
sensors

Communication

A Simulation Study Using Terrestrial LiDAR
Point Cloud Data to Quantify Spectral Variability
of a Broad-Leaved Forest Canopy

Renato Cifuentes 1,* , Dimitry Van der Zande 2, Christian Salas-Eljatib 3,4,
Jamshid Farifteh 5 and Pol Coppin 5

1 Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Universidad Mayor,
Santiago 8340589, Chile

2 Directorate Natural Environment, Royal Belgian Institute of Natural Sciences,
1000 Brussels, Belgium; dimitry.vanderzande@naturalsciences.be

3 Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor,
Santiago 8340589, Chile; cseljatib@gmail.com

4 Laboratorio de Biometría, Universidad de La Frontera, Temuco 4811230, Chile
5 Department of Biosystem, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;

farifteh@alumni.itc.nl (J.F.); pol.coppin@kuleuven.be (P.C.)
* Correspondence: renato.cifuentes@gmail.com; Tel.: +56-2-2328-1220

Received: 13 August 2018; Accepted: 17 September 2018; Published: 8 October 2018
����������
�������

Abstract: In this analysis, a method for construction of forest canopy three-dimensional (3D) models
from terrestrial LiDAR was used for assessing the influence of structural changes on reflectance for
an even-aged forest in Belgium. The necessary data were extracted by the developed method, as well
as it was registered the adjacent point-clouds, and the canopy elements were classified. Based on
a voxelized approach, leaf area index (LAI) and the vertical distribution of leaf area density (LAD)
of the forest canopy were derived. Canopy–radiation interactions were simulated in a ray tracing
environment, giving suitable illumination properties and optical attributes of the different canopy
elements. Canopy structure was modified in terms of LAI and LAD for hyperspectral measurements.
It was found that the effect of a 10% increase in LAI on NIR reflectance can be equal to change caused
by translating 50% of leaf area from top to lower layers. As presented, changes in structure did affect
vegetation indices associated with LAI and chlorophyll content. Overall, the work demonstrated the
ability of terrestrial LiDAR for detailed canopy assessments and revealed the high complexity of the
relationship between vertical LAD and reflectance.

Keywords: canopy structure; leaf area density; leaf area index; ray tracing; PBRT; vegetation index

1. Introduction

Remote sensing technologies are extensively used in forestry for mapping physical-structural
features of the land and in forest surveys. Monitoring forest health and stress from remotely sensed
images is a priority for forest management. There are several applications of optical remote sensing in
assessing biophysical and physiological characteristics of forest ecosystems in order to estimate and
predict forest ecosystem health and sustainability [1].

Hyperspectral (HS) remote sensing data retrieved from space and airborne sensors, such as
Hyperion (http://eo1.usgs.gov/sensors/hyperion) and APEX (www.apex-esa.org), respectively,
can deliver information on e.g., forest biochemical composition, that is essential for research on nutrient
cycling, vegetation stress, biomass, and species composition among others [2]. Some examples of these
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studies of biophysical analysis using HS remote sensing data include tree species classification [3],
deriving leaf area index (LAI), estimating chlorophyll content [4], and assessing forest biomass [5].

The spectral response of forest canopies has been proved to be affected by internal factors, such as
canopy geometry, height, vigor, and species composition [6]. Canopy geometry (i.e., canopy closure and
density) has been documented by Guyot et al. [7] as the most significant factor in the optical properties
of forest canopies. All these factors should be taken into account when using HS remote sensing from
forested areas. The influence of canopy structure on solar radiation interception and transmittance
can be quantified using three-dimensional (3D) radiative transfer models [8]. The majority of solar
radiation models in plant canopies are based on the radiative transfer concept, where one of the central
questions is how to describe the forest environment in terms of the 3D distribution of the area volume
density of their foliage elements. A fundamental input for developing such models encompass a
correct description of canopy structure in terms of tree position, crown shapes, leaf density, and spatial
distribution of leaf area [9]. This heterogeneity of canopy structure is also greatly influenced by the
clumping index and the leaf inclination angle distribution [10,11]. The leaf inclination angle is defined
as the angle between the leaf surface normal and the zenith. Difficulties in accessing forest or tree
canopies plus the difficulties in applying actual methods using consistent and replicable protocols,
impose severe limitations for direct sampling and quantification of most of the above-mentioned
variables. Therefore, an accurate representation of the spatial variation of the canopy structure,
both vertical and horizontal, is hard to achieve.

Applications of light detection and ranging (LiDAR) technology for large-scale forest mapping
using airborne platforms, also known as airborne laser scanning (ALS), have satisfactorily produced
tree crown and forest canopy level characterizations as detailed in Leiterer et al. [12], contributed
to the study of ecosystems by fusing 3D data with spectral data [13], and provided thorough
measurements for accurate representation of vertical and horizontal dimensions of vegetation
canopies [14–16]. However, various ALS-based studies have applied assumptions of diversified
tree crown archetypes [17,18]. Terrestrial laser scanning (TLS) has demonstrated great capabilities
to represent forest environments at different degrees of complexity [19,20]. Depending on the
characteristics of the LiDAR instrument, TLS provides an important opportunity for 3D modeling
of forest canopies for simulations of the internal canopy radiation regime through radiative transfer
models. Modeling approaches have predominantly focused on using TLS point cloud datasets,
employing several assumptions on growth patterns and tree foliage characteristics [21].

Canopy structure has been represented and evaluated by models assuming homogeneous
green plant material and optical thickness given by LAI, as in Broge and Leblanc [22], but also
multi-layer (vertical gradients of leaf optical properties) and multi-element one-dimensional models
have been proposed to describe vertically heterogeneous canopies [23,24]. Moreover, simulation of
other effects—such as the hot-spot and horizontal discontinuity of canopies—have been included in
extensions or combinations of the SAIL (scattered by arbitrary inclined leaves) reflectance model with
geometric models [25]. For forested environments, additional variables such as crown cover and tree
shape need to be considered to make the model suitable for analysis [26]. 3D forest canopy models from
LiDAR data offer a comprehensive representation of trees, delivering accurate information on canopy
structure and composition, and could be a relevant input for the development of radiative transfer
models. The effect of the vertical distribution of leaf area (the third dimension) on the HS response
of forest canopies retrieved from space or airborne sensors as described in this study, is presented
and analyzed to highlight the importance of counting with reference and realistic data of the vertical
heterogeneity of canopies.

This study used TLS data and a novel methodology for reconstruction of a real forest canopy in
3D, allowing to quantify LAI and LAD. Applying Monte Carlo ray tracing techniques, the spectral
variability derived by changes in these structural measures was explored. The physically-based
ray tracer (PBRT, [27]) was used to model light-surface interactions by creating a forest scene with
particular canopy geometry descriptions, material optical properties, the source of illumination and



Sensors 2018, 18, 3357 3 of 11

sensor platform, among other components. The spectral variability was ultimately expressed as
percentage change on the estimation of both chlorophyll and LAI related vegetation indices.

2. Materials and Methods

The canopy model was built using 3D data (henceforward called point cloud) collected by a
phased-based terrestrial LiDAR scanner (TLS) FARO® LS880 (FARO® Technologies Inc., Stuttgart,
Germany) using a continuous-wave laser at 785 nm (76 m maximum range) on a pure beech
(Fagus sylvatica L.) forest stand in Heverlee Forest (Flanders, Belgium). The average stand variables are:
223 trees/ha, basal area of 28.6 m2/ha, 40.4 cm diameter at breast height (DBH). Average tree height of
32.3 m, and height to crown base of 14.3 m were derived from the point cloud.

The complete point cloud processing consists of four steps: ghost point filtering, registration,
classification, and voxelization. A distance-based filter was applied to the scan points re-projected in
a 2D format (Figure 1a), where each point was examined and removed if predefined allocation and
distance criteria relative to its neighborhood (a kernel box) were not fulfilled, as in Cifuentes et al. [28].
Their study on correcting ghost points was conducted under controlled conditions and evidenced that
there are a number of variables influencing ghost points occurrence, including that the sensitivity of the
algorithm decreases with range. Taking this into account, plus forest stand conditions (e.g., density and
tree height) providing our ranges of interest, a rather intensive filtering was applied as follows: a scan
point was recognized as valid if the difference in distance between the point being evaluated and the
rest of the points in the kernel was smaller than a distance threshold of 0.02 m. The allocation threshold
is the percentage of scan points in the kernel that falls within the distance threshold, and it was set
to 75%. It is important to note that possible over filtering can be resolved by using other techniques,
namely voxelization, which is explained in a subsequent paragraph. Reference spheres were used to
register nine point clouds into one comprehensive point cloud dataset (Figure 1b), partly overcoming
both TLS limitation in range and occlusion effect.

Classification of point clouds into leaves and trunks was done in two steps (Figure 1c):
(i) subdividing and connecting the points from a point cloud using octrees [29]; and (ii) classifying
trunks as the sets of sub-clouds where the dimension of their bounding boxes fulfilled specific
requirements: the length of the bounding box in height (z-axis) was at least three times the length of
the bounding box on the shortest horizontal axis (x or y), and the ratio between these two horizontal
axes (x and y) was between 0.66 and 1.5, in order to capture vertically-oriented elements. In this
way, we selected sub-clouds where points were arranged, at least, with an assumed branch angle of
150◦. According to Bayer et al. [30], pure beech forest stand can have branch angles as high as 140◦.
Remaining sub-clouds were classified as leaves. In this work, we adapted the voxel-based approach
for 3D tree modeling used by Van der Zande et al. [31] for assessing light environment variability in
forest canopies. The 3D space was divided into a finite number of cubic voxels with a voxel side length
of 2 cm, following recommendations from literature for this particular forest stand [32], and they were
classified depending on the interaction between the scan point and the voxel itself. Voxels with at least
one return in it were assigned a value of 1 (filled); a value 0 (empty) was given to voxels that did not
enclose any return (Figure 1d).

The physically-based ray tracer (PBRT, [27]) is a Monte Carlo rendering system that supports the
implementation of different models for light-surface interaction, sensor types, and the illumination
source. An approach adapted from Stuckens et al. [33] was used in this work as follows: (i) Trunks were
built as triangular meshes by applying the ball-pivoting algorithm described by Bernardini et al. [34]
and leaf voxels were abstracted by triangles with a fixed area of 400 mm2, based on the approach
introduced by Van der Zande et al. [31] who used larger discs instead of triangles to characterize leaves
of Quercus robur L., and supported by the findings of Cifuentes et al. [32] where triangular leaves
of variable area (100–900 mm2) were tested depending on voxel side length; (ii) the leaf inclination
angle defined as the angle between the leaf surface normal and the zenith was not measured in the
field. In the present study, it was assumed for each leaf to have a fixed angle of 42.5◦. This fixed
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value matched the average zenith angle of beech leaves of simulated trees for 3D modeling of light
interception, as presented in Van der Zande et al. [11]. This value has been adopted given that in
natural beech forest stands the plagiophile leaf angle distribution seems more suited to estimate canopy
structural attributes and to model radiation transmission when no reference leaf inclination angle data
are available [35,36]. The azimuth of the leaves, in turn, was set randomly between 0◦ and 360◦; (iii) a
homogeneous forested area of 150 × 150 m was created adding 24 instances (or clones) of the 30 × 30 m
core area; (iv) For tree leaves, reflectance spectra were measured during the field campaign using a
FieldSpec® 3 plant probe and leaf clip with the black background panel to calculate the average diffuse
reflectance and transmittance spectra [32,37], and a bidirectional scattering distribution function (BSDF)
model was employed [38]. For trunks, one measured spectrum and a Lambertian reflectance model
was defined [33]; (v) LAI was calculated from the canopy model built using the LiDAR data.
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Figure 1. Processing steps for TLS data: (a) Noise filtering: noise (red dots) is removed from point
clouds; (b) Registration: point clouds generated from scanned areas (top view) are merged in a common
coordinate system using reference spheres; (c) Classification: point clouds (grey dots) are classified into
leaves and trunks; (d) Voxelization: 3D space is divided into a finite number of cubes or voxels (black
segmented line) which are given attributes (empty, filled) depending on the interaction between the
laser beam and the voxel.
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LAI variability in natural environments is driven by weather conditions, season, and species
competition for light, among other factors [39,40]. Similarly, the effects of disturbances caused by
natural processes or management can shape the vertical distribution of LAD. After, four canopy
structure configurations were analyzed: (i) the configuration with reference LAI and LAD (LR); (ii) the
configuration with reduced LAI by 5% (L5); (iii) the configuration with reduced LAI by 10% (L10);
and (iv) the configuration with reference LAI but modified LAD profile (LRT) by translating 50% of
leaf area from the upper part (≥17 m) to lower parts of the 3D space (<17 m and >1.3 m). To simulate
the scene illumination a directional light source for the direct (unscattered) light and a skymap that
contains the angular distribution of diffuse light were used. Direct and diffuse illuminations were
calculated from 350–2500 nm with a 10 nm interval. A measured soil spectrum with no spatial
variability was used as soil background. Finally, the light transport algorithm was implemented by an
integrator that computed reflected radiance from surfaces in the scene. Elements of the scene can be
visualized in Figure 2.
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Figure 2. (a) Raytraced image (RGB) of the simulated forest in PBRT. The core area (black solid line) in
the center, with eight neighboring cloned areas (black segmented line), can be seen; (b) An image from
the real forest is also displayed. Source orthophoto: Informatie Vlaanderen.

In order to simulate an HS device to measure top-of-canopy reflectance, a sensor with a
spectral range from 400 to 2500 nm and spectral resolution of 10 nm was specified in PBRT.
The hemispherical-directional reflectance is then retrieved by means of a sensor with orthographic
projection placed over the simulated canopy, with a spot size of 21 × 21 m. Thus, simulations were
restricted to the 21 × 21 m central area to avoid errors due to lateral radiation fluxes.

Two different categories of vegetation indices were calculated using the reflectance information
retrieved from the simulated forest canopy: chlorophyll content related, and LAI related indices
(Table 1).

Table 1. Formulation of the two categories of biophysical (B) and structural (S) vegetation indices used
in this study. Rλ is the reflectance at the wavelength λ.

Index Formulation Category 1

Normalized difference vegetation index (NDVI), [41] (R800 − R670)/(R800 + R670) B
Zarco and Miller index (ZM), [42] R750/R710 B

Carter and Miller (CM), [43] R695/R760 B
Renormalized difference vegetation index (RDVI), [44] (R800 − R670)/(R800 + R670)1/2 S

Triangular vegetation index (TVI), [22] 0.5 × ((120 × (R750 − R550) − 200 × (R670 + R550)) S
Normalized difference infrared index (NDII), [45] (R850 − R1650)/(R850 + R1650) S

1 Two categories are shown. B = biophysical vegetation index; S = structural vegetation index.
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3. Results

The calculated LAI for the modeled canopy was 2.32 m2/m2. Beech forest stands in Flanders,
Belgium, with similar DBH, basal area, and tree density, have delivered an average LAI assessed by
hemispherical photography of 2.88 m2/m2 [39]. The difference can be attributable to the approach
used (i.e., passive camera versus active laser) and the occlusion effect since TLS coverage at higher
parts of dense canopies is limited, hence forest canopy biomass is underestimated. The graphical
representation of the changes in LAI and in the vertical distribution of LAD are shown in Figure 3a.
The calculated spectral response from top-of-canopy and its variability after changes in structure is
also presented (Figure 3b). When these changes occur, differences in the spectral response of forest
canopies are notorious in the near- and shortwave-infrared regions (NIR and SWIR, respectively).
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Figure 3. (a) Vertical profiles of leaf area density (LAD) for the simulated forest canopy with reference
leaf area index (LR: 2.32 m2/m2), LR reduced by 5% and 10% (L5: 2.22 m2/m2 and L10: 2.09 m2/m2,
respectively), and LR with modified LAD distribution (LRT: 2.32 m2/m2); Measured spectra from
simulated canopies expressed as reflectance (b) and relative difference to LR (c).

The reflectance of L5 and L10 are almost identical. Nevertheless, reducing LAI by 5% and 10%,
resulted in an average decrease in reflectance in the NIR region of 5.4% and 7.2%, respectively
(Figure 3b). These results confirm the positive relationship between NIR reflectance and LAI.
The magnitude of the reduction was also influenced by a decrease in shadow, which intensified
NIR reflectance. Differences become more clear throughout the spectral range (350–2500 nm) in
Figure 3c. The LRT curve almost overlaps L5 (visible), while clearly overlaps L10 (NIR and part of
SWIR). The reduction in LAI as a percentage (5% or 10%) at each height level, means that the number of
removed leaves is greater at higher parts in the canopy (20–25 m), given this particular vertical profile
of LAD. For the LRT canopy, the higher relative differences in reflectance are also in NIR (average 7.3%),
followed by the SWIR and visible regions (Figure 3c). Changes in the visible range (i.e., 400–700 nm)
were, in this case, the lower ones (<0.3%) from the three different canopy structure configurations.
The high similarity between the response from the L10 canopy and the LRT canopy is evident on the
750–1300 nm and 1700–1900 nm spectral range. The LRT configuration may be seen (or assumed) as a
slightly more open canopy than the original scenario, with LAD concentrated on juvenile broad-leaved
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trees. Calculated canopy openness was 18.7% from simulated hemispherical photography of the
modeled canopy. The overall reflectance in this complex canopy will be dominated by NIR reflectance
from canopy layers more exposed to shadows (closer to the ground), with suppressed NIR reflectance
due to their presence, making the spectral response of LRT almost identical to the one from L10.

The presented changes in reflectance, especially in the NIR region, transferred clear effects to
calculated vegetation indices, as presented in Figure 4. The NDVI was the less influenced index when
altering canopy structure, with change <0.7%. Here, even though the LAI was not modified in LRT,
this canopy configuration showed the higher relative difference. A similar situation was observed in
the chlorophyll content related indices ZM and CM, with 5.4% and 7.4% relative difference, respectively,
and for the LAI related indices RDVI and TVI, with 4.2% and 7.2% relative difference, respectively.
Finally, L10 displayed the higher relative difference for the NDII (9.8%), followed by LRT (7.7%).
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Figure 4. Percentage difference of calculated vegetation indices for three different canopy configurations.
Leaf area index reduced by 5% and 10% (L5 and L10, respectively), and LR with modified LAD
distribution (LRT).

The effect of background (e.g., ground surface, rocks, litter materials) in areas with low canopy
cover added to the calculated influence of canopy structure, can produce a range of vegetation
index values since clumping increases the contribution of the soil background by increasing the
gap fraction [33]. Spectral mixing methods have been used to model the relative contributions of
background elements to spectral response. Results obtained in the present simulation study may
complement the extensive work and publications coming from the community working on canopy
modeling and remote sensing measurement inversion techniques, to better understand the influence
of vertical canopy structure variations on the image spectra.

4. Discussion

The similarities between LRT reflectance and L10 reflectance are emphasized, as the aim of the
present work is to highlight that there is a need to quantify and understand the effect of the vertical LAD
profile in the spectral response of forest canopies. This is clearly represented in Figure 3c, where it is
possible to appreciate that the ratio L10 to LR and the ratio LRT to LR (except in the visible) appear almost
identical. These effects can have a significant impact on several scientific applications, for example in
canopy cover prediction incorporating NIR reflectance [46], or recognition and classification of trees
from hyperspectral imagery using visible and NIR reflectance [47].

For the LRT canopy in Figure 4, chlorophyll content and LAI related vegetation indices exhibit
inconsistencies that can be deducted from the variation in the NIR part of the spectrum. Is it important
to note here that even though the NDII is a normalized index same as the NDVI, it shows high
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sensitivity to changes in canopy structure. It has been highlighted in early research that there is a
high correlation between the ratio of the middle-infrared band to the NIR band, and LAI [48,49].
The NDII, also named normalized difference water index (NDWI) in some studies [50] has been
widely used to estimate equivalent water thickness of leaves and canopies, and has been linked
and correlated to LAI. Considering that leaf reflectance in the SWIR part of the electromagnetic
spectrum is dominated by liquid water absorption, it has been assumed that the NDII is correlated
to the LAI by integrating individual leaf equivalent water thickness for each leaf layer to have an
estimation of the total canopy equivalent water thickness [51]. Furthermore, the impact on calculated
vegetation indices originated from different vertical LAD profiles can have significant effects on
several scientific applications, such as on validating protocols for PAR-based LAI measurements in
forest environments [52], predicting LAI on crop canopies [53], monitoring fuel moisture content [50],
and estimating aboveground biomass [54].

Despite difficulties in gathering leaf inclination angle distribution data due to logistic costs and
high variability depending on a number of factors, a pertinent work from Raabe et al. [10] contributed
with a suitable approach to characterize and analyse them. Incorporating important variables such
as this one would contribute to generating more realistic canopy models. Attention must be paid,
however, in assuming spherical leaf angle distribution for tree species from temperate and boreal
regions, as denoted by Pisek et al. [36].

Limitations of TLS to characterize tree tops need to be overcome using complementary ALS data.
The combination of high spatial resolution and developments of 3D techniques has increased the
ability to obtain vegetation information from LiDAR data to characterize canopies and monitor forest
status and change [55]. Although ALS is not able to reconstruct forest canopy structure as TLS does,
it can unquestionably reveal coarse features such as the penetrations at different crown depths, and the
spatial pattern of laser points, among other related characteristics [16].

5. Conclusions

A 3D canopy structure of an even-aged forest stand was represented in detail by means of TLS
data, through an objective processing chain. Based on simulations performed within a ray tracing
environment, the present study investigated the changes in reflectance of forest canopies derived
from modifications in LAI and in the vertical distribution of LAD. Under these controlled conditions,
the NIR region was more sensitive to changes in LAI, followed by the SWIR and visible parts of the
spectrum. Forest canopy with a different distribution of LAD in the vertical plane (LRT) delivered
comparable variation in reflectance to the L10 configuration in the NIR part, and to the L5 configuration
in the visible part. Variability in both chlorophyll content and LAI related vegetation indices can be
deducted from the variation in the NIR part of the spectrum, for the LRT canopy configuration.

The present communication aimed to draw the attention to the effect of forest canopy structural
changes over widely known and used indices, without necessarily meaning more (or less) leaves
per tree, but forest canopies with different vertical LAD profiles. The effects of different vertical
LAD profiles showed an impact on vegetation indices that can have significant impacts on numerous
scientific applications.

The actual restrictions of TLS to represent the upper part of the canopy, that may lead
to underestimating forest canopy biomass, may be fixed by using complementary ALS data.
As recommended in the literature, this approach has been suitable to characterize and monitor forest
canopies at different scales.

As part of a future analysis, it is foreseen to develop new forest scenes and carry out
simulations considering a number of other variables, such as the leaf angle distribution, canopy cover,
and photosynthetically-active radiation (PAR). Hence, the simulation study presented in this work
will possibly become a suitable modelling approach if reflectance and structural measurements are
performed and evaluated under similar natural scenarios. In addition, new advances in laser scanning
technology will allow further use of TLS to accurately rebuild forest canopies and explore the effects
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of vertical LAD on different forest ecosystems, in order to model its contribution to the canopy
spectral response.
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