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Abstract: Dermatophytosis, an infectious disease caused by several fungi, can affect the hair, nails,
and/or superficial layers of the skin and is of global significance. The most common dermatophytes
in cats and dogs are Microsporum canis and Trichophyton mentagrophytes. Wood’s lamp examination,
microscopic identification, and fungal culture are the conventional clinical diagnostic methods, while
PCR (Polymerase Chain Reaction) and qPCR (Quantitative PCR) are playing an increasingly impor-
tant role in the identification of dermatophytes. However, none of these methods could be applied to
point-of-care testing (POCT). The recent development of the CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) based diagnostic platform promises a rapid, accurate, and portable diag-
nostic tool. In this paper, we present a Cas12a-fluorescence assay to detect and differentiate the main
dermatophytes in clinical samples with high specificity and sensitivity. The Cas12a-based assay was
performed with a combination of recombinase polymerase amplification (RPA). The results could be
directly visualized by naked eyes under blue light, and all tested samples were consistent with fungal
culture and sequencing results. Compared with traditional methods, the RPA-Cas12a-fluorescence
assay requires less time (about 30 min) and less complicated equipment, and the visual changes can
be clearly observed with naked eyes, which is suitable for on-site clinical diagnosis.

Keywords: RPA-Cas12a; dermatophytes; Microsporum canis; Trichophyton mentagrophytes

1. Introduction

Dermatophytosis, an infectious disease caused by several fungi, can affect the hair,
nails, and/or superficial layers of the skin and is of global significance [1]. The most
common dermatophytes in cats and dogs are Microsporum canis (zoophilic) and Trichophy-
ton mentagrophytes (zoophilic and anthropophilic) [2]. In cats, 98% of dermatophytosis
cases are caused by M. canis [3]. Dermatophytosis is transmitted by animal-to-animal or
animal-to-environment contact with infectious substances (i.e., spores, hyphae) [2]. Clinical
appearances are highly variable, including hair loss, papules, erythema, scaling, crusting,
and hyperpigmentation, with or without pruritus.

The clinical diagnostic methods for dermatophytosis include Wood’s lamp examina-
tion, microscopic identification, fungal culture, and molecular detection methods (PCR or
qPCR) based on internal transcribed spacers (ITS) (Figure 1). Wood’s lamp examination is
widely used in some regions for initial rapid detection of dermatophytosis, regardless of
the unreliable and inaccurate nature of this technique. The microscopic cytology findings
from clinic samples can help clinicians start initial treatment before the fungal culture
results, however, this approach requires specialized training and is inaccurate. Fungal
culture can provide reliable and accurate results, but the growth of the cultures usually
takes about 2 weeks. Molecular tools, targeting ITS sequences, have been increasingly
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developed for dermatophytes detection [4] (including conventional PCR [5,6], real-time
PCR [7], nested PCR [8], multiplex PCR [9], PCR enzyme-linked immunosorbent assay [10],
and PCR-restricted fragment length polymorphism [11–14]). The ITS regions are non-
functional DNA regions located between structural ribosomal RNAs (rRNAs), which are
commonly used for fungal taxonomy. In addition, the ITS sequence analysis is currently
considered the “gold standard” diagnostic method for dermatophytosis [4]. PCR-based
detection methods have shown the potential to detect pathogens in mixed infections or
environmental fungal contamination in approximately 2–3 h [15], but it is more depen-
dent on available laboratory conditions and facilities [16]. Apart from the above methods,
MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry
(MS) has also been reported in dermatophytes identification [17], while it is limited by the
database availability and facilities. Therefore, none of these methods could be applied to
point-of-care testing (POCT). The rapid detection of dermatophytes allows veterinarians to
implement antifungal treatment in time. In addition, the identification of specific dermato-
phytes can help veterinarians educate owners on effective prevention methods thereby
effectively avoiding disease recurrence and potential human infections.
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Figure 1. Schematic representation of diagnostic methods for dermatophytosis. (A) The methods of
dermatophyte detection are summarized into two categories: The first category is CRISPR-Cas12a-
based detection. It only takes 30 min after DNA extraction, with high specificity and sensitivity;
The other is conventional detection methods including Wood’s lamp examination, microscopic
identification, fungal culture and molecular detection methods (PCR and qPCR). (B) The Cas12a-
based assay was performed in conjunction with recombinase polymerase amplification (RPA). After
DNA extraction of scurf and hair samples, the tests are completed within 30 min. The results could
be observed directly by naked eyes under blue light.

In recent years, CRISPR-Cas12a protein has received special attention in the field of
molecular diagnostics. Like CRISPR-Cas9, the Cas12a protein has been used for genome
editing for its RNA-guided dsDNA cleavage activity [18]. However, recent studies have also
found that Cas12a protein has a target-activated, non-specific single-stranded deoxyribonu-
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clease (ssDNase) cleavage activity [19]. Briefly, after crRNA is specifically hybridized with
target dsDNA, the Cas12a is activated to have indiscriminate cleavage activity to degrade
ssDNA or RNA. Therefore, this activity can be applied to detect target dsDNA with the help
of a fluorophore quencher (FQ)-labeled ssDNA reporter (i.e., FAM which can be visualized
with the naked eye under blue light). In addition, this technique is usually combined with
an isothermal pre-amplification step for the target DNA enrichment, which requires less
expensive equipment than PCR-based methods. For example, Chen et al. developed a
rapid and accurate assay (DETECTR) for the detection and classification of human papil-
lomavirus (HPV) in clinical specimens using Cas12a protein combined with recombinase
polymerase amplification (RPA) [20]. Cas12a expands the range of diagnostic applications
for infectious diseases, such as the detection of viruses (i.e., pandemic COVID-19 [21,22]
and African swine fever virus [23]) and bacteria [24] (i.e., Staphylococcus aureus [25], Listeria
monocytogenes [26], Mycobacterium tuberculosis [27], and Methicillin-resistant Staphylococcus
aureus [28]), and it can also be used for pathogen detection in agricultural [29] and aquatic
community [30]. Because CRISPR-Cas12a detection assay has been around for a short
time, few studies have been done on fungi pathogens detection, especially dermatophytes.
The recent research on fungal detection using Cas12a was for wheat fungal diseases [31].
Additionally, positive samples can also be identified by naked eyes in a relatively short
period of time by this method. Based on such characteristics, CRISPR/Cas12a detection can
be developed into a portable tool that is more helpful for clinical diagnosis in the future.
In conclusion, CRISPR/Cas12a technology shows the potential for a rapid, accurate, and
portable diagnostic tool [32].

It has been noted that small animal clinics need an accurate, rapid, and user-friendly
detection method that addresses the shortcomings of traditional dermatophyte diagnostic
methods. In this study, we established a method to detect and identify the two main species
of dermatophytes using an RPA-Cas12a-fluorescence assay. Additionally, we demonstrated
its great potential for point-of-care dermatophytosis diagnosis.

2. Materials and Methods
2.1. Sample Collection

We obtained a total of 31 clinical samples from cats and dogs from three animal clinics
in China (29 samples with clinical signs and 2 healthy control cat samples as in Table 1). The
samples with clinical signs were collected through hair plucked out from the edges of skin
lesions or with apple-green fluorescence using Wood’s lamp, and scurf gathered from hair
coats. The healthy cat samples were collected through hair plucked out from the healthy
skin (sample 31 and 33). By observing different amounts of infectious materials under
microscopy in the clinics, 28 patients were diagnosed with dermatophytosis, with sample
No. 25 diagnosed as non-dermatophytosis. Through Wood’s lamp inspection on some
clinical samples, a classic “apple-green” fluorescence could be observed on the hair coats
of 22 patients (Table 1). We also collected a hair and nail sample from the experimenter
as an operational control (sample 29) and a desk wipe sample of the animal clinic as an
environment control (sample 30) (Table 1). We also collected a mouse skin tissue extract
sample as another animal control (sample 34) and a pure water sample as a reaction control
(sample 35).
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Table 1. Clinical information and results of cases in the study.

No. Type Breed Clinical Signs Wood’s Lamp
Examination

Microscopic
Identification

on Clinic
Samples

Microscopic
Identification on
Culture Samples

ITS Sequencing on
Culture Samples

RPA-Cas12a
Detection on

Clinic Samples

1 Cat DSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

2 Cat ASH Crust Positive Conidium M. canis M. canis M. canis

3 Cat ASH
Alopecia,

pruritus, and
trauma

Not tested † Conidium Undetermined * Chaetomium
globosum Negative

4 Cat DSH Alopecia Positive Conidium M. canis M. canis M. canis

5 Dog Border Collie
Alopecia,

pruritus, and
trauma

Not tested † Conidium M. canis M. canis M. canis

6 Cat BSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

7 Cat BSH Alopecia and
pruritus Not tested † Conidium M. canis M. canis M. canis

8 Cat ASH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

9 Cat ASH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

10 Cat BSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

11 Cat BSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

12 Cat BSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

13 Cat BSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

14 Cat DSH Alopecia Positive Conidium M. canis M. canis M. canis

15 Cat BSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

16 Cat BSH Alopecia and
pruritus Positive Conidium M. canis M. canis M. canis

17 Cat Ragdoll Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

18 Cat BSH
Alopecia,
scurf, and
erythema

Positive Conidium M. canis M. canis M. canis

19 Cat Ragdoll Alopecia Positive Conidium M. canis M. canis M. canis
20 Cat Russian Blue Alopecia Positive Conidium M. canis M. canis M. canis
21 Cat Chinchi-lla Alopecia Positive Conidium M. canis M. canis M. canis
22 Cat Persian Alopecia Positive Conidium M. canis M. canis M. canis

23 Cat Persian Alopecia and
crust Positive Conidium M. canis M. canis M. canis

24 Cat DSH Alopecia and
scurf Positive Conidium M. canis M. canis M. canis

25 Cat ASH Alopecia Negative - No colony - Negative
26 Cat Ragdoll Alopecia Positive Conidium M. canis M. canis M. canis
27 Cat DSH Alopecia Negative Conidium T. mentagrophytes T. mentagrophytes T. mentagrophytes
28 Cat DSH Alopecia Negative Conidium T. mentagrophytes T. mentagrophytes T. mentagrophytes
29 Experimenter - Control Not tested † - No colony - Negative
30 Environment - Control Not tested † - No colony - Negative

31 Cat DSH Healthy
(Control) Not tested † - No colony - Negative

32 Cat DSH Pruritus Not tested † Malassezia Malassezia Malassezia
pachydermatis Negative

33 Cat
(CT-1) ASH Healthy

(Control) Not tested † - No colony - Negative

34 Mouse
(CT-2) - Healthy

(Control) Not tested † - No colony - -

35 Pure water
(CT-3) - Control - - - - -

Note: DSH: Domestic Short Hair; ASH: America Short Hair; BSH: British Short Hair; Undetermined *: Miscella-
neous colonies and no typical dermatophytes colonies; Not tested †: One animal clinic did not perform Wood’s
lamp examination. -: Not tested or no information.

2.2. Strains, Clinical Isolates and Fungal Culture Conditions

We used the standard dermatophyte strains from American Type Culture Collection:
T. mentagrophytes ATCC 28185, and M. canis ATCC 32903. In the laboratory, standard
strains and clinical samples were inoculated on the Sabouraud Dextrose Agar (SDA) plate
containing 200 mg/L chloramphenicol and incubated at 30 ◦C for 2 weeks. The samples
of all cases were identified by observing the macromorphology and micromorphology
of fungal colonies after about 2 weeks, and then fungal samples were subjected to PCR
amplification using ITS1 and ITS4 primer set [33] (Table 2). All the primers were synthesized
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by Sangon Biotech (Shanghai, China). The PCR products were submitted to Sangon Biotech
for sequencing, and species were identified by NCBI Blast (https://blast.ncbi.nlm.nih.gov/
Blast.cgi accessed on 30 July 2022).

Table 2. The primer sequences used in this study.

Method Name Sequences (5′-3′)
Molar Extinction

Coefficients *
(L/(mole·cm))

Products

PCR ITS1 TCCGTAGGTGAACCTGCGG 179,300 ITS region
PCR ITS4 GCATATCAATAAGCGGAGGA 211,800
RPA RPA-F GTCTACATTACTCGGTTGCCTCGGCGGGCCGCGC 301,400

ITS-1RPA RPA-R TCACGGAATTCTGCAATTCACATTACTTATCG 303,700
crRNA crRNA-R GAAATTAATACGACTCACTATAGGG 258,700

crRNA crRNA-DM-F CCAAGAGATCCGTTGTTATCTACAACAG-
TAGAAATTCCCTATAGTGAGTCGTATTAATTTC 603,400

Paired with crRNA-R
for synthesizing

crRNA-DM

crRNA crRNA-Tm-F CCGGAGGACAGACGCAAATCTACAACA-
GTAGAAATTCCCTATAGTGAGTCGTATTAATTTC 611,100

Paired with crRNA-R
for synthesizing

crRNA-Tm

crRNA crRNA-Ng-F CCGCCGGAGGAGTGATTATCTACAACA-
GTAGAAATTCCCTATAGTGAGTCGTATTAATTTC 604,100

Paired with crRNA-R
for synthesizing

crRNA-Ng

crRNA crRNA-Mc-F CCGGAGGATTACTCTGGATCTACAACA-
GTAGAAATTCCCTATAGTGAGTCGTATTAATTTC 601,100

Paired with crRNA-R
for synthesizing

crRNA-Mc

Note *: The molar extinction coefficient is calculated by OligoAnalyzer (https://www.idtdna.com/calc/analyzer
accessed on 25 July 2022).

2.3. DNA Extraction from Clinical Samples and Isolates

The hair and scurf samples were extracted by mixing in a 45 µL extraction buffer
(50 mM sodium hydroxide (NaOH)) and incubated at 95 ◦C for 5 min, then neutralized
by 5 µL of 1 M Tris-HCl, pH 8.0 buffer. After mixing, the samples were centrifuged at
12,000 rpm for 5 min, and then the supernatant was collected. This DNA-containing
solution was prepared for the template for the RPA assays. The DNA from the fungal
colonies (pieces of a colony of 3–5 mm diameter on plate) was extracted by the same
procedures as above, and these samples were amplified by ITS primers and sequenced.
The DNA concentration for M. canis extract is 564.4 ng/µL, and the DNA concentration for
T. mentagrophytes extract is 342.1 ng/µL.

2.4. Generation of dsDNA Targets

The sequences used for RPA primers design were obtained from the NCBI Nucleotide
Database (GenBank accession numbers MH858319.1 and NR_131265.1). Primers for RPA
were listed in Table 2. RPA reactions were performed by the Twist-Amp basic kit (TwistDX,
British). Each RPA reaction (50 µL) contained 29.5 µL rehydration buffer, 2.4 µL forward
and reverse primers, 2 µL genome DNA extraction samples, 2.5 µL of 280 mM magnesium
acetate (MgAc), and 11.2 µL water. The mixtures were incubated at 39 ◦C for 15 min. For
gel analysis, the RPA products were cleaned up using 70% ethanol precipitation method
and verified by electrophoresis on a 1% agarose gel. For Cas12a detection, the 1 µL of
RPA products without purification were directly added to Cas12a reaction. For the limit
of detection determination, we extracted genomic DNA from reference strains, quantified
DNA concentration with NanoDrop 2000C (Thermo Fisher Scientific, Waltham, MA, USA),
calculated copy-number/volume using dermatophyte genome sizes, and diluted DNA
samples to as far as a single genome in RPA reactions.

2.5. Cas12a Expression and Purification

A his-tagged (C-terminal) codon-optimized version of Cas12a (Francisella tularensis
subsp. novicida) gene was synthesized from Sangon Biotech (Shanghai, China). The ex-
pression plasmid (pET28a-FnCas12a) was transformed into BL21 (DE3), then, BL21 (DE3)

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.idtdna.com/calc/analyzer
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cells carrying the expression plasmid were cultured in Luria-Bertani (LB) medium at 37 ◦C
overnight. The cells were transferred into fresh LB (1:100 inoculation) at 37 ◦C until OD600
nm reached 0.8. Then, induced with 0.5 mM IPTG and transferred to 18 ◦C for 16-h ex-
pression. Cells were collected by centrifuged at 15,000 rpm for 15 min and resuspended in
50 mL of lysis buffer [50 mM Tris-HCl (pH 8.0), 1.5 M NaCl, 1 mM DTT and 5% glycerol]
with 1 mM phenylmethanesulfonyl fluoride (PMSF) as the protease inhibitor and lysed by
high pressure. Then, the lysis was centrifuged at 15,000× g for 30 min and the supernatant
was loaded onto HisTrap HP column (GE Healthcare, Madison, WI, USA). The column
was then washed with wash buffer (lysis buffer supplemented with 30 mM imidazole)
and eluted with elution buffer (lysis buffer supplemented with 600 mM imidazole). The
collected protein was dialyzed in storage buffer (20 mM Tris-HCl, pH 8.0, 600 mM NaCl,
1 mM DTT, 0.2 mM EDTA, 15% (v/v) glycerol) and finally stored in aliquots at −80 ◦C.

2.6. Transcription of crRNAs

The preparation of crRNA proceeded in three steps. The transcription templates
for crRNA preparation were amplified by the PCR process, with the primers listed in
Table 2. Then, the transcription process was performed at 37 ◦C overnight using the
T7 High Yield Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA). Finally,
the transcript products were purified using the RNA Clean & ConcentratorTM-5 (Zymo
Research, Irvine, CA, USA) and quantified with NanoDrop 2000C (Thermo Fisher Scientific,
Waltham, MA, USA).

2.7. Cas12a Detection

Cas12a cleavage reaction system is consisting of 500 nM Cas12a, 500 nM crRNA,
2 µL target DNA (RPA products from genomic DNA extract of standard strains or clinical
samples), 500 nM ssDNA (FAM- GATCAAGAGCTA -BHQ1) and 0.5 µL RNase inhibitor
(TaKaRa, Osaka, Japan) in a 50 µL volume. The reactions were performed at 37 ◦C in NEB
buffer 3.1 for 15 min. The total 50 µL reaction products were first exposed for 50 ms under
blue light at the default settings of the Azure C300 Gel Imager (Azure Biosystems, Dublin,
CA, USA). All 50 µL of reaction products were added to the 96-well plates and examined
by Spire Multimode Plate Reader (PerkinElmer, Waltham, MA, USA). Then, 10 µL of the
reaction was diluted 20 times to 200 µL and examined again by the plate reader. Another
10 µL of the products (without dilution) were placed under a Blu-ray glue cutter UV-Cut108
(LIFE iLAB BIO, Shanghai, China) and taken photos by a OnePlus 9R (mobile phone) in the
default setting.

2.8. Statistical Analysis

Data are presented descriptively as mean average with standard deviation (SD) with
triplicates. Statistical analysis was performed using a one-way ANOVA test and only
significant (p < 0.001) values were marked with asterisks (***).

3. Results
3.1. Design and Detection of crRNA Guides and Primers in CRISPR-Cas12a Assay

Because internal transcribed spacer (ITS) regions are considered the “gold standard”
for identifying the fungi species, we designed the RPA-Cas12a assay by aligning the ITS
sequences of M. canis and T. mentagrophytes (Figure 2). A common sequence was selected
for crRNA guide recognition of dermatophytes (crRNA-DM) (this crRNA can also detect
other dermatophytes, such as Nannizzia gypsea) and two specific sequences were selected
for crRNA guide recognition of two main dermatophytes in cats and dogs: crRNA-Mc
(M. canis) and crRNA-Tm (T. mentagrophytes) (Figure 2).
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Figure 2. Primer and crRNA locations in the ITS region. Red lines indicated the primers of RPA; target
sites of the crRNAs were marked in the corresponding area. Sequences were aligned using MUSCLE
(SnapGene software 4.0, GSL Biotech LLC, San Diego, CA, USA) and illustrated by PowerPoint.

To set up the detection assay, we carried out the RPA reaction using the DNA extract
from two reference strains and three negative controls, then added the RPA products
directly to the Cas12a fluorescence assay (Figure 3A). To examine the visual fluorescence
signals using the same exposure time, we took a photo of all testing tubes under blue
light using a gel imager (Figure 3B). The results showed that the crRNA-DM can detect
two reference strains and two specific crRNAs can identify corresponding dermatophytes
with obvious signals compared to control groups. To measure the fluorescence signals,
three replicates of each Cas12a reaction were measured by the plate reader, and the results
were consistent with the tube images by gel imager (Figure 3B–E). The fluorescence signals
of the targeted samples are significantly different (p < 0.001) from negative controls and
non-targeted samples.
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assay of dermatophytes (DM), M. canis (Mc), and T. mentagrophytes (Tm). CT-1, CT-2, and CT-3 were
negative controls (Table 1). (C–E). Fluorescence detection of RPA-Cas12a fluorescence assay. The
bar values represent the average of n = 3 technical replicates, bars represent mean ± SD, statistical
analysis was performed using one-way ANOVA test and significant values at p < 0.001 were marked
with an asterisk (***).

3.2. Sensitivity of the RPA-Cas12a Fluorescence Assays

In order to determine the sensitivity of the RPA-Cas12a fluorescence reporting assays,
we generated serial dilutions (1×, 101×, 102×, 103×, 104×, 105×, 106× and 107×) of
the DNA extracts from reference strains and performed RPA-Cas12a fluorescence assays,
respectively (Figure 4A). The imaging results showed that the fluorescence signals of crRNA-
DM (1 to 106×), crRNA-Mc (1 to 107×), and crRNA-Tm (1 to 103×) were dramatically
stronger than the negative control and can be distinguished by naked eyes under blue light
(Figure 4B).
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assay. For crRNA-DM and crRNA-Mc assays, we used the RPA products of M. canis reference strain;
and for crRNA-Tm assays, we applied the RPA products of T. mentagrophytes reference strain. CT-1,
CT-2, and CT-3 were negative controls (Table 1).

3.3. The Specificity and Sensitivity of RPA-Cas12a Fluorescence Assay for Clinical Samples

We collected 29 clinical samples and 6 controls for RPA-Cas12a fluorescence assay
verification. The clinical diagnosis of dermatophytosis was based on clinical signs, Wood’s
lamp examination and direct microscopic identification by the clinic doctors (Table 1). A
total of 29 samples had different degrees of clinical signs, and microbe infections can be
found in 28 samples under the microscope.
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We used the RPA-Cas12a fluorescence assay to detect these clinical samples (directly
using hair and scurf) so that we can determine the specificity and sensitivity. The results
showed that 26 samples were identified as dermatophytes, 24 samples were identified as
M. canis, and 2 samples were identified as T. mentagrophytes (Figure 5). Meanwhile, we
inoculated all samples on SDA plates and incubated them at 30 ◦C for 2 weeks. After
colony growth, we performed micromorphological studies and ITS sequencing for these
clinic isolates (Figure 6 and Table 1). M. canis produces septate hyphae and spindle-
shaped macroconidia, and the macroconidia can be identified in all M. canis positive
samples (black arrows in Figure 6). While samples No. 27 and 28 were negative for
Wood’s lamp examination, while our RPA-Cas12a fluorescence assay tests were positive for
T. mentagrophytes which were consistent with microscopic morphology. The sequencing
results were searched using NCBI Blast to identify microorganisms. The ITS sequencing
results of the culture samples were considered standard results (Table 1). The sequencing
results all agreed with the results of RPA-Cas12a fluorescence assay.
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Figure 6. Fungal cultures and microscopic identification of clinical samples. All clinic samples were
inoculated on the SDA plate and grown for two weeks. We only showed the plate and microscopy
images of colony growth. The black arrows pointed to spindle-shaped macroconidia in 24 plates
(400×magnification), indicating the presence of M. canis.

We were initially surprised about the results for sample No. 3, as it was initially
diagnosed with dermatophytosis in clinics (screened out a few spores under the microscope
in clinics). The results of ITS sequencing showed that the main colony of sample No. 3 in
the medium was identified as Chaetomium globosum, which is a saprophytic fungus, that
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primarily resides on plants, soil, straw and dung, which has not been shown as a pathogen.
Based on the negative result of the culture, we suspected that the saprophytic fungi spores
observed under the microscope may be carried by the animal patient, and this caused
the misdiagnosis. The clinical signs may be caused by other reasons in the patient while
Chaetomium globosum could be the result of environmental contamination.

There is another case, the negative result of RPA-Cas12a fluorescence in sample No.
25 was consistent with the results of fungal culture and clinical diagnosis (Table 1). This
patient showed focal hair loss which was similar to the signs of dermatophytosis while
the clinical diagnosis result was non-dermatophytosis (Table 1). To further determine the
specificity of our method, we attempted to collect other types of samples, for example,
we tested another kind of fungi pathogen Malassezia (Sample No. 32), control samples
from healthy cats (Sample No. 31 and 33), a hair and nail sample from the experimenter
(Sample No. 29), and an examination desk wipe sample from an animal clinic as the
environment control (Sample No. 30). Additionally, all these controls gave negative results
of RPA-Cas12a fluorescence and fungal culture.

The results showed that our RPA-Cas12a fluorescence assay also successfully and
specifically detected M. canis and T. mentagrophytes in these clinic samples, and more impor-
tantly, the results of control samples were all negative. Importantly, the Cas12a fluorescence
results were consistent with laboratory diagnostic results from colony morphology, micro-
scopic morphology and ITS sequencing (Figure 6 and Table 1). In our limited testing, the
RPA-Cas12a method could achieve 100% sensitivity and 100% specificity.

4. Discussion

At present, the identification of dermatophytes in small animals still relies on com-
prehensive diagnostic methods, such as Wood’s lamp examination and microscopy in
clinical practice. Some clinics would perform fungal culture and dermatophyte PCR for
further diagnosis. The diagnosis methods currently used in clinical practice have their
own limitations (Figure 1A). For example, the diagnosis by clinic signs sometimes may
mislead veterinarians. Due to the variability of the lesions, pruritus, and other lesions
may occur in different animals. It also can be confused with other diseases such as pem-
phigus foliaceus. Additionally, it has been reported that for Wood’s lamp examination,
only 50% of M. canis infections can be detected, while most other dermatophytes (such as
T. mentagrophytes) do not produce fluorescence [34]. Another common diagnostic method
in clinical practice is a direct microscopic examination, which could be a simple and rapid
way to screen for microconidia and hyphae, however, only >85% of cases can be accurately
diagnosed [3]. Importantly, the professional requirements for the microscopic examination
have high professional requirements. In addition, time-consuming and demanding (about
1–2 weeks) are two recognized disadvantages of fungal culture, which can delay the diag-
nostic outcome and treatment [3]. Molecular tools are increasingly used in the laboratory
for fungal identification. Dermatophyte PCR or qPCR is becoming more and more popular
due to its sensitivity, but it is not intuitive and more dependent on available laboratory
conditions and the facilities, and the processing time is about 2–3 h. Taken together, these
can cause confusion and inaccuracy [2]. In this case, accurate and timely identification of
fungal isolates is very important. For clinical practice, developing new methods with rapid,
intuitive, and highly specific identification of dermatophytes is crucial. We developed an
RPA-Cas12a detection method for dermatophytes, which has shown excellent results in
our research. The results were 100% consistent with the traditional fungal culture and ITS
sequencing. The DNA extract can be diluted to more than 103×, which shows that the assay
had high sensitivity. All the positive samples can be sorted and visualized with naked
eyes within 30 min at a constant temperature, which took less time than other molecular
methods. For furthermore application in clinics, we hope to prepare an RPA-Cas12a quick
detection kit for clinical use. The operator can collect animal hair or scurf for detection in
about 30 min and visualize the results by naked eyes under the blue light.
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In summary, the method we designed can assist veterinarians in accurately diagnosing
two main dermatophytosis, especially when the operators are not yet proficient in the
microscopic examination. In our study, we only used 29 samples with clinical signs and
6 control samples for validation. Therefore, more specimens should be included in the
experiment to evaluate the effectiveness in the future.

5. Conclusions

In conclusion, the RPA-Cas12a-fluorescence assay is a promising method for de-
tecting dermatophytes with high sensitivity and specificity. This method can rapidly
detect the dermatophyte genome from clinical samples on site, and the detection time
of dermatophytosis can be reduced by replacing the veterinarian with dermatophytosis.
Therefore, the RPA-Cas12a fluorescence assay will be an excellent choice for point-of-care
dermatophytosis diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12080636/s1, Figure S1: The tube images of RPA-Cas12a
fluorescence assay for reference strains using camera of a mobile phone. For visual detection, 10 µL of
the RPA-Cas12a fluorescence assay from Figure 3B were placed under a Blu-ray glue cutter UV-Cut108
and taken photos by a OnePlus 9R (mobile phone); Figure S2: The tube images of the RPA-Cas12a
fluorescence assays of samples using camera of a mobile phone. For visual detection, 10 µL of
RPA-Cas12a fluorescence assays of samples were used for visual detection of a mobile phone camera.
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