph-like structure and are fre-
quently incorporated into knowledge graphs (KGs), which
augment the textbook knowledge in an ontology with addi-
tional evidence-backed knowledge about individual entities.
Examples of KGs in the biosciences include Hetionet [9], Phe-
KnowLator [10], and KG-COVID-19 [11]. Ontologies and
KGs are similar structures, with different emphases. Ontolo-
gies may emphasize expressive logical structures, and KGs
typically emphasize simpler interconnections.

While ontologies and KGs vary tremendously in their appli-
cations, structure, and formalisms, a common underlying
element is “change.” They are not static. It is rare for a
domain to be represented with perfect accuracy and complete-
ness on the first attempt; instead, there is a constant process
of refinement, as part of a complete lifecycle, involving many
stakeholders. Figure 1, which shows the number of changes
in GO terms between releases, illustrates this continual pro-

https://orcid.org/0000-0002-2411-565X
https://orcid.org/0009-0005-5085-6514
https://orcid.org/0000-0002-6095-8718
https://orcid.org/0000-0001-5705-7831
https://orcid.org/0000-0001-6875-5360
https://orcid.org/0000-0001-6315-3707
https://orcid.org/0000-0002-6762-6417
https://orcid.org/0000-0001-7818-3466
https://orcid.org/0000-0002-7356-1779
https://orcid.org/0000-0001-5139-5557
https://orcid.org/0000-0003-3325-793X
https://orcid.org/0000-0002-6601-2165
mailto:cjmungall@lbl.gov
https://github.com/INCATools/kgcl
https://github.com/INCATools/kgcl
https://creativecommons.org/licenses/by/4.0/

2 Hegde et al.

Figure 1. Changes in GO terms (number created, merged, or obsoleted) between major releases between late 2018 and early 2024.

cess of change in response to new knowledge. GO was first
released over 20 years ago, yet its rate of change remains
high and even increases, as the available pool of relevant
knowledge continues to grow.

Changes to ontologies generally fall into several categories:
adding a new element, obsoleting an existing element, merg-
ing two elements, and adding/deleting/modifying information
associated with an element (such as definitions, synonyms,
or taxon restrictions). Changes can occur in response to
new knowledge, new terminology, improved modeling of
knowledge, or simply to correct previous errors. Changes
can be instigated by requests from the community, but
they are typically applied by expert curators and ontology
editors.

Despite the constant factor of change, there is surprisingly
no single agreed-upon way to “represent or communicate”
ontology changes. This is a major technical and commu-
nication obstacle for KGs and ontologies. This obstacle is
presented in two ways (Fig. 2). The first way is how changes
that have been made “retrospectively” are communicated to
stakeholders (i.e. “diffs”). This is shown on the left side of
Fig. 2: comparing two ontologies O1 and O2 via a “diff”
operation yields a Change object representing the most parsi-
monious set of changes to go from O1 to O2; in this case, the
change is moving Node E from under Node C to under Node
B. The “diff” operation can be used to describe retrospective
changes that have happened to an ontology over time.The
second way is how contributors communicate “prospective”
desired changes to the KGs (i.e. “patches”). An example of

a prospective change is shown on the right side of Fig. 2:
“applying” a Change object to O1 yields O2. T The “apply”
operation can be used to describe intended changes to an
ontology prospectively. A typical workflow is for a domain
expert or curator to ask for a change in natural language,
sometimes in the form of an issue/ticket in the GitHub project
for an ontology. A specialized ontology editor then translates
this request into a sequence of actions in an ontology devel-
opment environment, such as Protégé [12, 13] or WebProtege
[14]. This is a repetitive and time-consuming task with many
inefficiencies, and it relies on the availability of ontology edi-
tors to process these change requests. Another challenge in
ontology editing is that different ontologies implement differ-
ent workflows. Sometimes these are documented, and some-
times one ontology will partially or fully adopt procedures
from another ontology. There is an overall lack of common-
ality, which makes it harder to automate and, for curators,
to transfer practice from one ontology to another. Standard-
izing these processes can reduce the number of mistakes and
increase efficiency.

Community need for a change language and
associated tools
To better understand what curators and ontology developers
need from a change language, we hosted a virtual workshop
in 2023 on change languages in ontologies. In order to scope
the workshop, we focused on the kinds of biological ontolo-
gies found in ontology repositories such as BioPortal and, in

A change language for ontologies and knowledge graphs 3

Figure 2. Logic of ontology changes.

particular, ontologies that are part of the OBO Foundry [15].
Before and during the workshop, we surveyed the commu-
nity of biomedical ontology users and developers on a range
of topics [16], including what tools they used to generate
ontology diffs, how satisfied they were with those tools, and
how they made changes to ontologies. We also demonstrated
and solicited feedback on a proposed standard for represent-
ing ontology changes [which became the Knowledge Graph
Change Language (KGCL)].

In our survey of ontology users, when asked how important
it was for them to stay informed about changes to ontolo-
gies they use, 82% rated it as extremely or very important.
The two tools that participants mentioned for generating diffs
were the ROBOT ontology tool [17] and the Bubastis ontol-
ogy diff tool [18]. ROBOT offers an ontology diff operation
among its many different ontology processing operations and
can operate over ontologies in OBO format or any OWL syn-
tax. Bubastis is a dedicated ontology diffing tool that has been
integrated into BioPortal and other OntoPortal end points.
It is automatically executed for each new ontology release,
allowing users to easily download and view changes. Both
operate by performing setwise diff of OWL axioms, which
gives a precise computable representation of changes, but at
a lower level than how many ontology developers conceive
of changes. For example, the NodeMode operation in Fig. 2
would be represented as two changes, a deletion and an inser-
tion. In our surveys, users reported that they would be more
satisfied with a higher-level representation and presentation of
changes.

In addition to ROBOT and Bubastis, other ontology diffing
frameworks include the QuickGO Change Log [19], GOtrack
[20], and the COnto-diff framework [21]. Although these
were not mentioned by survey participants in the list of tools
they use, these three frameworks provide complementary
and powerful ways of viewing and understanding changes in
ontologies. Both the QuickGO Change Log and GOtrack are
specific to the GO. The QuickGO Change Log is integrated
into the QuickGO ontology browser and allows users to see
changes to the GO in the context of other information and
annotations about that term. GOtrack allows users to analyze
the impact of changes on the GO. COnto-diff provides ontol-
ogy diffing for any OWL ontology and pioneered the use of a
taxonomy or classification of change types (see the “Aligning
with related work” section).

Based on feedback from the workshop participants, there
was a clear need for a standardized, high-level way of rep-
resenting changes in ontologies. A total of 82% of survey
respondents said that it was very important (4 or 5 on a scale

of 1–5) for them to understand changes in the ontologies they
used, while only 8% were satisfied with the current methods
for viewing such changes. The survey results and direct feed-
back from workshop participants showed that there was a
strong desire for improved methods for describing changes to
automated agents that could apply these changes seamlessly to
existing ontologies. We realized that a thoughtfully designed
approach to encoding ontology changes could extend beyond
ontologies and be applicable to knowledge bases and KGs
more generally.

The change language workshop also covered the applica-
tion of changes to ontologies. When we surveyed the commu-
nity of people who use and/or build ontologies and asked how
they request changes in an ontology, almost all of them were
following the workflow just described, although some were
technically skilled enough to make Pull Requests (PRs) in the
ontology repository to accomplish the desired changes. Only
17% said that they were very or extremely satisfied with the
turnaround time for the changes to happen. This dissatisfac-
tion makes it clear that the current human-powered process
of making ontology changes is not sufficient to keep up with
demand and that mechanisms to speed up the process are
needed.

Knowledge Graph Change Language provides
a standard for describing ontology changes
To address the need for a standardized way to express changes
in ontologies, we created KGCL. KGCL can represent com-
mon ontology editing operations (such as modifying a label or
a definition, obsoleting a term, moving a term under another
parent term, etc.). To represent these operations unambigu-
ously and computably, we designed a Controlled Natural
Language (CNL), which is a subset of a natural language (in
this case, English) that restricts the grammar and vocabulary
to reduce ambiguity and complexity. This CNL is designed
to be as close to natural language (US English) as possible,
yet to be unambiguously parseable by machines. As an exam-
ple, the KGCL command to change the name of the ontology
term with the ID ENVO:01000575 from “wax” to “oil” is
“rename ENVO:01000575 from ‘wax’ to ‘oil.’”

KGCL consists of three primary components (Fig. 3):

(i) A schema and taxonomy (classification) of change types
(ii) A CNL for specifying ontology changes

(iii) Multiple serialization formats such as JSON, YAML,
and RDF, as well as tabular formats for use in spread-
sheets.

4 Hegde et al.

Figure 3. Overview of the three components of KGCL: (a) A classification of change types (here showing that NodeRename is a subtype of
NodeChange and a sibling of NodeCreation and NodeDeletion); (b) A CNL for expressing changes in a simple human-readable yet computable syntax; (c)
A data model that can be directly serialized in different syntaxes (here showing a NodeRename instance serialized as YAML).

A classification of types of ontology changes
KGCL organizes different kinds of changes into a classifica-
tion hierarchy, such that all changes that affect terms (nodes)
are in one branch and all changes that affect relationships
(edges) are in another branch—see Table 1. The classifica-
tion and terminology are also available to browse in BioPortal
(https://bioportal.bioontology.org/ontologies/KGCL) and are
available from the PURL https://w3id.org/kgcl/kgcl.owl.ttl.

Change data model
We expressed the aforementioned hierarchy in a semantic
data model. The data model describes the attributes of each
change type. Some attributes, such as the “id” attribute (a
unique identifier for tracking each change), are shared across
all change types. Other attributes are specific to individual
types of change.

For example, as shown in Fig. 3, the NodeRename class
has an attribute “about_node” (shared by all NodeChange
objects, describing the node or term to be acted on), as well
as “old_value” and “new_value,” describing the name/label
to be changed and the replacement name/label.

We use LinkML [22] to express the KGCL data model.
LinkML is an open-source data modeling framework that
provides flexible modeling features such as class hierarchies,
mappings to other models, a rich semantic framework, and in-
line documentation for all model objects. LinkML also allows
the data model to be expressed using other technologies, such
as OWL or JSON-Schema, and LinkML tooling generates the
KGCL website (https://w3id.org/kgcl), model diagrams, and
documentation directly from the model itself.

Serialization formats and Controlled Natural Language
expression
KGCL can be serialized and deserialized using different syn-
taxes. The canonical syntax for KGCL is the KGCL CNL,
which is intended to be easily read and written by humans,

but is also parseable by machines. The KGCL CNL is speci-
fied by a grammar using the Lark formalism [23]. KGCL can
be serialized as JSON, YAML, or RDF, if there is no need for
human readability. A tabular form is also available for use in
spreadsheets, but this is less expressive than the other forms.

A tool suite for working with Knowledge
Graph Change Language
We have developed tools aimed at ontology developers, cura-
tors, and software developers to help with common tasks
related to change management. These tools include an auto-
mated agent (Ontobot) that waits for requests from cura-
tors on GitHub issue trackers and then enacts these changes
on an ontology, a widget for the BioPortal ontology portal
that allows users to make change requests in the BioPor-
tal user interface, and software libraries and command-line
tools in Java and Python that can be used by advanced
users.

Ontobot: an automated agent for applying curator
change requests
Many ontologies are managed in GitHub [24], with GitHub
issues used to manage change requests from users and GitHub
PRs to suggest these changes. This is currently a manual and
time-intensive process, in which an ontology editor will read
through ontology issues, carry out the requested changes using
an ontology development tool such as Protégé, and then make
a PR, which is later reviewed and merged. We created an
automated agent called Ontobot that simplifies this workflow
by automating the time-consuming intermediate steps in this
workflow.

Ontobot is integrated with GitHub using the GitHub
Actions mechanism [25]. GitHub Actions is a lightweight
method for automating tasks in a GitHub repository and is

https://bioportal.bioontology.org/ontologies/KGCL
https://w3id.org/kgcl/kgcl.owl.ttl
https://w3id.org/kgcl

A change language for ontologies and knowledge graphs 5

Table 1. Types of changes supported by KGCL, grouped into Node
Changes and Edge Changes, with example KGCL command for each type,
using the Uberon anatomy ontology

Change type Description Example command

NodeChange
NodeRename A node change

where the name
(aka rdfs:label) of
the node changes

Rename
UBERON:0002398
from “hand” to
“manus”

NodeObsoletion Deprecates usage of
the node, but does
not delete it

Obsolete
“trachea” (alter-
natively: obsolete
“UBERON:0003126”)

NodeDeletion Deletes a node from
the graph

Delete node “heart”

ClassCreation A node creation
where the node is a
class (as opposed to
a relation)

Create “digestive
system”

Synonym Replace-
ment

A node synonym
change where the
text of a synonym is
changed

Replace syn-
onym “intestine”
with “gut” for
“alimentary canal”

NewTextDefinition A node change
where a de novo text
definition is created

Add definition “A
muscular organ
that pumps blood
through the body”
to “heart”

Remove TextDefini-
tion

A node change
where a text
definition is deleted

Remove definition
for “liver”

NodeTextDefinition
Change

A node change
where the text
definition is changed

Change definition
of “kidney” to “An
organ that filters
blood to produce
urine”

NewSynonym A node synonym
change where a de
novo synonym is
created

Create exact syn-
onym “thigh bone”
for “femur”

RemoveSynonym A node synonym
change where a
synonym is deleted

Remove synonym
“arm bone” for
“humerus”

EdgeChange
EdgeCreation An edge change in

which a de novo
edge is created

Create edge “hep-
atocyte” part_of
“liver”

EdgeDeletion An edge change in
which an edge is
removed

Delete edge “hep-
atocyte” part_of
“lung”

NodeMove A combination of
deleting a parent
edge and adding a
parent edge

–

PredicateChange An edge change
where the predicate
(relationship type) is
modified

Change relationship
between “stomach”
and “digestive sys-
tem” from “is_a” to
“part_of”

the easiest way of bringing new features to GitHub users; they
can be developed, tested, and deployed quickly and do not
require additional infrastructure. The maintainers of an ontol-
ogy repository can easily deploy Ontobot, after which it will
monitor the GitHub repo, where it watches for issues with a
specific text string: “Hey ontobot! apply:” followed by a bul-
leted list of ontology change requests, written in the KGCL

CNL syntax. The agent will then carry out the request, gener-
ating a GitHub PR that will make the requested change(s) in
the ontology source file. The PR can be quickly reviewed and
merged by the maintainers of the ontology.

Figure 4 shows an example of this process in which a user
requests the addition of a synonym to a term in the Mondo
Disease Ontology (MONDO) and Ontobot creates a PR to
make the change in the ontology file, which needs to be
approved by a Mondo curator. In this example, Ontobot is
invoked by a user via a GitHub issue to add a synonym to a
MONDO term. Step 1: The user opens a GitHub issue in the
ontology repository requesting an ontology change. The issue
includes the special instruction “## Hey ontobot! apply:” fol-
lowed by commands in KGCL CNL syntax describing the
desired change(s) (here, adding an exact synonym to a term).
Step 2: The Ontobot change agent, which watches the issue
tracker for the “Hey ontobot” instruction, sees this issue and
responds to it. Step 3: Ontobot creates a PR that will execute
the requested change to the ontology. Curators are assigned to
review the PR; it cannot be merged until at least one curator
approves it. Step 4: Once the curator approves the proposed
change, it is merged into the ontology and incorporated into
the next release, where it is available for use by all.

User-friendly suggestion of ontology changes via
BioPortal
The BioPortal ontology portal provides access to a wide selec-
tion of biomedical ontologies and tools for working with
them. A new BioPortal widget, still in development, provides
an easy way for biocurators to suggest changes to an ontology
they work on. Under the hood, this widget uses KGCL CNL
to express the desired ontology changes and invokes Ontobot
to create the corresponding PR in GitHub. As we showed in
the last section, biocurators can go directly to GitHub and
open an issue to call Ontobot; the BioPortal widget provides
an even simpler and more user-friendly interface that does not
require any knowledge of KGCL.

When BioPortal users browse ontology classes, the new
widget provides easy access to forms in the user interface for
entering information about proposed changes (Fig. 5). Each
form presented to users has the necessary fields to collect data
that are specific to the various change types—e.g. for the addi-
tion of a synonym, a dropdown field allows the user to specify
the type of synonym such as exact, narrow, broad, or related.
In the example illustrated in Fig. 5, a BioPortal user opens
the Mondo term “neurodevelopmental-craniofacial syndrome
with variable renal and cardiac abnormalities” (Step 1). The
user decides to request the addition of a synonym, so they click
the “+” button at the right of the Synonyms row, which brings
up a form that requests information about the change (Step 2).
The user enters the desired new synonym (ZMYM2-related
neurodevelopmental disorder with multiple anomalies) and
selects the synonym type (“exact”) from a pull-down menu.
When the form is submitted, BioPortal creates a new GitHub
issue in the Mondo repository invoking Ontobot to make the
change and displays a message (Step 3) with a hyperlink to let
the user go to the issue in GitHub.

When users submit change request proposals, BioPortal
collects the data and generates issues that are sent to GitHub
in the repository where the ontology source file is maintained.
The issues have human-readable titles, and the body contents
hold a machine-processable string that precisely describes the

6 Hegde et al.

Figure 4. An example of a user-initiated change request handled by Ontobot.

requested change as a KGCL command, as described in the
previous section. Figure 5 shows an example of how a user
can request an ontology change, such as adding a synonym to
a term, in BioPortal.

Since a good deal of text across these issues is common, we
used Ruby’s ERB templating system [26] to build templates
for each change request type. For example, a GitHub issue
title template for adding a synonym to a class appears in the
BioPortal codebase as follows:

 Proposal: add synonym ’<%= synonym_label %>’ for
<%= concept_label %>

After form submission, the template is evaluated and the
appropriate fields are dynamically replaced to create the
human-readable version—e.g.

 Proposal: add synonym ‘cortical visual impairment’
for cortical blindness

BioPortal currently supports four KGCL change request
types: synonym creation, synonym removal, class obsoletion,
and class renaming. We plan to continue adding support for
additional change request types (Table 1). The change request
functionality is also configurable on a per-ontology basis,

A change language for ontologies and knowledge graphs 7

Figure 5. Requesting an ontology change in BioPortal.

since not all BioPortal users store their ontology source files
in GitHub. We currently enable this functionality for four
prominent ontologies in BioPortal including Mondo, GO, the
Environment Ontology (ENVO) [27], and Uberon.

Developer tools for working with Knowledge Graph
Change Language
Several tools that we developed or adapted to provide back-
end support for Ontobot [including Ontology Access Kit
(OAK) and KGCL-Java] can also be leveraged by advanced
users and developers who want to add KGCL support to their
applications. Currently, not all tools support all features of
KGCL.

Python and Ontology Access Kit
The OAK [28] provides both a command-line interface and a
Python API for two operations: (i) a “diff” operation, which
takes as input two ontologies and provides a KGCL diff and
(ii) an “apply” operation, which takes an ontology plus KGCL
commands as input and generates a modified ontology. For
both commands, the KGCL CNL and serialized data models
in YAML and JSON are supported.

Java and ROBOT
In parallel with the Python implementation described ear-
lier, we have also developed a support library for Java,
KGCL-Java. The KGCL-Java library provides both a direct

8 Hegde et al.

translation of the KGCL data model into plain Java classes,
which can be used for arbitrary manipulations of KGCL
objects in a Java application, and a set of accompanying
classes to facilitate working with KGCL. It includes a parser
and serializer to convert KGCL objects to and from the KGCL
CNL and classes to implement the changes represented by
KGCL objects into OWL axioms so that the changes can be
applied to an OWL ontology. Those classes are built on the
OWL API library [29], which underpins several widely used
ontology tools such as the Protégé ontology editor and the
command-line ontology manipulation tool ROBOT (15); this
opens the way for bringing KGCL support to such tools.

As a case in point, using the KGCL-Java library, we have
developed a KGCL plugin for ROBOT, which adds a new
“apply” command to the ROBOT toolkit. This command
takes one or more KGCL changes expressed in the KGCL
CNL, either directly from the command line or by reading
from a file, and applies them to an ontology as part of a
ROBOT pipeline, e.g.

 robot apply -i input.owl -k “obsolete EX:1234 with
replacement EX:5678” -o output.owl

Future work
Delayed applications of changes
We are considering the possibility of using KGCL to represent
provisional changes: changes that are being proposed, but are
not yet accepted into the target ontology or KG for some rea-
son (e.g. because the editors need more time to assess whether
they are correct). We envision a “provisional mode” for KGCL
applications, where the changes that are being described using
KGCL syntax are not directly applied to the target ontology,
but instead “stored” as KGCL objects within the ontology
until they are either approved (in which case they will then be
effectively applied) or rejected. The main benefits of such an
approach—compared to, e.g. keeping provisional changes as
PRs waiting to be merged in a repository—is that the changes
would be directly visible in the ontology itself and could be
queried and manipulated like any other ontological entity
using standard ontology tools and libraries.

How exactly KGCL objects should be stored in an ontol-
ogy is still under consideration. Our current approach is to
represent them as annotations on the very ontological entities
that they are intended to modify.

A draft implementation of the “provisional mode” is avail-
able in the KGCL-Java library and ROBOT plugin, where
a command like robot apply -k “obsolete EX:1234”– pro-
visional will store a NodeObsoletion KGCL object into the
ontology (instead of actually obsoleting the EX:1234 class),
and conversely a command like robot apply –pending all will
effectively apply all the provisional changes currently stored
in the ontology.

Viewing diffs in BioPortal
KGCL makes it possible to decouple the representation of
changes from the process of computing them. It provides a
higher-level way to communicate changes that correspond to
how ontologists and curators think of those changes, abstract-
ing away from low-level RDF or OWL diffs. In the future, we
plan to use KGCL to support BioPortal’s change reporting to
show the differences between two versions of an ontology.

Extension of the core model to support multiple
flavors of KGs and ontologies
While our primary use case is changes in ontologies, we have
aimed to keep the data model generic enough to use with gen-
eralized KGs. We aim to deploy KGCL within our Knowledge
Graph Hub framework [30], showing at a high level how KGs
change over time. For example, the KGCL “edge change”
operations are intended to be used with any KG and are
not limited to particular OWL axiom types such as subclass
axioms. They are also intended to support property graph
style, KGs, where individual edges can be annotated with
additional contextual information, such as the kind described
in the Biolink model [31]. However, some users have requested
full support for more complex axiom types, including logical
definition style equivalence axioms commonly found in OBO
ontologies, so we plan to add these in the future.

Artificial Intelligence applications and evaluations
KGCL is fundamentally a tool to help humans communi-
cate about changes in ontologies, either to communicate what
changes have been made or to request desired changes. Gen-
erative Artificial Intelligence (AI) and Large Language Models
(LLMs) can complement the use of KGCL for both these
tasks. Our previous work has demonstrated that LLMs can
be used under the supervision of expert users to assist with
the generation of new terms [32]. However, as our com-
munity survey showed, many of the bottlenecks in ontology
development are around making other kinds of changes to
ontologies. To enable the use of LLMs for ontology changes,
we developed a prototype ChatGPT plugin that can be used
to generate KGCL CNL from free text descriptions of changes
[33]. This plugin has the limitation that it has to be used
within the ChatGPT UI, limiting broader uptake and making
it hard to evaluate. To remedy this, we have started construct-
ing an AI change evaluation set by mining GitHub issues and
associated PRs across ontology GitHub repos. For each PR
that can be associated with a change, we generate a KGCL
CNL description of the changes, together with the issue his-
tory associated with that PR. Our intent is to use this in
Retrieval Augmented Generation applications and incorpo-
rate this into the Ontobot change agent. Our goal is to allow
Ontobot to read any issue in a GitHub repo (whether in
CNL syntax or plain natural language) and generate a PR,
using the previous history of changes, and information in
the ontology as context. The evaluation set and an associ-
ated LangChain [34] agent are available from our GitHub
repo [35].

Aligning with related work
Our work is influenced by existing OWL-level diffing tools
such as ROBOT and Bubastis. The data model we have
devised has similarities to the model used in the COnto-
Diff framework, as well as work summarized in Groß et al.
[36], the DIACHRON framework [37], and the more recent
DynDiff framework [38]. The emphasis of our efforts has
been on the creation of a human-readable CNL that can
serve as a means of communication between humans and
machines. We have commenced efforts to align and map these
data models and provide bridges between these tools. Sim-
ple changes have largely been mapped to their counterparts in

A change language for ontologies and knowledge graphs 9

COnto-Diff, DIACHRON, and DynDiff. For instance, Node-
Move is mapped to move(c, C_To, C_From), Move_Class(a,
B1, B2)/Move_Property(a, B1, B2), and moveC(c, B1,
B2)/moveP(p, B1, B2) accordingly. Specific changes within the
KGCL framework, such as NodeMappingChange and Pred-
icateChange, do not have direct equivalents in these models.
This is because they focus more on node-related changes (i.e.
changes pertaining to classes, properties, and instances) rather
than on edge changes or mappings. Instance-level (ABox)
changes, like instance addition or deletion, and heuristic
changes, such as concept merge and split, are yet to be con-
sidered, although as mentioned earlier, the model will be
extended to accommodate these types of changes based on
community-driven use cases.

Conclusions
Ontologies and KGs are highly dynamic in nature, undergoing
frequent changes in the light of new knowledge or improved
curation. However, change is rarely treated as a first-class
object. By providing a standardized representation of changes
in ontologies and KGs, KGCL and its associated tooling pro-
vide a mechanism to help communicate to curators and users
the changes that have occurred in ontologies over time and a
mechanism to communicate and enact desired changes in an
ontology.

Acknowledgements
The authors thank all the participants of the inaugural change
language workshop: Allen Baron, Jim Balhoff, Sierra Moxon,
Bill Duncan, Sabrina Toro, Matthew Horridge, Nicole
Vasilevsky, Naoual Smaili, Emily Hartley, Sue Bello, Yvonne
Bradford, Ian Braun, Timothy Redmond, Chris Roeder, Leigh
Carmody, Clement Jonquet, Claus Weiland, Jonas Grieb,
Thomas Liener, Aleix Puig, Philip Strömert, Charles Tapley
Hoyt, Paul Fabry, Rhiannon Cameron, Damion Dooley, and
Daniel Olson.

They thank the BioPortal Scientific Advisory Board for
their helpful feedback on our project: Yolanda Gil, Clement
Jonquet, Andrew Phillips, and Andrew Su.

Author contributions
C.J.M. devised the overall framework and data model and
drafted the manuscript. C.K. and J.A.O. devised and wrote
the grammar and Python RDF implementation. H.H. wrote
the GitHub adapter and integrated it into OAK. N.M. con-
tributed to the overall framework and data model and helped
draft the manuscript. N.L.H. contributed substantially to the
manuscript. N.K. contributed to the data model and map-
pings. J.V. wrote the BioPortal layer. M.A.M. and J.B.G.
contributed to the overall framework and schema. D.G.-G.
wrote the Java library and ROBOT adapter. All authors made
contributions to the manuscript.

Conflict of interest: None declared.

Funding
This work was supported by the National Institutes of
Health [U24 GM143402, 5U01HG009453-03 (past sup-
port)]; the Director, Office of Science, Office of Basic
Energy Sciences, of the US Department of Energy (Con-
tract No. DE-AC0205CH11231 to H.H., J.H.C., N.L.H.,
and C.J.M.); and the National Science Foundation (BBSRC-
NSF/BIO BB/T014008/1 to D.G.G.). In addition, a gift from
Bosch Corporation helped support this work.

Data Availability
All software and schemas discussed in this paper are open
access, and are available at https://github.com/INCATools/
kgcl.

References
1. Diehl AD, Meehan TF, Bradford YM et al. The Cell Ontology 2016:

enhanced content, modularization, and ontology interoperability.
J Biomed Semant 2016;7:44. https://doi.org/10.1186/s13326-016-
0088-7

2. Mungall CJ, Torniai C, Gkoutos GV et al. Uberon, an integrative
multi-species anatomy ontology. Genome Biol 2012;13:R5. https://
doi.org/10.1186/gb-2012-13-1-r5

3. Jain S, Pei L, Spraggins JM et al. Advances and prospects
for the Human BioMolecular Atlas Program (HuBMAP). Nat
Cell Biol 2023;25:1089–100. https://doi.org/10.1038/s41556-
023-01194-w

4. Regev A, Teichmann SA, Lander ES et al. The Human Cell Atlas.
Elife 2017;6:e27041. https://doi.org/10.7554/eLife.27041

5. Gargano MA, Matentzoglu N, Coleman B et al. The Human
Phenotype Ontology in 2024: phenotypes around the world.
Nucleic Acids Res 2024;52:D1333–46. https://doi.org/10.1093/
nar/gkad1005

6. Noy NF, Shah NH, Whetzel PL et al. BioPortal: ontologies
and integrated data resources at the click of a mouse. Nucleic
Acids Res 2009;37:W170–3. https://doi.org/10.1093/nar/gk
p440

7. Ong E, Xiang Z, Zhao B et al. Ontobee: a linked ontology data
server to support ontology term dereferencing, linkage, query and
integration. Nucleic Acids Res 2017;45:D347–52. https://doi.org/
10.1093/nar/gkw918

8. Jupp S, Burdett T, Leroy C et al. A new ontology lookup service at
EMBL-EBI. SWAT4LS 2015;2:118–9.

9. Himmelstein DS, Baranzini SE, Tang H. Heterogeneous network
edge prediction: a data integration approach to prioritize disease-
associated genes. PLoS Comput Biol 2015;11:e1004259. https://
doi.org/10.1371/journal.pcbi.1004259

10. Callahan TJ, Tripodi IJ, Stefanski AL et al. An open source knowl-
edge graph ecosystem for the life sciences. Sci Data 2024;11:363.
https://doi.org/10.1038/s41597-024-03171-w

11. Reese JT, Unni D, Callahan TJ et al. KG-COVID-19: a frame-
work to produce customized knowledge graphs for COVID-
19 response. Patterns 2021;2:100155. https://doi.org/10.1016/j.
patter.2020.100155

12. Knublauch H, Horridge M, Musen MA et al. The Protege OWL
Experience. OWLED, 2005. https://www.researchgate.net/profile/
Mark-Musen/publication/221218459_The_Protege_OWL_
Experience/links/09e415113c8d91ab91000000/The-Protege-
OWL-Experience.pdf (1 September 2024, date last accessed).

13. Musen MA, Protégé Team. The Protégé project: a look back and
a look forward. AI Matters 2015;1:4–12. https://doi.org/10.1145/
2757001.2757003

https://github.com/INCATools/kgcl
https://github.com/INCATools/kgcl
https://doi.org/https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/https://doi.org/10.1186/s13326-016-0088-7
https://doi.org/https://doi.org/10.1186/gb-2012-13-1-r5
https://doi.org/https://doi.org/10.1186/gb-2012-13-1-r5
https://doi.org/https://doi.org/10.1038/s41556-023-01194-w
https://doi.org/https://doi.org/10.1038/s41556-023-01194-w
https://doi.org/https://doi.org/10.7554/eLife.27041
https://doi.org/https://doi.org/10.1093/nar/gkad1005
https://doi.org/https://doi.org/10.1093/nar/gkad1005
https://doi.org/https://doi.org/10.1093/nar/gkp440
https://doi.org/https://doi.org/10.1093/nar/gkp440
https://doi.org/https://doi.org/10.1093/nar/gkw918
https://doi.org/https://doi.org/10.1093/nar/gkw918
https://doi.org/https://doi.org/10.1371/journal.pcbi.1004259
https://doi.org/https://doi.org/10.1371/journal.pcbi.1004259
https://doi.org/https://doi.org/10.1038/s41597-024-03171-w
https://doi.org/https://doi.org/10.1016/j.patter.2020.100155
https://doi.org/https://doi.org/10.1016/j.patter.2020.100155
https://www.researchgate.net/profile/Mark-Musen/publication/221218459_The_Protege_OWL_Experience/links/09e415113c8d91ab91000000/The-Protege-OWL-Experience.pdf
https://www.researchgate.net/profile/Mark-Musen/publication/221218459_The_Protege_OWL_Experience/links/09e415113c8d91ab91000000/The-Protege-OWL-Experience.pdf
https://www.researchgate.net/profile/Mark-Musen/publication/221218459_The_Protege_OWL_Experience/links/09e415113c8d91ab91000000/The-Protege-OWL-Experience.pdf
https://www.researchgate.net/profile/Mark-Musen/publication/221218459_The_Protege_OWL_Experience/links/09e415113c8d91ab91000000/The-Protege-OWL-Experience.pdf
https://doi.org/https://doi.org/10.1145/2757001.2757003
https://doi.org/https://doi.org/10.1145/2757001.2757003

10 Hegde et al.

14. Tudorache T, Nyulas C, Noy NF et al. WebProtégé: a col-
laborative ontology editor and knowledge acquisition tool for
the web. Semant Web 2013;4:89–99. https://doi.org/10.3233/SW-
2012-0057

15. Jackson R, Matentzoglu N, Overton JA et al. OBO Foundry in
2021: operationalizing open data principles to evaluate ontologies.
Database 2021;2021:baab069. https://doi.org/10.1093/database/
baab069

16. Harris N, Matentzoglu N, Mungall C. Data and slides from May
2023 virtual workshop on change languages in ontologies and
knowledge graphs.https://doi.org/10.5281/ZENODO.14188134

17. Jackson RC, Balhoff JP, Douglass E et al. ROBOT: a tool
for automating ontology workflows. BMC Bioinf 2019;20:407.
https://doi.org/10.1186/s12859-019-3002-3

18. Malone J, Stevens R. Measuring the level of activity in community
built bio-ontologies. J Biomed Inform 2013;46:5–14. https://doi.
org/10.1016/j.jbi.2012.04.002

19. Binns D, Dimmer E, Huntley R et al. QuickGO: a web-based tool
for Gene Ontology searching. Bioinformatics 2009;25:3045–6.
https://doi.org/10.1093/bioinformatics/btp536

20. Jacobson M, Sedeño-Cortés AE, Pavlidis P. Monitoring changes in
the Gene Ontology and their impact on genomic data analysis.
Gigascience 2018;7:giy103. https://doi.org/10.1093/gigascience/
giy103

21. Hartung M, Groß A, Rahm E. COnto-Diff: generation of com-
plex evolution mappings for life science ontologies. J Biomed
Inform 2013;46:15–32. https://doi.org/10.1016/j.jbi.2012.0
4.009

22. Moxon S, Solbrig H, Unni D et al. The linked data model-
ing language (LinkML): a general-purpose data modeling frame-
work grounded in machine-readable semantics. In: 2021 Inter-
national Conference on Biomedical Ontologies, ICBO 2021.
September 15–18, 2021. pp. 148–51. Bolzano, Italy:CEUR-WS,
2021.

23. INCATools/kgcl. src/kgcl_schema/grammar/kgcl.lark at main.
Github. https://github.com/INCATools/kgcl/blob/main/src/kgcl_
schema/grammar/kgcl.lark (1 September 2024, date last accessed).

24. Hoyt CT, Gyori BM. The O3 guidelines: open data, open code,
and open infrastructure for sustainable curated scientific resources.
Sci Data 2024;11:547. https://doi.org/10.1038/s41597-024-034
06-w

25. Decan A, Mens T, Mazrae PR et al. On the use of github actions
in software development repositories. In: 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME). pp.
235–45. Limassol, Cyprus: IEEE, 2022.

26. Ruby/erb. An Easy to Use but Powerful Templating System for
Ruby. Github. https://github.com/ruby/erb (1 September 2024,
date last accessed).

27. Buttigieg PL, Pafilis E, Lewis SE et al. The environment ontology
in 2016: bridging domains with increased scope, semantic density,
and interoperation. J Biomed Semant 2016;7:57. https://doi.org/
10.1186/s13326-016-0097-6

28. INCATools/ontology-access-kit. Ontology Access Kit: Ontology
Access Kit: A Python Library and Command Line Application for
Working with Ontologies. Github. https://github.com/INCATools/
ontology-access-kit (1 September 2024, date last accessed).

29. Horridge M, Bechhofer S, and Noppens O. Igniting the OWL 1.1
Touch Paper: The OWL API. https://ceur-ws.org/Vol-258/paper19.
pdf (1 September 2024, date last accessed).

30. Caufield JH, Putman T, Schaper K et al. KG-Hub-building
and exchanging biological knowledge graphs. Bioinformat-
ics 2023;39:btad418. https://doi.org/10.1093/bioinformatics/
btad418

31. Unni DR, Moxon SAT, Bada M et al. Biolink Model: a universal
schema for knowledge graphs in clinical, biomedical, and trans-
lational science. Clin Transl Sci 2022;15:1848–55. https://doi.org/
10.1111/cts.13302

32. Toro S, Anagnostopoulos AV, Bello S et al. Dynamic retrieval
augmented generation of ontologies using artificial intelli-
gence (DRAGON-AI). J Biomed Semantics 2024;15:19. 10.1186/
s13326-024-00320-3

33. Creators Mungall C. AI guided ontology curation workflows and
the ROBOT template GPT helper. https://doi.org/10.5281/zenodo.
10901704

34. Topsakal O, Akinci TC. Creating large language model applica-
tions utilizing LangChain: a primer on developing LLM apps fast.
ICAENS 2023;1:1050–6. https://doi.org/10.59287/icaens.1127

35. Creators Hegde H. LLM change agent. https://doi.org/10.5281/
zenodo.13712477

36. Groß A, Pruski C, Rahm E. Evolution of biomedical ontologies and
mappings: overview of recent approaches. Comput Struct Biotech-
nol J 2016;14:333–40. https://doi.org/10.1016/j.csbj.2016.
08.002

37. Papavasileiou V, Flouris G, Fundulaki I et al. High-level change
detection in RDF(S) KBs. ACM Trans Database Syst 2013;38:1–42.
https://doi.org/10.1145/2445583.2445584

38. Diaz Benavides S, Cardoso SD, Da Silveira M et al. Analysis and
implementation of the DynDiff tool when comparing versions of
ontology. J Biomed Semant 2023;14:15. https://doi.org/10.1186/
s13326-023-00295-7

Database, 2025, 00, baae133, DOI: https://doi.org/10.1093/database/baae133, Original article
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/https://doi.org/10.3233/SW-2012-0057
https://doi.org/https://doi.org/10.3233/SW-2012-0057
https://doi.org/https://doi.org/10.1093/database/baab069
https://doi.org/https://doi.org/10.1093/database/baab069
https://doi.org/https://doi.org/10.5281/ZENODO.14188134
https://doi.org/https://doi.org/10.1186/s12859-019-3002-3
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.002
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.002
https://doi.org/https://doi.org/10.1093/bioinformatics/btp536
https://doi.org/https://doi.org/10.1093/gigascience/giy103
https://doi.org/https://doi.org/10.1093/gigascience/giy103
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.009
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.009
https://github.com/INCATools/kgcl/blob/main/src/kgcl_schema/grammar/kgcl.lark
https://github.com/INCATools/kgcl/blob/main/src/kgcl_schema/grammar/kgcl.lark
https://doi.org/https://doi.org/10.1038/s41597-024-03406-w
https://doi.org/https://doi.org/10.1038/s41597-024-03406-w
https://github.com/ruby/erb
https://doi.org/https://doi.org/10.1186/s13326-016-0097-6
https://doi.org/https://doi.org/10.1186/s13326-016-0097-6
https://github.com/INCATools/ontology-access-kit
https://github.com/INCATools/ontology-access-kit
https://ceur-ws.org/Vol-258/paper19.pdf
https://ceur-ws.org/Vol-258/paper19.pdf
https://doi.org/https://doi.org/10.1093/bioinformatics/btad418
https://doi.org/https://doi.org/10.1093/bioinformatics/btad418
https://doi.org/https://doi.org/10.1111/cts.13302
https://doi.org/https://doi.org/10.1111/cts.13302
https://doi.org/10.1186/s13326-024-00320-3
https://doi.org/10.1186/s13326-024-00320-3
https://doi.org/https://doi.org/10.5281/zenodo.10901704
https://doi.org/https://doi.org/10.5281/zenodo.10901704
https://doi.org/https://doi.org/10.59287/icaens.1127
https://doi.org/https://doi.org/10.5281/zenodo.13712477
https://doi.org/https://doi.org/10.5281/zenodo.13712477
https://doi.org/https://doi.org/10.1016/j.csbj.2016.08.002
https://doi.org/https://doi.org/10.1016/j.csbj.2016.08.002
https://doi.org/https://doi.org/10.1145/2445583.2445584
https://doi.org/https://doi.org/10.1186/s13326-023-00295-7
https://doi.org/https://doi.org/10.1186/s13326-023-00295-7
https://creativecommons.org/licenses/by/4.0/

	A change language for ontologies and knowledge graphs
	 Introduction
	 Community need for a change language and associated tools

	 Knowledge Graph Change Language provides a standard for describing ontology changes
	 A classification of types of ontology changes
	 Change data model
	 Serialization formats and Controlled Natural Language expression

	 A tool suite for working with Knowledge Graph Change Language
	 Ontobot: an automated agent for applying curator change requests
	 User-friendly suggestion of ontology changes via BioPortal
	 Developer tools for working with Knowledge Graph Change Language
	 Python and Ontology Access Kit
	 Java and ROBOT

	 Future work
	 Delayed applications of changes
	 Viewing diffs in BioPortal
	 Extension of the core model to support multiple flavors of KGs and ontologies
	 Artificial Intelligence applications and evaluations
	 Aligning with related work

	 Conclusions
	Acknowledgements
	Author contributions
	Conflict of interest:
	Funding
	 Data Availability
	References

