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In animal societies, identity signals are common, mediate interactions within
groups, and allow individuals to discriminate group-mates from out-group
competitors. However, individual recognition becomes increasingly challen-
ging as group size increases and as signals must be transmitted over greater
distances. Group vocal signatures may evolve when successful in-group/
out-group distinctions are at the crux of fitness-relevant decisions, but
group signatures alone are insufficient when differentiated within-group
relationships are important for decision-making. Spotted hyenas are social
carnivores that live in stable clans of less than 125 individuals composed
of multiple unrelated matrilines. Clan members cooperate to defend
resources and communal territories from neighbouring clans and other
mega carnivores; this collective defence is mediated by long-range (up to
5 km range) recruitment vocalizations, called whoops. Here, we use machine
learning to determine that spotted hyena whoops contain individual but not
group signatures, and that fundamental frequency features which propagate
well are critical for individual discrimination. For effective clan-level
cooperation, hyenas face the cognitive challenge of remembering and recog-
nizing individual voices at long range. We show that serial redundancy in
whoop bouts increases individual classification accuracy and thus extended
call bouts used by hyenas probably evolved to overcome the challenges of
communicating individual identity at long distance.
1. Introduction
In complex animal societies, signal receivers face several categorization tasks in
addition to detection; to respond adaptively to a signal, they must be able to
correctly identify it as relevant or irrelevant to their own interests, and deter-
mine whether and how to respond [1]. These categorization tasks become
more difficult as social interactions increase in complexity, as social group
size increases, as unpredictable variation increases in environmental noise, or
as signal transmission is otherwise compromised. These factors make animal
communication particularly challenging in fission–fusion societies, where indi-
viduals are often widely dispersed. How then do signals evolve to be easily
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detected and distinguishable enough to transfer relevant
information among many individuals in a complex, dispersed
social group?

In large groups with differentiated relationships within
groups and competition both within and among groups,
receivers often need to know the identity or group member-
ship of the caller because it is necessary for receivers to
tailor their response to the current situation [2]. When the
identity of the signalling individual is important [3–5], sig-
nals should emphasize individually distinctive information
[6]. For example, signature whistles in bottlenose dolphins
are unique to individuals [7] and stable across decades [8],
allowing male dolphins to form and maintain complicated
multi-level cooperative relationships [9,10]. However, indi-
vidual recognition becomes increasingly challenging as
group size increases because the larger signal set becomes
increasingly difficult to discriminate [11,12]. In many species
(e.g. wolves [13] chimpanzees [14], green wood hoopoes [15],
orca whales [16,17] and sperm whales [18,19]) one or more
signals encode information on the group membership
of the caller (i.e. ‘group signature’), either in the absence of,
or in addition to individual identity information (i.e. ‘individ-
ual signature’) [6]. Thus, we expect group vocal signatures
to evolve when groups are large and successful in-group/
out-group distinctions are at the crux of fitness-relevant
decisions, while individual recognition systemsmay be necess-
ary when relationships within groups require further decision-
making because relationships vary among group-mates or
change quickly over time.

An additional problem arises when individual or group
identity information must be transmitted over long distances.
In such cases, information is predicted to be encoded in call
features that are most robust to sound propagation. Therefore,
long-distance acoustic signals should be tonal because pure
tones travel better than broadband noise, which is susceptible
to scattering [20]. Since loss of energy owing to sound absorp-
tion increases with frequency, and because tonal signals are
less susceptible to scattering [20], long-range calls tend to be
tonal, low-frequency signals. Long-range propagation also
leads to increased signal reverberation from reflections and
refraction, favouring information encoded in frequency
modulations rather than amplitude modulations [20,21]). Dis-
tinctive voice features that might allow for recognizing
individuals at short range, such as subtle differences in for-
mant spacing shaped by vocal tract filtration [22], are
unlikely to be useful for long-range identification of callers.

To maximize detection and improve discrimination, sig-
nallers can increase amplitude, avoid noise either in time or
signal space, or increase redundancy in a signal (summarized
in [1]), but not all these strategies are options for long-
distance signallers. Signals that are optimized for long-range
transmission often operate near-physiological amplitude
limits already, and senders seldom have much control over
noise conditions, especially for distant receivers. By contrast,
signal redundancy via repetition [23,24] is probably low cost,
and this call feature is under behavioural control. Here we
inquire whether spotted hyenas (Crocuta crocuta) have individ-
ual signatures, group signatures, neither, or both in the their
long-distance vocalizations.

Spotted hyenas are large carnivores that live in social
groups, called ‘clans’, which may contain up to 125 members
in the prey-rich plains of eastern Africa [25,26]. There, clan
members cooperate to defend a communal territory (13–
76 km2, [25]) and other critical resources against neighbour-
ing clans and other large carnivores. Each clan contains
multiple unrelated matrilines of females and their offspring,
as well as one or more immigrant males that sire most
young [27]. Female hyenas are philopatric, but most males
disperse from their natal clan to join a new clan at 2 to 6
years of age [28–31]. Each hyena clan is structured by a
strict linear dominance hierarchy [32] where social rank
determines priority of access to resources. Relationships
among clan-mates thus vary based on rank, sex, age and kin-
ship. These dynamic relationships are further complicated by
the fission–fusion nature of hyena clans [33,34]. Although
clan membership is largely stable over time, individuals
and sub-groups break apart and come together many times
each day at myriad locations within the clan territory [35].

The long-distance call of spotted hyenas, the whoop voca-
lization, has multiple hypothesized functions [28], including
recruitment and coordination of movements by clan-mates
within their territory [36,37], sexual advertisement [38], find-
ing specific group-mates [39] and territory maintenance
[30,40]. The whoop vocalization is loud and can be heard
up to 5 km away [28,41]. It is most often emitted in bouts
that range from 2 to 34 whoops [41], and each whoop is a har-
monic, frequency-modulated, tonal call. Three whoop types
have been described [41] and are not specific to behavioural
context [37,38]. At least at short range, mothers recognize
and respond strongly to the whoops of their young offspring
[39] and individual distinctiveness in cub whoops appears to
extend into adulthood [38]. The fundamental frequency of a
whoop provides reliable information about the caller’s age
class and, for adult callers, information about sex as well [37].
Thus, whoops appear to encode information about the caller’s
age, sex, location, affective state and individual identity.

To effectively defend their key resources and compete
against other large carnivores, hyenas rely on long-distance
communication to coordinate a large number of clan members
dispersed over an expansive territory. Given the large clan size
(far beyond typical group size for both wolves and sperm
whales) and the need for effective discrimination of clan-
mates for cooperative territory defence, we inquire whether,
like wolves [13], hyenas have evolved a group-specific label
to simplify the cognitive challenge of identifying clan
members at long range.

Here, we use machine learning to test whether the
hyenas’ long-distance vocalizations contain group and/or
individual signatures, and to identify call features that can
facilitate discrimination. We then use these results to quantify
how serial redundancy in extended whoop bouts can affect
individual classification accuracy. Finally, we discuss the
implications of these findings for understanding signal evol-
ution and acoustic communication in large, socially complex
and spatially dispersed species.
2. Methods
(a) Study animals and call recordings
We recorded whoops emitted by spotted hyenas from four clans
monitored by the Mara Hyena Project in the Maasai Mara
National Reserve, Kenya (electronic supplementary material,
figure S1). We identified all members of each clan by their
unique spot patterns, assigned birthdates (± 7 days) to natal ani-
mals based on cub appearance when first seen [42], and assigned
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a sex to each individual based on the shape of the glans of its
erect phallus [43].

We obtained recordings of whoop vocalizations in two ways
(electronic supplementary material, figure S2). First, from April
2010 to January 2011 and from July 2014 to April 2016, observers
deployed a hand-held directional microphone and digital recor-
der from the windows of off-roading vehicles used as mobile
blinds. Second, custom-made sound-, movement- and position-
recording collars were deployed from January to March 2017
on five adult females from the Talek West clan. Recording
periods and methods are indicated for each whoop bout in the
electronic supplementary material, table S1.

We isolated whoop bouts from both types of digital field
recordings, noted the time, date and identity of the calling
hyena and matched this information with the age, sex and clan
membership of the caller. We then cut each whoop bout into
single whoops for analysis (figure 1), using only whoops from
adult hyenas that were at least 24 months old, and thus reproduc-
tively mature [44], to eliminate the possibility that young hyenas
might not yet have learned a potential group signature.

We classified whoops into four types (figure 1a) based on a
classification scheme modified from East & Hofer [41]. Prelimi-
nary whoops (P type) are often emitted at the beginning of the
whoop bout and are typically very short relative to other
whoops in the bout. Symmetric (S type) whoops resemble a
flattened bell curve, with the peak frequency near the centre of
the call. By contrast, asymmetric (A type) whoops have a long
constant-frequency (CF) portion that rises to peak frequency
toward the end of the call. Terminal (T type) whoops are often
the last whoop in a bout. They maintain a relatively constant,
low frequency and are often of lower amplitude than the other
whoops in the bout [38].

(b) Acoustic processing and feature extraction
Recordings were resampled to a common sample rate of 32 kHz.
Each signal was then processed individually using custom-writ-
ten software in Matlab 2019a [45] to extract a range of acoustic
parameters with focus on features that were robust to long-
range transmission (table 1; see the electronic supplementary
material for full details).

First, the 99% energy duration was extracted, and within this
window, the peak frequency and centroid frequency were esti-
mated [46]. Then, the fundamental frequency contour was
manually traced by the analyst (figure 1b), allowing for esti-
mation of the minimum and maximum contour frequencies.
Three parts of the signal were then estimated from the contour:
the initial CF portion of the whoop (defined as the period
where the contour was within ± 10% of the median frequency
of the contour prior to the peak contour frequency); the upsweep
portion of the whoop (from end of CF component to peak fre-
quency); and any periods with significant subharmonics
(where the total energy in the subharmonics exceeded energy
in fundamental frequency and harmonics). Features extracted
from these periods included the total duration of each com-
ponent, and the relative time point of the end of the CF
portion and the end of the upsweep.

Finally, the signal was resampled to 8 kHz and divided up
into 4 ms blocks with 3.5 ms overlap. For each block, the continu-
ous spectral entropy [47] and the cepstral peak prominence (CPP)
[48] was calculated, and the mean was taken across the total 99%
energy duration.

(c) Using random forests to predict clan membership
and individual identity

To test whether whoops contain clan and/or individual signa-
tures, we trained random forest classifiers [49] to predict either
clan or individual identity based on the set of extracted acoustic
features. Random forest classification is a supervised machine
learning algorithm that uses a set of decision trees (i.e. a
‘forest’) to classify objects that are represented by measured fea-
tures of the objects. Each tree in a forest attempts to
parsimoniously split the training objects into the correct cat-
egories based on a random subset of object features, and a
majority rule is used to produce a final ensemble classification
across trees.

(i) Testing the clan signature hypothesis
We first tested whether spotted hyenas use generalizable acoustic
features that help differentiate clan identity from whoops irre-
spective of individual identity. To investigate this, we split our
full dataset (n = 514 whoops from 39 hyenas in four clans; elec-
tronic supplementary material, table S1) into training and test
datasets. The training dataset consisted of whoops from all
except one randomly selected hyena from each clan. These
remaining whoops were used as the test dataset (electronic sup-
plementary material, figure S3a). This cross-validation ensured
that features had to generalize across hyenas and that the
random forest classifier could not learn to recognize clans
through recognizing individuals. We then trained a random
forest classifier with 500 decision trees with the number of
nodes set to the size of the training set and measured the classi-
fication accuracy as the number of correctly identified whoops in
the test dataset. This resulted in the whoops of any single hyena
being in either the test or training dataset, but not both, thus pre-
venting the classifier from learning the characteristics of
individual hyenas and ensuring that accuracy only reflects fea-
tures that generalize across hyenas within a clan. To assess the
accuracy of predictions, we repeated this process 1000 times,
with a random hyena from each clan selected for the test data
each time.

Because animals varied in their number of recorded whoops,
each random selection of test individuals resulted in a different
proportion of correctly assigned whoops owing to chance. As a
null model, we therefore calculated a weighted expectation
(WE), which is the expected proportion correct owing to
chance alone.

Because most male hyenas disperse from their natal clans
[31,50], males may retain their natal group signature instead of
learning the vocal signature of the clan in which we recorded
them. We tested for this possibility by rerunning separate
analyses with males only or with females only.

(ii) Testing the individual signature hypothesis
To prevent the random forest from assigning individual identity
based on autocorrelated variation present within a whoop bout
instead of common variation among an individual’s whoop
bouts, we held out one bout from each individual for the test
dataset and used the remaining whoops as training data (elec-
tronic supplementary material, figure S3b). This required
reducing the dataset to all hyenas having two or more whoop
bouts with at least three whoops (n = 312 whoops from 13
hyenas, 9–54 whoops per hyena; electronic supplementary
material, table S1). As before, we then trained a random forest
classifier with 500 trees to predict individual identity on the
training dataset and measured performance as the fraction of
whoops in the test dataset with correctly assigned individual
identity. We repeated this procedure 1000 times, each time with-
holding a randomly selected whoop bout from each individual
for the test dataset. As above, a WE probability was calculated
as the fraction of whoops that would be correctly assigned to
the individual by chance.

To test the possibility that individual classification accuracy
was influenced by recording method, we ran this analysis
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Figure 1. Acoustic analysis pipeline. (a) Spectrogram of a whoop bout (resolution 17.1 ms × 3 Hz, 90 dB dynamic range). Whoops within each bout were manually
isolated and classified as either ‘S’ (symmetric), ‘A’ (asymmetric),‘T’ (terminal), or ‘P’ ( preliminary) whoop category. (b) Spectrogram of a single (S type) whoop. For
each whoop, the fundamental contour was manually traced, and a variety of call features were extracted, including fundamental frequency parameters, duration of
the ‘CF’ or ‘constant-frequency’ portion of the whoop, and duration of subharmonics; (c,d) illustrate call features acquired from spectral and cepstral analyses,
respectively. See Methods and the electronic supplementary material for information on call parameters. (Online version in colour.)
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separately on data from microphone recordings and collar
recordings. We also reran the random forest analysis with
males and females separated to determine whether one sex has
more individually distinctive whoops than the other.

Because whoop type affected the accuracy of assignment,
we created a final dataset of only A and S type whoops and
retested both clan and individual signature hypotheses (see
figures for sample sizes and the electronic supplementary
material, table S1 for full details on all datasets). We constructed
confusion matrices for all random forest analyses (electronic
supplementary material, figures S4 and S5). Finally, we calcu-
lated importance as the mean decrease in individual
classification accuracy when each feature is excluded from the
classification model using the ‘importance’ function from the
randomForest package (table 1).

(iii) Testing whether signal redundancy improves caller
identification

Finally, we investigated how the sequential nature of natural
whoop bouts influences classification accuracy and thus might
help alleviate uncertainty about caller identity. To do this, we
simulated a receiver’s likelihood of assigning a whoop bout to
the correct caller based on multiple whoops in the bout. Within
a random forest model, we calculated each test bout’s accuracy
by calculating the proportion of decision trees that classified
each bout to each of the hyenas in the dataset given one
whoop, two whoops, etc. This gave us a ‘probability’ that each
bout belongs to each hyena for each number of whoops within
the bout.

We then calculated the average correct probability across all
the random forest models to account for variations in prediction
accuracy from using different whoops for training and testing.
This analysis was only conducted when models reached an aver-
age accuracy above random guess because we would not expect
redundancy to meaningfully increase accuracy in such cases. We
used the random forests trained with only ‘A’ and ‘S’ whoops
but otherwise maintained the natural order of whoops within
the bout.

All analyses and figures were generated in RSTUDIO with R
v. 4.2.0 (22 April 2022) [51] and BOOKDOWN 0.26 [52]. We ana-
lysed data using the tidyR 1.2.0 [53] and randomForest 4.7.1.1
[54] packages, and created figures using gplots 3.1.3 [55],
ggplot2 3.3.6 [56] and cowplot 1.1.1 [57]. Diagrams were



Table 1. Acoustic features are extracted from each whoop.

abbreviation measurement units

dur duration of call (99% energy criterion) [seconds]

dur.cf duration of CF component [seconds]

dur. upsweep duration of upsweep (until max frequency) [seconds]

dur. subharm duration of call with dominant subharmonics (energy > harmonics) [seconds]

endtime.cf end time of CF component relative to call [fraction of call]

endtime.upsweep end time of upsweep (max frequency) relative to call [fraction of call]

freq. centroid centroid frequency [kHz]

freq. peak peak frequency [kHz]

freq. min min fundamental frequency [kHz]

freq. max max fundamental frequency [kHz]

freq. mean. cf mean fundamental frequency within CF component [kHz]

harmonic. ratio. total harmonic to subharmonic energy ratio within entire call [dB]

harmonic. ratio. cf harmonic to subharmonic energy ratio within CF component [dB]

mean.entropy mean spectral entropy within 99% energy duration [0(pure tone) to 1(white noise)]

cpp.mean mean cepstral peak prominence

cpp.sd standard deviation of cepstral peak prominence across time slices
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created in POWERPOINT and colours were generated from VIRIDIS

0.6.2 [58].
3. Results
The random forest model for assigning clan membership was
no more accurate than expected by chance (figure 2; mean:
0.32, s.d.: 0.15, chance: 0.24), and neither sex of the calling
animals (figure 2b) nor whoop type (figure 2c) had any
influence on clan identification.

By contrast, the random forest model for assigning indi-
vidual identity was much more accurate than expected by
chance (figure 3; mean: 0.54, s.d.: 0.058, chance: 0.09).
Again, these results held true regardless of sex or recording
method, even with the reduced sample sizes in these datasets
(figure 3c).

The accuracy of individual assignment varied with whoop
type (with ‘A’, ‘S’ and ‘P’ assigned more accurately than ‘T’;
figure 3b) and final analyses were conducted with only ‘A’
and ‘S’ type whoops (figures 2c and 3c). The accuracy of
assignment to clan and individual varied considerably
among the clans (figure 2d) and individual callers
(figure 3e). Further, clans that bordered each other were not
more likely to be confused (electronic supplementary material,
figure S4) and individuals within a clan were not more likely
to be confused with one another than with individuals from
different clans (electronic supplementary material, figure S5).

Some call features were more important than others for
correctly predicting individual caller identity (figure 4). The
top features were the mean frequency of the CF portion of
the whoop, the maximum frequency and the call duration.

Our analysis of whoop redundancy within a bout sup-
ported the hypothesis that the repetitive nature of the
whoop bout increases receiver certainty about the identity
of the caller. With more whoops in a bout, the proportion
of correct guesses increases, although not at the rate expected
if all whoops are equally informative (figure 5).
4. Discussion
(a) Individual but not group signatures
Theory predicts that species will evolve signals that meet
their minimum needs [3] while using as few categories of sig-
nals as possible to maximize detection and discrimination [1].
Given the size [25,26], dynamic membership, and spatial dis-
persion of hyena groups (i.e. neighbouring clans hear each
other’s whoops, making ‘familiar or not’ discrimination
insufficient), they are a strong candidate species for a group
signature. This group signature would allow hyenas to cat-
egorize callers as ‘clan-mate or not’, thereby facilitating the
coordination and recruitment of clan-mates and detection of
territory intruders. We found multiple call features that facili-
tate individual discrimination, but no evidence of a group-
level signature. This suggests several possibilities about the
relationship between hyenas’ fitness-critical needs and the
resultant structure of their communication: (i) recognition of
large numbers of group-mates by voice alone may not be
as costly as expected; (ii) group signatures may be more
costly than expected; and (iii) group signatures may not
meet hyenas’ minimum needs, nor any need beyond those
already met by individual signatures.

There is some evidence that vocal recognition of many
individuals is not costly enough to require the categorical
reduction that group signatures would provide. Although it
is difficult to determine experimentally the number of
voices recognized by humans, we do know that humans
can accurately distinguish many individuals from voice
alone [59–62]. In addition, several studies in non-human ani-
mals have demonstrated individual vocal recognition [63–68]
(but see [69]). Some species are clearly capable of recognizing
numerous individual callers (approximately 100 individuals
in African elephants [70]) and even associate callers with
traits lying on multiple axes (such as rank and kinship
[71,72]). Hyenas clearly have the cognitive capacity to recog-
nize and remember clan-mates as individuals [28,30,73];
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Figure 2. Lack of clan signatures in single whoops. Violin plots of proportion of test data correctly assigned to clan from 1000 random forests (RFs). (a) Comparing
random WE to performance of the RF, using all whoop types. (b) Comparing WE and RF for datasets composed of whoops from females only and males only. (c)
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and bars represent means and standard deviations. of random forest accuracy. Dotted line indicates mean random WE for that dataset.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220548

6

perhaps the development of a group signature is more costly
than the memory required to recognize 125 + voices.

Evolving a group signature would also require concurrent
evolution of flexible vocal production learning [74], a trait
that is argued to be relatively rare in animals [75]. Without
this trait, an individual would be unable to learn and produce
a new group signature after changing groups. During clan fis-
sion [76] and male immigration [31,50], hyenas would need
to learn how to produce the group signature of their new
clan. Although hyenas might be capable of flexible vocal pro-
duction, our results suggest that a group signature is not the
impetus. Instead, the individual signatures we detected
would rely on hyenas’ associative learning and flexible
vocal comprehension [75]. Male hyenas especially may have
to learn to recognize the individually distinct calls of an
entirely new suite of group-mates while other animals in a
male’s new clan must learn to recognize the new immigrant’s
voice.

The lack of group signatures in whoops also suggests that
a simple ‘group-mate or not’ classification either is unnecess-
ary given the presence of individual signatures or is
insufficient for spotted hyenas to respond adaptively to
these vocalizations. This is consistent with the hypothesis
[6] that individual signatures in vocal calls are tied to the
evolution of differentiated social relationships in complex
societies. Hyena society does exhibit characteristics that
support the evolution of identity signalling, specifically,
large group size, complex and repeated social interactions
with both kin and non-kin, dominance hierarchies, and terri-
toriality [4]. Spotted hyenas show social preferences for
certain group-mates based on kinship and dominance
[77,78], and social alliances can restructure the social hierar-
chy [79] to influence rank and fitness [80]. Therefore, long-
distance calls encoding individual identity may be crucial
to the functioning of hyena societies, allowing group mem-
bers to manage numerous social relationships occurring
over large spatial scales. The memorization of these individ-
ual signatures then provides the requisite group membership
information for mediating an effective cooperative territory
defence, thus obviating the need for a group signature.

Interestingly, some whoop types and some individuals
were more difficult than others to categorize correctly; how-
ever, we cannot disentangle whether this is a product of
our dataset or whether instead it represents meaningful
differences among whoop types (as in lion roar types [81])
and individual voices. ‘A’ type whoops may be more easily
classified because they are over-represented in the dataset
or ‘A’ whoops may be more common within whoop bouts
because their protracted CF portion is a good indicator of
individual identity (figure 4). T whoops may have been
poorly classified owing to their under-representation, or
they may not encode individual identity at all. The variation
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in individual assignment accuracy may be an artefact of the
recordings we happened to obtain (e.g. our two recorded
bouts happen to span the variation produced by that individ-
ual), or it might reflect real challenges that hyenas face in the
wild. Some individuals (e.g. low ranking individuals) may
benefit from being more difficult to identify, or the acoustic
space may not be large enough to accommodate a large
number of distinct signatures.
(b) Call features adapted for long-range transmission
To solve the challenge of communicating individual identity
across expansive territories, evidently spotted hyenas have
evolved to encode identity information in features that are par-
ticularly robust to long-range propagation. The call features
that were most important for discriminating individuals
included a number of frequency measures (mean frequency
of the CF portion of the whoop, maximum and minimum fre-
quency of the fundamental, and centroid frequency), call
duration and measures of noisiness (entropy) and dysphonia
(CPP mean). It is important to note that hyenas may rank
these features differently or use additional call features not
identified in our study. However, frequency features are com-
monly involved in individual vocal recognition [82] and other
species that rely on long-range signalling appear to exhibit
similar adaptations, including wolves [83], lions [81] and bot-
tlenose dolphins [7]. The importance of the entropy and CPP
measures suggests that hyenas might also attend to the bipho-
nic components, which are common in some hyena whoops.
While these features are unlikely to transmit over long dis-
tances, they are a common identifier in the voices of several
species [82].

In addition to identifying individual hyenas, frequency
features may also make it easier for hyenas to locate a
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whooping individual [38] as calls with a wide frequency
range are expected to facilitate localization of the sound
source [84]. Low frequencies are also easier to locate in
most situations [20] and are thus advantageous for long-dis-
tance calls that advertise the caller’s location. The high-
frequency portions, which degrade more quickly, may allow
a receiver to ascertain the distance of the caller from it while
the low-frequency portions of the call ensure it reaches as
many receivers as possible.
(c) The value of repetition
Signal redundancy has been shown to improve recognition
accuracy in evolutionary agent-based models of recognition
[85], so redundancy within whoop bouts probably increases
both the probability of detection and the receiver’s ability
to identify the caller. This notion was supported by our calcu-
lations of increasing classification accuracies over the course
of whoop bouts, although this increase did not reach the
classification accuracies expected if each whoop was equally
informative and accuracy with each additional whoop fol-
lowed a Bayesian updating rule. This reduced accuracy is
probably owing to each whoop within a bout not being an
independent observation. Each random forest was trained
on one bout fewer than the number of bouts available for
each individual. This ensured that random forest accuracy
was owing to individual-level, and not bout-level, character-
istics, but also resulted in some bouts with low accuracy. This
correlated error is certainly an artefact of our machine learn-
ing approach, but may also reflect real challenges experienced
by receivers in the wild when consecutive signals have redun-
dant information leading to correlated errors.

In systems where signallers are unable to predict how sig-
nals degrade during transmission or the amount of noise that
their receivers will experience, additional repetition increases
the chance that a signal will be detected and correctly decoded.
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When combined with our results regarding feature importance,
this repetition becomes more powerful. Mean fundamental fre-
quency of the first whoop may allow a hyena to narrow the
potential caller set (e.g. to ‘adult females’), while each succes-
sive whoop provides opportunity to closely attend to other
acoustic features and further narrow the potential identify of
the caller. It is important to note that our calculation of the
prior probability that a bout belongs to any individual will
be much different than the prior probabilities that a hyena
will encounter in the wild. Although most spotted hyenas
must discriminate between many more than the 12 individuals
we distinguish here, they probably also have prior information
regarding which individuals are nearby or in a particular direc-
tion. The repetition of whoops within the bout provides
multiple opportunities for receivers to localize the caller [86]
while also deriving information from tonic features of the
bout, specifically the inter-whoop-interval [36].

This serial redundancy within whoop bouts also allows
for subsequent divergence between repeated elements and
co-option of a derived element for a new purpose [24]. For
example, whoop bouts often start with a ‘P’ type, truncated
whoop, a simple tonal call that may serve as an alerting com-
ponent [87]. Thus, it is possible that each whoop type conveys a
different kind of information, that the sequence conveys infor-
mation, or even that two hyenas share similar ‘S’ whoops and
different ‘A’ whoops. Unfortunately, our sample size was not
large enough to directly test these hypotheses here.

Although there have been a number of studies on increased
redundancy in calls owing to increased noise in the environ-
ment, to our knowledge, no studies have previously
attempted to quantify the increase in accuracy of information
transfer as the redundancy of the signal increases. There is an
important push in the animal behaviour literature to investigate
degenerate signals in multi-modal signalling systems [23,88],
especially when studying the interaction between social and
communicative complexity [89]. We suggest this should also
extend to redundancy over time because animals are constantly
integrating signals and new information into their decisions.

(d) The function of advertisement whoops
It is noteworthy that, although whoops are used to recruit
clan members for collective action, a large proportion
(47.1% [37] to 60% [30]) of whoop bouts are ‘spontaneous’
or ‘slow’ and do not appear to recruit individuals [36],
suggesting they serve an additional function. We concur
with East & Hofer’s [38] suggestion that spontaneous
whoops display the identity and location of the caller, and
as such they can help hyenas keep track of conspecifics and
thus simplify the task of discriminating between conspecifics
from long-range degraded signals by informing the prior
probability of where conspecifics should be located. How-
ever, we also suggest that these bouts may reinforce the
templates, or mental representations of calls, of receivers
within hearing distance [1,90]. This function of spontaneous
whoops may be especially important given that receivers
must discriminate among many group-mates and also
between group and non-group-mates with the potential for
correlated error and without the benefit of a group signature.
Such memory reinforcement should improve future detection
and discrimination as it does in humans [1].
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