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Abstract

Electronic health records (EHRs) have given rise to large and complex databases of medical 

information that have the potential to become powerful tools for clinical research. However, 

differences in coding systems and the detail and accuracy of the information within EHRs can 

vary across institutions. This makes it challenging to identify subpopulations of patients and 

limits the widespread use of multi-institutional databases. In this study, we leveraged machine 

learning to identify patterns in medication usage among hospitalized pediatric patients receiving 

renal replacement therapy and created a predictive model that successfully differentiated between 

intermittent (iHD) and continuous renal replacement therapy (CRRT) hemodialysis patients. We 
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trained six machine learning algorithms (logistical regression, Naïve Bayes, k-nearest neighbor, 

support vector machine, random forest, and gradient boosted trees) using patient records from 

a multi-center database (n = 533) and prescribed medication ingredients (n = 228) as features 

to discriminate between the two hemodialysis types. Predictive skill was assessed using a 5-fold 

cross-validation, and the algorithms showed a range of performance from 0.7 balanced accuracy 

(logistical regression) to 0.86 (random forest). The two best performing models were further 

tested using an independent single-center dataset and achieved 84–87% balanced accuracy. 

This model overcomes issues inherent within large databases and will allow us to utilize and 

combine historical records, significantly increasing population size and diversity within both iHD 

and CRRT populations for future clinical studies. Our work demonstrates the utility of using 

medications alone to accurately differentiate subpopulations of patients in large datasets, allowing 

codes to be transferred between different coding systems. This framework has the potential to 

be used to distinguish other subpopulations of patients where discriminatory ICD codes are not 

available, permitting more detailed insights and new lines of research.

Keywords

Machine learning; Electronic health records; Medications; Hemodialysis; Pediatrics

1. Introduction

Electronic health records (EHRs) are digitized forms of health information and 

documentation that facilitate the systematic search of medical records. EHR systems 

are increasingly used for clinical research. However, EHRs are notoriously noisy, with 

detail and accuracy varying between institutions, including lack of secondary diagnoses 

and comorbidities or mismatches between medical chart records [1-4]. Inconsistencies in 

coding systems both within and between institutions create additional challenges [1-5]. For 

example, EHR data use various coding systems, including International Classification of 

Diseases 9/10 (ICD9/ICD10) systems for diagnosis, procedures, lab results, and medications 

[1,6]. ICD10 codes are vastly more detailed, with 141,747 procedural and diagnostic 

codes compared to 15,000 for ICD9 [1-3]. The differences in the level of detail and 

accuracy between ICD9 and ICD10 codes for the same diagnoses and procedures lead to 

significant challenges in combining EHR databases. To date, there are two main solutions 

when combining EHR databases with differing levels of data resolution: 1) removal of 

lower granularity data; 2) aggregation of higher granularity data to lower granularity. Both 

approaches result in a loss of critical information with removal of data limiting the number 

of available records and aggregation of data resulting in a loss of patient information.

Machine learning (ML) offers an alternative approach through the development of models 

that can robustly disaggregate low granularity data into higher granularity data through 

learned patterns in patient information [7]. This could limit the loss of information found 

in existing approaches and facilitate the study of rarer medical conditions with small 

population sizes. Models developed using ML methods have been used to generate higher 

resolution from lower resolution data in other fields, in particular image processing and 
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climatology [8,9]. To our knowledge, this approach has not been applied to EHRs to identify 

patient subpopulations.

Existing ML studies based on EHRs have been used to automate the interpretation of clinical 

notes (unstructured data) by combining coded (structured) information and natural language 

processing [10-12]. The models developed in these studies have shown great accuracy in the 

identification of populations, disease prediction and medication usage based on diagnosis 

[10-12]. These models are often based on multiple sources of detailed data tailored to 

specific study questions and are not easily generalizable across EHR databases of varying 

structure and granularity. Increased generalization can be achieved by restricting models to 

commonly available information. Disease and medications are correlative and have been 

used previously in predictive models based on a combination of structed and unstructured 

EHR data [11,12]. The results of these previous studies suggest that it may be possible to 

create a simple, predictive and generalizable model to identify subpopulations of patients 

using only medications and basic demographic information. This approach has the potential 

to substantially increase the number of records used to study rare conditions with small 

patient populations. As medication data is a key part of all EHR databases, this facilitates 

transferability across databases.

In this study, we leverage ML to identify patterns in medication usage among 

subpopulations of patients within a multi-institutional ICD9/10 coded EHR database. As 

a test case, we utilized an inpatient pediatric hemodialysis cohort to identify subpopulations 

based on hemodialysis (HD) modality. This population was chosen for testing as it has a 

small population size and distinctive subpopulations that cannot be identified in ICD9 coded 

EHRs. Currently, studies of these subpopulations must be limited to ICD10 coded EHRs, 

EHRs with both structured and unstructured data, or single institutions where detailed 

patient chart information can be used to verify modality. Using ML models, we were 

able to identify two subpopulations of inpatient HD pediatric patients; patients undergoing 

intermittent hemodialysis (iHD) and continuous renal replacement therapy (CRRT). While 

CRRT and iHD are both used to replace kidney function, CRRT is a favored modality for 

critically ill patients, while iHD is used for more stable patients with both chronic as well 

as acute conditions. The ability to differentiate between these distinctive subpopulations 

allows for fine-grained analyses. The methods developed in this manuscript will be used in 

an ongoing study to identify common medications in iHD and CRRT pediatric patients in 

order to guide future dosing studies. This approach overcomes issues inherent within large 

databases that combine EHRs from different institutions and offers a general framework that 

can be used to identify a variety of patient subpopulations for future clinical studies.

2. Methods

In order to build and test the machine learning algorithms, the following steps were required: 

1) acquisition of relevant medical health record data; 2) data pre-processing; 3) model 

development, 4) model validation; and 5) post-hoc model interpretation (Fig. 1).
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2.1. Dataset

2.1.1. Data acquisition—The TriNetX database (subsequently referred to as the 

TriNetX dataset) was the primary data source used to train the ML algorithms. TriNetX 

is a global health research network that provides electronic medical records (diagnoses, 

procedures, medications, laboratory values, genomic information) from 3083 pediatric 

dialysis patients from 41 healthcare organizations. A request was submitted to TriNetX 

to obtain records for all patients with one or more of the following dialysis ICD9/10 codes: 

5A1D90Z, 5A1D70Z, 5A1D80Z, 90945, 90947, 39.95, 71192002, Z99.2 and 302497006. 

De-identified EHRs were returned in several distinct files, including patient demographics, 

encounters (hospitalizations), and medications.

2.1.2. Data pre-processing—Data were merged after acquisition using patient and 

encounter identification numbers to produce a dataset including only hemodialysis 

encounters. The merged dataset was then cleaned to provide a subset of data for training 

the ML algorithms. As the ICD-9 code 39.95 does not discriminate between intermittent and 

continuous dialysis, we selected encounters corresponding to only ICD-10 codes 5A1D70Z 

(iHD) and 5A1D90Z (CRRT) for model training. The dataset included information on 

medications separated into two files: 1) dose, formulation, and brand; 2) ingredients. 

Therefore, we chose to use medication ingredients to avoid different doses and formulations 

of the same medication being considered as different medications across patients and/or 

encounters.

Medications that were used in at least 5% of encounters were selected, resulting in 228 

medications, each specified by the corresponding RxNorm code. Medications were binary 

encoded for each encounter (0 = not prescribed; 1 = prescribed). In addition to medication 

ingredients, sex and age at the time of encounter were also included as features. As the exact 

age at the time of encounter was not included in the original data, it was estimated as the 

difference between the birth year and encounter start date. The outcome was also binary 

encoded (0 = iHD, 1 = CRRT).

A second retrospective dataset (PCH dataset) was obtained from Intermountain Primary 

Children’s Hospital in Salt Lake City, UT. As the PCH dataset did not contain RxNorm 

codes for the prescribed medications, we set up a cross-table linking the medication name 

in the PCH data to the associated RxNorm code for the medication ingredient(s). The 

PCH dataset was independent of the TriNetX dataset and was not used to train or tune the 

ML algorithms. The PCH dataset was used as a second independent test on the model’s 

predictive skill and was pre-processed using the steps described above.

2.2. Machine learning

2.2.1. Model development—We tested a range of different ML algorithms to help 

select the best algorithm to classify dialysis patients into iHD or CRRT categories. These 

included logistic regression, k-nearest neighbors, radial-basis support vector machines, and 

Naive Bayes classifiers. Two ensemble algorithms were also tested (random forests and 

gradient boosted trees). Ensemble algorithms use subsets of data to build a collection of 

decision trees. While each individual tree is considered to be a weak learner with high bias, 
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the bias of predictions made using the collective ensemble of trees is generally low. Both 

random forest and gradient boosted tree algorithms use subsets of data to build individual 

trees. The random forest algorithm creates a “forest” of multiple independent trees. In 

contrast, the gradient boosted algorithm creates an additive sequence of trees with each new 

tree designed to reduce errors from the preceding tree. One advantage of these algorithms is 

that interactions between features are inherently incorporated into the decision trees. In order 

to provide a baseline for model comparison, a featureless model was built. In this featureless 

model, the encounters were simply predicted as the majority case (iHD rather than CRRT). 

All models were built with medication ingredients and patient demographics as the input 

features and hemodialysis modality as the outcome.

2.2.2. Model validation—As ML algorithms do not have traditional statistical goodness 

of fit tests, we assessed the predictive skill of each algorithm using a 5-fold cross-validation 

(outer cross-validation) with 10 repeats. In each fold, the TriNetX dataset of known iHD 

and CRRT pediatric patients was split into two subsets, with 80% of the data in one subset 

labeled as the training set and the remaining 20% in the testing subset. Models were fit 

using the training subset and then used to predict iHD and CRRT classification in the testing 

subset. The discrepancy between the predicted and observed outcomes for the testing subset 

provided an estimate of the model’s predictive skill. As the dataset includes patients with 

multiple encounters (Table 1), block sampling was used to generate all subsets of data in 

the cross-validations. This ensures that encounters for the same patient are not split across 

training and testing sets.

Prediction skill was estimated using the Receiver Operating Characteristic (ROC) and 

measured using the area under the ROC curve (AUROC) [13]. We used the following 

AUROC thresholds to assess models: between 0.7 and 0.8 = ‘Acceptable discrimination’; 

0.8 and 0.9 = ‘Excellent discrimination’; above 0.9 = ‘Outstanding discrimination’ [14]. In 

addition, we calculated the sensitivity, specificity, and accuracy. Finally, we calculated the 

balanced accuracy as the arithmetic mean of the sensitivity and specificity to account for the 

imbalance in the dataset.

The two ensemble algorithms tested have an additional set of hyperparameters that 

control various aspects of the learning processes (e.g., the number of submodels in the 

random forest or the rate at which weights were updated in the gradient boosted tree). 

Optimal values for these hyperparameters were chosen by tuning. For tuning, each training 

dataset was further split into two subsets (training and validation) in a 3-fold inner cross-

validation. Models were trained using the inner training set across a range of values for 

the hyperparameters. These models were then used to predict hemodialysis modality for the 

validation set. AUROC values were calculated for all predictions. Hyperparameter values 

that resulted in the highest AUROC values were selected for the final model. Table 2 lists 

the set of hyperparameters. Although the outcome was binary, predictions were made on a 

continuous 0–1 scale. In order to compare predicted and observed classes, this scale was 

converted into a non-continuous, binary classification (iHD vs. CRRT) using a threshold. 

Thresholds were optimized by selecting the value that resulted in the maximum balanced 

accuracy for the test dataset as part of the repeated cross-validation.
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Additional cross-validations were performed for different subpopulations (sex, race and 

ethnicity, Table SI 1-3). In each cross-validation, patients from one-subpopulation were 

placed in the test dataset, and all other patients placed in the training set. A random forest 

model was built using the training set and the set of hyperparameters selected from the 

tuning process. This model was then used to predict dialysis modality for the sub-population 

test set. The final, tuned model was further used to predict iHD and CRRT classification in 

the PCH dataset as a second, fully independent test of predictive skill. Both of these tests 

were assessed using balanced accuracy.

2.2.3. Post-hoc model interpretation—To help interpret model results, permutation-

based feature importance was estimated for the random forest and gradient boosted 

algorithms [15]. Feature importance is calculated as part of model training by randomly 

permuting the values of one feature in the testing subset and estimating the loss of predictive 

skill. A considerable reduction in predictive skill would indicate that the permuted feature 

was essential in fitting the original model. Feature importance was used to help identify the 

set of patient demographics and medication ingredients that best discriminated between iHD 

and CRRT (Fig. 2).

A global surrogate model was built based on the best performing algorithm and used to help 

interpret the model results. Surrogate models are common in engineering, where they are 

used to approximate a complex model with a more straightforward approach [16]. There 

is increasing interest in using these models in machine learning to help interpret black-box 

models where the rules that are ‘learned’ may not be clear, e.g., boosted regression trees 

or neural networks [17]. While there has been some criticism of overreliance on the 

interpretation of machine learning models, we included a surrogate model and a partial 

dependency plot to help illustrate how the rules learned by the random forest model relate 

to clinical knowledge [18]. The standard practice was followed in which the full black-box 

model was used to predict hemodialysis modality. Then, a simple decision tree model was 

trained using the same input features (medications and patient demographics) and predicted 

hemodialysis modality from the black box model. The resulting decision tree is restricted to 

the first few splits to show an overview of both the essential features and the effect on the 

classification of iHD and CRRT.

All machine learning was carried out in R4.1.1 using the mlr3 package to run cross-

validation and hyperparameter tuning [19,20]. Random forests and gradient boosted 

trees were built using the ranger and xgboost packages, respectively [21,22]. All 

model code can be accessed at the following repository: https://github.com/amcknite/

ehr_pediatric_hemodialysis.

2.3. Regulatory

TriNetX is compliant with the Health Insurance Portability and Accountability Act 

(HIPAA), the US federal law which protects the privacy and security of healthcare 

data. TriNetX is certified to the ISO 27001:2013 standard and maintains an Information 

Security Management System (ISMS) to ensure the protection of the healthcare data 

it has access to and to meet the requirements of the HIPAA Security Rule. Any data 
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displayed on the TriNetX Platform in aggregate form, or any patient-level data provided 

in a dataset generated by the TriNetX Platform, only contains de-identified data as per the 

de-identification standard defined in Section §164.514(a) of the HIPAA Privacy Rule. The 

process by which the data is de-identified is attested to through a formal determination by a 

qualified expert as defined in Section §164.514(b)(1) of the HIPAA Privacy Rule.

The PCH dataset containing de-identified EHRs from pediatric patients receiving peritoneal 

dialysis, iHD, or CRRT was obtained from Intermountain Primary Children’s Hospital in 

Salt Lake City, UT, and approved by the University of Utah Institutional Review Board (IRB 

protocol number 00074616).

3. Results

A total of 33 encounters included patients with more than one dialysis code (iHD and 

CRRT). Within these encounters, it was not possible to identify the period of time each code 

was applicable to the patient. These encounters were subsequently dropped from the dataset. 

We obtained a final dataset of 533 encounters with associated medication ingredients and 

patient demographics following data preprocessing. This dataset consisted of 365 iHD and 

168 CRRT encounters (Table 1). A total of 228 medication ingredients were included, each 

specified by a corresponding RxNorm code. The independent PCH dataset contained 174 

patients, with 133 iHD and 41 CRRT encounters.

The results of the cross-validation are shown in Table 3. For all models, accuracy values 

are inflated relative to balanced accuracy due to the imbalance in the dataset. The baseline 

featureless model had an AUROC score and balanced accuracy of 0.5. All tested ML 

algorithms had improved AUROC scores between 0.72 and 0.92 and balanced accuracy 

between 0.69 and 0.86. There was a general increase in model predictive skill as the 

complexity of the underlying algorithm increased, with the highest performance achieved 

by the ensemble algorithms (Table 3). The random forest model had a slightly higher 

score compared to the other ensemble algorithms. The thresholds selected to distinguish 

between iHD and CRRT were relatively high (0.77 for random forest predictions; 0.75 for 

gradient boosted trees), reflecting the predominance of iHD encounters in the dataset. Cross 

validation results for specific sub-populations (SI Tables 1-3) show similar performance 

values for different sex, race and ethnicity groups. The model did not perform as well 

for Asian patients (balanced accuracy performance = 0.68). These patients are poorly 

represented in the data (less than 2.6% of the total patients), but suggests caution when 

applying this model to this subpopulation. The trained random forest and gradient boosted 

tree models were then used to predict hemodialysis modality for the independent PCH 

validation dataset, with a balanced accuracy of 0.85 and 0.84, respectively.

The random forest model was used for further investigation, including a) feature importance 

scores for the top ten features in the dataset (Fig. 2); b) a partial dependency plot of 

hemodialysis modality on age (Fig. 3); c) a global surrogate model that provides a simple 

decision tree to predict hemodialysis modality (Fig. 4). The global surrogate model had a 

cross-validated balanced accuracy of 0.85, suggesting that this successfully approximates the 

main decisions of the full random forest.
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4. Discussion

This study utilized machine learning techniques to develop a predictive model to 

differentiate between pediatric CRRT and iHD patients using medications from EHRs. The 

best performing models (random forest and gradient boosted trees) had balanced accuracy 

scores of 0.85 and 0.84, respectively. These scores indicate that these models were able 

to predict dialysis modality with an error rate of ~15%. Model tests performed using 

the entirety of the independent PCH dataset resulted in similar performance scores, and 

demonstrates that the trained model can be applied to other databases, with negligible loss 

in predictive skill. Sensitivity values for these models further indicate that the models could 

correctly predict CRRT patients with an error rate of 10–13%. Prediction skill for the iHD 

modality is slightly lower, with sensitivity values of 0.85 and 0.84, respectively. Overall, 

the models were considered to have excellent discrimination and were able to predict 

hemodialysis modality with minimal error.

All models were built and tested using the medication ingredients rather than individual 

prescriptions that included brand, formulation, and concentration. This was done to reduce 

redundancy through multiple medication codes representing variations in formulations and 

concentrations for each individual medication. Models were tested using RxNorm codes 

linked to specific prescriptions as well as medication ingredient. Cross-validation of models 

built with the dataset containing medication prescription had lower predictive skill (e.g., 

AUROC of 0.78 and 0.8 for the random forest and gradient boosted models respectively), 

and steep decreases in sensitivity. Aggregating medications by ingredient drastically reduced 

redundancy resulting in a marked improvement in model performance (Table 3). We 

acknowledge that there are still some redundancies in combination medications containing 

more than one ingredient. Despite this, our models show strong predictive skills. Further, 

by restricting input features to commonly available information (i.e., medication ingredients 

and demographics) our model should be easily transferable to other databases as evidenced 

by the high levels of predictive skill when applied to the independent PCH dataset.

Published studies have incorporated additional information from EHRs (e.g., primary 

diagnoses, procedures, and lab results) to strengthen model identification of specific 

populations of pediatric patients [23]. In a study of glomerular disease, EHR from a single 

center was used to develop a model incorporating diagnosis, kidney biopsy, and transplant 

procedure codes as patient identifiers [23]. Using single-center testing has been shown 

to increase model accuracy as EHR information can be manually verified with detailed 

institutional medical charts. However, it is not possible to use a single center dataset for 

CRRT patient identification due to the small patient population size, which necessitates the 

use of multiple centers. It is not clear if including additional EHR information such as 

procedural codes would have improved the classification obtained by our model. Manual 

EHR or medical chart review in combination with multiple sources of structured data have 

also been used to identify hematologic malignancy and type 2 diabetic pediatric patients 

across multiple institutions [24,25]. The patients in these studies had clear and definitive 

primary diagnoses, in contrast to CRRT patients who are heterogeneous and often have 

multiple diagnoses. Notably, chronic renal disease represented only 4–9% of pediatric 

CRRT patients compared to primary diagnoses such as sepsis 11–20% and solid organ 
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transplant 20–22% [26,27]. As a result, if renal-related primary diagnoses were the only 

search parameters included in the model, there is the potential to miss large proportions of 

patients and significantly reduce population size. Excluding diagnosis data further reduces 

the amount of missing data and mismatches in dates corresponding to diagnosis, labs, and 

procedures, and may improve the transferability of the model between EHR databases [3,4].

Our model training set was restricted to ICD10 codes for dialysis modality identification. 

ICD10 codes were first implemented in the U.S. starting in 2015, but their predecessors, 

ICD9, are still used within some U.S. hospital systems [1,28]. The accuracy of ICD9 

and ICD10 codes to describe diagnoses are considered similar [29]. ICD10 codes for the 

primary diagnosis of acute myocardial infarction in EHRs were found to be accurate when 

compared to patient charts (positive predictive value 82.5–93.8%) [30,31]. The introduction 

of ICD10 increased the granularity of procedural codes providing 141,747 procedural and 

diagnostic codes compared to 15,000 for ICD9 [30-32]. As a result, iHD and CRRT can 

only be distinguished using ICD10 codes and not ICD9 where a general hemodialysis code 

39.95 is used for all modalities. Although ICD10 codes were first introduced in 2015, 

ICD10 hemodialysis codes were not present within the TriNetX dataset until late 2017. 

This severely reduced the number of patients with identifiable hemodialysis modalities 

available to train the model. Despite this, the ML algorithms used in this study were able 

to produce models with high predictive skill. Model testing against gender, race, and ethnic 

subpopulations (SI Tables 1-3) and the independent PCH dataset suggests that there are no 

inherent biases.

Previous studies have used rule-based algorithms to identify subpopulations of patients 

[10-12]. In contrast, this study used ML algorithms as these provide several advantages. 

The validation of models developed through rule-based algorithms is based on the manual 

review of a randomly selected subset of EHRs. The ML models in this study were subjected 

to a more thorough repeated k-fold cross validation that ensured all records were used 

in validation. Rule-based algorithms use manually developed rules for specific situations, 

which can be highly time-consuming and subjective. In contrast, rules developed through 

ML are faster to develop and easily generated for a range of situations. The disadvantage is 

that ML rules can be difficult to understand due to the ‘black-box’ nature of these models. 

However, as we demonstrate here, there are several methods that can be used for post-hoc 

interpretation of these rules, such as partial dependency plots and surrogate models. These 

methods, when used carefully, can provide additional verification and review of the models 

by clinical researchers.

We use partial dependency plots and feature importance to understand the factors 

differentiating between iHD and CRRT patients in the study dataset. These plots were 

estimated using the random forest model as it had the best overall performance. The 

permutation-based feature importance scores (Fig. 2) indicate that, although the input 

features are overwhelmingly medication ingredients, age of the patient remains an important 

feature in differentiating between the two hemodialysis modalities. Feature importance 

scores indicate medication ingredients that are most useful in differentiating between 

hemodialysis modality, but do not indicate the direction of association. For this, the global 

surrogate model was used to approximate the set of rules learned by the random forest 
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model (Fig. 4). For example, the first decision in the surrogate model tree is whether or 

not the ingredient magnesium sulfate is given to the patient. This decision alone correctly 

differentiates approximately 73% of CRRT encounters (left-hand side) and 88% of iHD 

encounters (right-hand side), with further refinements to this prediction through subsequent 

nodes of the decision tree.

The medication ingredients identified by the surrogate model decision tree are common in 

renal failure patients. Magnesium sulfate supplementation is standard in late-stage chronic 

kidney disease and patients on intermittent hemodialysis where magnesium reabsorption 

through renal tubules is impaired [33,34]. Late-stage chronic kidney disease patients also 

have reduced production of active vitamin D and a resultant decrease in calcium absorption 

[35-37]. Calcitriol is synthetic vitamin D3 and is used to supplement vitamin D loss [35-37]. 

In addition, CRRT patients have reduced calcium due to the use of citrate anticoagulation 

[38]. Infusions of calcium chloride or calcium gluconate are used to supplement this calcium 

loss in these patients [38]. Epinephrine is used to treat severe allergic reactions that may 

occur during iHD but is used more frequently to treat hypotension in critically ill patients 

[39-42]. The medications selected by the surrogate model generally agree with those ranked 

in the variable importance plot (Fig. 1), there are some differences (e.g., calcium chloride 

is not shown). These discrepancies result from the approximation in the surrogate model, 

which is based on predicted dialysis modality rather than the observed values.

There are two notable limitations to the methods used in this study. First, the underlying 

assumption of any predictive model is that the data is stationary over time. Applying these 

models retrospectively may require additional work to ensure that the prescribing practices 

have remained relatively constant. Second, while the total TriNetX dataset encompasses 

billions of records, the subset we obtained for training our models is relatively small 

(533 encounters). This could potentially be increased in future models by combining 

larger, multi-institutional datasets provided by TriNetX and the Pediatric Health Information 

System databases. However, combining these large databases is complicated by redundancy 

of encounters between the databases as records from individual hospitals may be included in 

both databases. It is impossible to determine the specific hospital linked to each patient in 

TriNetX, although this is possible in the Pediatric Health Information System database, and 

redundant hospitals could be removed if identified.

Overall, the results support the use of ML to differentiate between patients on different 

modalities of hemodialysis based on medication ingredient profiles from EHRs. Although 

there is a range of model performance, all algorithms performed better than the 

baseline featureless model, suggesting that the combination of limited patient demographic 

information and medications is adequate to successfully predict hemodialysis modality. 

There is a notable increase in model performance for all non-linear algorithms over the 

logistic regression model. This highlights the complexity of the dataset and the difficulties 

of using traditional statistical methods for analysis. This is further illustrated by the non-

linearity of the partial dependency plot of age on hemodialysis modality (Fig. 3), with 

a rapid increase in the probability of iHD for patients above 1 year of age. The two best-

performing algorithms achieved balanced accuracy scores of ~0.85 and AUROC scores of 

~0.90, and were considered to show outstanding performance [14]. In addition to the cross-
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validation results, the high levels of accuracy achieved by the two top-performing models 

for the independent PCH dataset indicates that the trained models can be successfully 

generalized to other datasets.

The ability to differentiate between two subpopulations of pediatric hemodialysis modalities 

allows for more targeted research. Hemodialysis patients are often pooled, or assumptions 

are made regarding dialysis modality based on the location of care (PICU=CRRT) despite 

distinct differences between these patient populations [26,43-45]. Identifying hemodialysis 

subpopulations could lead to targeted analysis of patient demographics, medications, 

and length of stay across multiple institutions. Medication administration offers a rich 

dataset that could complement patient demographics, allowing the identification of patients 

undergoing different dialysis modalities while limiting issues that arise with mismatching 

data in EHRs.

Importantly, this model can be used to back predict CRRT and iHD pediatric patients using 

ICD9 codes in historic and multi-institutional EHR databases, significantly increasing the 

sample size for retrospective studies. This will allow the utilization of historical records, 

significantly increase population size and increase diversity within both iHD and CRRT 

populations.

5. Conclusion

EHRs are rich in information and can be powerful datasets for clinical research. However, 

issues inherent in EHRs including variations in coding systems and differing levels 

of granularity can limit their application. To address these limitations, we used ML 

methods to identify subpopulations using common information in EHRs (i.e., medications, 

demographics). Using these methods, we were able to successfully discriminate between 

pediatric patients undergoing different modalities of hemodialysis. Our models were based 

on commonly available information increasing the transferability between EHR databases 

and other patient subpopulations. Our framework can improve the granularity of information 

in older databases permitting retroactive studies on newly identifiable patient populations, 

and has the potential to significantly increase the number of EHRs for the analysis of small 

patient populations.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart of ML methods. Cylinders represent datasets and rectangles processing steps. The 

dark grey box includes all steps in the tuning process where model parameters are selected. 

The light grey box includes steps in the validation process used to prevent overfitting. The 

box with a dashed outline includes the development of the final model using the entire 

dataset and the selected model parameters.
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Fig. 2. 
Feature importance plot based on the random forest model. The width of the bars 

indicates the reduction in model predictive skill when permuting the values of that feature 

(medications and age).
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Fig. 3. 
Partial dependency of dialysis type based on patient age. Left panel indicates the probability 

of iHD with age; right panel the probability of CRRT. Note the marked transition to 

increased probability of iHD for patients above 1 year old.
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Fig. 4. 
Surrogate decision tree of top 4 deciding features based on the random forest model.
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Table 1

Training set patient demographics and encounters.

Patient demographics (training set)

Total encounters 533

 iHD (5A1D70Z) 365

 CRRT (5A1D90Z) 168

Total patients: 390

Sex:

 Male 186

 Female 204

Age:

 0–1 39

 2–5 97

 6–11 90

 12–18 204

Race:

 American Indian or Alaska Native 4

 Asian 10

 Black or African American 75

 Native Hawaiian or Pacific Islander 1

 White 231

 Unknown 69

Ethnicity:

 Hispanic or Latino 72

 Not Hispanic or Latino 264

 Unknown 54

Medication (ingredients) 228
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Table 2

Hyperparameter values for the random forest and gradient boosted tree algorithms following tuning.

Algorithm Hyperparameter Value

Random Forest mtry: number of features to use for each split in individual trees 20

num.trees: number of individual trees to build 450

Gradient Boosted Tree eta: learning rate .02

max_depth: complexity of individual trees 12

nrounds: number of boosting iterations 750

subsample: proportion of observations to use in each boosting iteration 0.85

colsample_bytree: proportion of features to use in each boosting iteration 0.57

colsample_bylevel: proportion of selected features to be used for each split 0.67

Inform Med Unlocked. Author manuscript; available in PMC 2022 November 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

McKnite et al. Page 21

Table 3

Performance metrics for the tested machine learning algorithms. Values represented as mean (S.D.).

Algorithm AUROC Sensitivity Specificity Accuracy Balanced
Accuracy

Featureless 0.50
(0.00)

1.00
(0.00)

0.00
(0.00)

0.68
(0.05)

0.50
(0.00)

Logistic Regression 0.72
(0.06)

0.75
(0.06)

0.62
(0.10)

0.71
(0.05)

0.69
(0.06)

Naïve Bayes 0.84
(0.04)

0.85
(0.04)

0.76
(0.08)

0.82
(0.04)

0.80
(0.04)

Regularized Regression (ElasticNet) 0.89
(0.02)

0.88
(0.04)

0.73
(0.07)

0.83
(0.03)

0.80
(0.03)

k-nearest Neighbor 0.85
(0.03)

0.88
(0.05)

0.60
(0.09)

0.79
(0.04)

0.74
(0.04)

Support Vector Machine 0.90
(0.03)

0.85
(0.04)

0.86
(0.07)

0.85
(0.03)

0.85
(0.04)

Random Forest 0.92
(0.03)

0.90
(0.03)

0.82
(0.07)

0.87
(0.03)

0.86
(0.04)

Gradient Boosted Trees 0.92
(0.02)

0.89
(0.04)

0.82
(0.08)

0.87
(0.03)

0.85
(0.04)
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