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ABSTRACT Neuroimaging genetics represents a multivariate approach aimed at elucidating the intricate
relationships between high-dimensional genetic variations and neuroimaging data. Predominantly, existing
methodologies revolve around Sparse Canonical Correlation Analysis (SCCA), a framework we expand to 1)
encompass multiple imaging modalities and 2) promote the simultaneous identification of structurally linked
features across imaging modalities. The structurally linked brain regions were assessed using diffusion tensor
imaging, which quantifies the presence of neuronal fibers, thereby grounding our approach in biologically
well-founded prior knowledgewithin the SCCAmodel. In our proposed structurally linked SCCA framework,
we leverage T1-weighted MRI and functional MRI (fMRI) time series data to delineate both the structural
and functional characteristics of the brain. Genetic variations, specifically single nucleotide polymorphisms
(SNPs), are also incorporated as a genetic modality. Validation of our methodology was conducted using
a simulated dataset and large-scale normative data from the Human Connectome Project (HCP). Our
approach demonstrated superior performance compared to existing methods on simulated data and revealed
interpretable gene-imaging associations in the real dataset. Thus, our methodology lays the groundwork for
elucidating the genetic underpinnings of brain structure and function, thereby providing novel insights into
the field of neuroscience. Our code is available at https://github.com/mungegg.

INDEX TERMS fMRI, human connectome project, neuroimaging genetics, sparse canonical correlation,
T1 MRI.
Clinical and Translational Impact Statement— This study enhances the integration of genetic and neu-
roimaging data using an advanced multimodal model improving our understanding of how genetic variations
influence brain structure and function. Thus, it could serve as the first step towards identifying geneticmarkers
that correlate with neuroimaging patterns, aiding in the prediction, diagnosis, and treatment of neurological
disorders.

I. INTRODUCTION

NEUROIMAGING genetics is an emerging field that
aims to uncover intricate associations between genetic

variants and neuroimaging data [1], [2]. While a conventional
genome-wide association study (GWAS) directly links
fine-grained genetic information with coarse-grained patient
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information (e.g., diagnosis), neuroimaging genetics is more
sensitive because it integrates rich imaging information.
Imaging observations serve as an intermediate bridge
between fine-grained genetic information and coarse-grained
patient information. Through identifying associations
between genetic factors and imaging measurements, neu-
roimaging genetics seeks to model and understand how
genetic factors influence the structure and function of the
human brain.

In previous studies, researchers have utilized vari-
ous methodologies to ascertain gene-imaging associations,
encompassing both pairwise univariate and multivariate
regression approaches [3], [4], [5], [6]. Pairwise univari-
ate methodologies, such as General Linear Models (GLM)
and Reduced Rank Regression, are frequently employed
to evaluate the correspondence between single-nucleotide
polymorphisms (SNPs) and imaging data. However, these
approaches are unable to account for multivariate interac-
tions or intricate relationships among multiple variables.
Conversely, multivariate regression techniques such as Prin-
cipal Component Analysis (PCA), Independent Component
Analysis (ICA), and clustering have been utilized to capture
correlations between multiple SNPs and imaging character-
istics. Nevertheless, the interpretability of these methods can
be challenging, thereby restricting the practical implications
of the findings. These methods are unable to effectively
manage the complexity of multimodal datasets because
PCA and ICA are fundamentally linear techniques. Despite
yielding valuable insights, these methodologies have encoun-
tered difficulties in effectively managing the complexity
of multimodal datasets. Multimodal datasets, such as those
containing neuroimaging and genetic data, often involve het-
erogeneous data types and complex, non-linear relationships
that PCA and ICA cannot adequately model.

Recently, neuroimaging genetics has increasingly adopted
bivariate methods, with a notable emphasis on Sparse Canon-
ical Correlation Analysis (SCCA) models [7]. SCCA is
typically formulated to discern regularized multivariate asso-
ciations between two distinct datasets: genetic markers and
neuroimaging observations. The evolution to multi-view
SCCA has extended the capability to accommodate addi-
tional modalities, including three or more [7]. Three-way
SCCA (TSCCA) emerges as a specific instance of multi-
view SCCA, offering a framework to investigate multivariate
relationships between SNPs, imaging data, and clinical
scores [8]. Gradient Kernel CCA (Grad KCCA) represents
a CCA method operating within a transformed feature space
via a kernel function. This approach enables the capture of
nonlinear relationships, which traditional linear methods may
overlook [9]. CCA-based methodologies have significantly
enhanced the capacity to unveil intricate genetic-imaging
associations. Nonetheless, some of the associations identi-
fied were noted to signify spurious relationships because
they mainly reflected statistical correlation and did not
agree with biological prior knowledge [7], [8]. For instance,
Elliott et al. highlighted the risk of spurious correlations in

large-scale neuroimaging-genetics studies due to the high
dimensionality of the data, which can lead to findings that
lack biological plausibility [9]. Similarly, another study by
Grasby et al. pointed out that many of the associations iden-
tified in CCA-based analyses did not replicate in independent
datasets, suggesting that these findings may be artifacts of the
data rather than true biological relationships [10].

II. RELATED WORK
A. SPARSE CANONICAL CORRELATION ANALYSIS (SCCA)
Let X ∈ Rn×p consist of n patients and p genetic features, and
Y ∈ Rn×q consist of n patients and q imaging features. Upper-
case notation indicates a matrix, and lower-case notation
indicates a vector. SCCA aims to determine a linear combi-
nation that maximizes the correlation between two datasets
while controlling the sparsity of the model using the L1
penalty.

min
u,v

−uTXTYv

s.t. ∥u∥2 ≤ 1, ∥v∥2 ≤ 1, ∥u∥1 ≤ c1, ∥v∥1 ≤ c2 (1)

Here, u and v represent the corresponding canonical load-
ing vectors and the L1 penalty introduces sparsity to the
vector, facilitating the interpretation of canonical variables in
high-dimensional data [7].

B. MULTI-VIEW SCCA
Bimultivariate techniques have been proposed to detect com-
plex associations between genetic features and multimodal
neuroimaging datasets. Multi-view SCCA (mSCCA) meth-
ods have been developed to handle multimodal imaging
data. The mSCCA method is a simple extension of conven-
tional SCCA, which cannot model structurally linked features
across modalities [7], [12].

min
ukvk

K∑
k=1

∥Xuk−Yvk∥22

s.t. ∥Xuk∥22 = 1, ∥Yvk∥22 = 1, (2)

where K is the number of imaging modalities.

III. METHOD AND PROCEDURE
A. STRUCTURALLY-LINKED SCCA (S2CCA)
Using the SCCA method may yield the identification
of features that, despite lacking direct structural con-
nections, exhibit a substantial correlation. In this study,
we present an algorithm grounded in SCCA, integrating
structural constraints to simultaneously identify linked fea-
tures.We ensured the concurrent extraction of features known
to exhibit high correlation reflecting their underlying struc-
tural connectivity. Figure 1 provides an overview of the
proposed method.
Dataset X represents the genetic data consisting of n

patients and p SNP features. Y1 and Y2 represent two different
imaging modalities with q neuroimaging features. The SCCA
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FIGURE 1. Proposed Methodology for Integrating Multimodal Data. Our methodology is specifically designed for analyzing multimodal data
encompassing neuroimaging and genetic information. We utilize neuroimaging data obtained from T1-weighted MRI in the form of cortical thickness and
functional MRI scans measuring the amplitude of low-frequency fluctuation, to provide a comprehensive understanding of both structural and functional
aspects of the brain. Additionally, we employ DTI tractography to facilitate the simultaneous identification of structurally linked features across two MRI
modalities.

formulations for the three modalities are as follows:

min
u,v

−
1
n
uTXTY1v1 −

1
n
uTXTY2v2 −

1
n
vT1Y

T
1Y2v2,

s.t. ∥u∥22 ≤ 1, ∥v1∥22 ≤ 1, ∥v2∥22 ≤ 1, ∥u∥1 ≤ c1,

∥v1∥1 , ∥v2∥1 ≤ c2,L (u) ≤ c3,

P (v1) ,P (v2) ≤ c4, ∥v2 − v1∥ ≤ c5 (3)

In our investigation, we utilized T1-weighted MRI and
functionalMRI (fMRI) time-series data to delineate the struc-
tural and functional attributes of the brain [13], [14]. These
modalities can be linked by assessing the connectivity of
white matter tracts between brain regions using DTI. To facil-
itate the simultaneous identification of structurally connected
features across modalities, we expanded Equation (1) to the
following objective function:

min
u,v

−
1
n
uTXTY1v1 −

1
n
uTXTY2v2 −

1
n
vT1 Y

T
1 Y2v2

+ β1 ∥u∥1 + β2 ∥v1∥1 + β2 ∥v2∥1 + λ1uTLu

+ λ2vT1 P
T v1 + λ2vT2 Pv2 + τ ∥v2 − v1∥ (4)

Here, u and V = [V1,V2] denote the corresponding canon-
ical vectors of X ,Y1 and Y2, respectively and β1, β2, λ1,
λ2, τ are regularization parameters. β1 and β2 correspond to
L1 regularization and affect the sparsity of the genetic and
imaging canonical vectors. L encourages connected SNPs
to be identified together in the form of a graph Laplacian
matrix and λ1 acts as a connectivity-based penalty. P is a
newly proposed constraint applicable across neuroimaging
data encouraging structurally connected features to be identi-
fied using probability value and λ2 is the associated penalty.

τ is the fused least absolute shrinkage and selection operator
(LASSO) penalty that encourages canonical vectors from
different modalities to share similar weights between imaging
modalities.

B. OPTIMIZATION
Equation (3) represents the objective function aimed at
minimizing u and V. Due to its non-convex nature, direct
optimization within our algorithm presents a challenge.
Therefore, we opted for an alternative convex search method
for optimization [15]. Fixing one of the variables, either u
or V, renders the corresponding objective function convex,
allowing for sequential variable fixation for minimization.
Initially, both u and V are initialized. Subsequently, at each
iteration, a block of V is fixed while optimizing a block
of u, and vice versa. This iterative process continues until
convergence is attained.

C. TUNING OF HYPERPARAMETERS
Our model relies on several hyperparameters to operate and
the correct combination of these parameters strongly deter-
mines the performance of the model. In this study, we focused
on five hyperparameters (i.e., β_1, β_2, λ_1, λ_2, τ ) for tun-
ing. We systematically analyzed the performance variation of
each hyperparameter of the model using the cross-validation
method as follows.

CV =
1
5

5∑
i=1

1
3

{
corr

(
Xiu−i,Y1iv1−i

)
+ corr

(
Xiu−i,Y2iv2−i

)
+ corr

(
Y1iv1−i ,Y2iv2−i

)}
(5)
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In particular, a grid search method was adopted to system-
atically explore the hyperparameters. β1 and β2 were tuned in
ranges [5, 2500] and [5, 200] respectively in 5 increments. λ1,
λ2 were tuned in ranges [0.1, 0.5]. in 0.05 increments. τ was
tuned in ranges [0.05, 0.2] in 0.05 increments.

D. DATA PREPROCESSING
Brain imaging data were obtained from the Human Con-
nectome Project (HCP) [16]. We obtained quality-controlled
data from the HCP website [17]. This study was a retrospec-
tive analysis and institutional review board (IRB) approval
was obtained from Sungkyunkwan University. Out of the
1206 subjects in the HCP S1200 dataset, we filtered for those
with available genetic data and multimodal imaging, identi-
fied as White, and whose ethnicity was not Hispanic/Latino.
The last filtering criterion was to reduce the likelihood of
ethnic stratification effects in the genetic analysis. This fil-
tering process resulted in 525 subjects. We used parts of
the HCP data, where brain structural MRI scans were con-
ducted using Siemens scanner, specifically 3 T Trio or 3T
Prisma models. In this study, we utilized the HCP database,
which includes longitudinal data. However, for our analysis,
we only used the baseline data (i.e., the first visit) for each
participant.

The structural images were captured using a T1-weighted
3D magnetization-prepared rapid acquisition gradient echo
sequence. Specific parameters were as follows: voxel size
= 1.0 × 1.0 ×1.0 mm3, FoV = 256 × 256 mm2, matrix
size = 256 × 256, TR = 2300ms, TE = 2.98ms, and flip
angle = 9◦. Every T1-weighted image was first evaluated for
artifacts or excessive motion. These imaging data were cor-
rected for gradient nonlinearity and b0 distortions, followed
by co-registration using a rigid-body transformation. The
processed data were nonlinearly registered to the MNI152
standard space. Thewhite and pial surfaces were generated by
following the boundaries between the different tissues [18],
[19], [20]. These surfaces were averaged to generate the mid-
thickness surface, which was used to generate the inflated
surface. The generated spherical surface was registered to the
Conte69 template with 164k vertices using MSMAll [21],
[22].

Cortical thickness values were derived using the
HCP-MMP1.0 (HCP Multi-Modal Parcellation version 1.0)
parcellation. This atlas, created through a combination of
multimodal brain images and an objective semi-automated
neuroanatomical approach divides the human brain into a
total of 360 regions (180 in each hemisphere) [23].
The fMRI data were obtained using a multiband

gradient-echo EPI imaging sequence with TR = 1,000 ms,
TE = 22.2 ms, flip angle = 45◦, FoV = 208 × 208, matrix =

130 × 130, 85 slices, voxel size = 1.6 × 1.6 × 1.6 mm3,
and a multiband factor of 5. The entire scanning duration
time for the fMRI protocol was approximately 16 minutes,
producing 900 volumes. The preprocessing for the fMRI
was performed by the HCP based on the updated data

pipeline (v3.21.0, https://github.com/WashingtonUniversity/
HCPpipelines). The data were registered onto the T1w
structural data and then onto the MNI 152 standard space.
Magnetic field bias correction, non-brain tissue removal,
and intensity normalization were performed. They were also
corrected for gradient distortions and head motion. Noise
components attributed to head movement, white matter, car-
diac pulsation, arterial, and large vein-related contributions
were removed using FIX [24], [25].We calculated the average
framewise displacement (FD) for the fMRI data to quantify
head motion. FD is defined as the sum of the absolute val-
ues of the differentiated realignment estimates (translations
and rotations) across all time points. The average FD was
computed for each participant and the mean and standard
deviation of FD across participants were reported. The mean
and standard deviation of FD were 0.13mm and 0.0038mm
for our data. The fMRI data from the HCP 1200 release
were used. The preprocessed rs-fMRI data were mapped to
standard grayordinate surface space with a cortical ribbon-
constrained volume-to-surface mapping algorithm. We used
the averaged and cleaned time series of all the grayordinates
data for each region of the HCP-MMP 1.0 atlas [23].

DTI data were also from HCP and obtained using a
spin-echo EPI sequence with 1.05 mm isotropic voxels, TR=

7000ms, TE= 71ms, 65 unique diffusion gradient directions,
and 6 b0 images obtained for each phase encoding direc-
tion pair. Preprocessing included B0 intensity normalization,
eddy current-induced field inhomogeneity correction, and
head motion correction in the volume space [26]. We further
conducted diffusion tractography of DTI data using methods
detailed in a previous study to obtain neuronal fiber infor-
mation connection brain regions [23]. The B0 portion of the
DTI was volumetrically registered to the volume version of
the MMP atlas [22]. The motion-corrected fMRI data were
mapped to the standard grayordinate surface space where the
MMP atlas resides as described in the fMRI preprocessing
procedure [28]. Combining the two procedures led to a spatial
alignment of DTI data with fMRI data.

We computed the Amplitude of Low-Frequency Fluctua-
tions (ALFF) feature to quantify spontaneous brain activity
from preprocessed fMRI data [29]. After the standard prepro-
cessing of fMRI data, Fourier transformwas applied followed
by band-pass filtering (0.01 – 0.1 Hz) and power spectrum
computation for each region [30]. The values were further
normalized by dividing by the global mean ALFF of each
subject. Thus, a total of 360 ALFF values were computed
for the fMRI data.

The Yeo 7 network is a widely used parcellation of
the human brain that categorizes it into seven distinct
functional networks based on resting-state functional MRI
data [31]. These networks include the Visual, Somato-
motor, Dorsal Attention, Ventral Attention, Limbic, Fron-
toparietal, and Default Mode networks. Each network in
the Yeo 7 parcellation is linked to specific cognitive
and sensory functions, creating a detailed map of brain
organization.
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FIGURE 2. Comparison of loading vectors for various methods at the noise level of 1.5. (a) ground truth (b) proposed
method (c) Grad KCCA (d) TSCCA Non-zero elements (both pink and blue) denote significant elements present. The pink
elements are structurally linked components occurring across imaging modalities.

The genotyping data released by HCP was obtained
from the dbGAP website, specifically under the designa-
tion phs001364.v1.p1. These data were collected using the
Illumina Multi-Ethnic Global Array (MEGA) SNP array.
Through this technique, genotypic information of 1,580,642
SNPs was obtained across all participating subjects. SNPs
that exhibited a minor allele frequency of less than 1% were
discarded. Additionally, any SNP that did not conform to the
Hardy–Weinberg equilibrium criteria of less than 10−6 or had
a genotype missing rate exceeding 5% was excluded. This
stringent criterion ensures the reliability and validity of the
genotyping data. Once the genetic data were curated and pre-
pared, they were further analyzed to investigate any potential
associations between SNPs and measures of association with
imaging features. For this task, a GWASwas conducted using
the widely-recognized PLINK software [27]. The methodol-
ogy chosen for this analysis was a linear regression model,
which effectively adjusts for potential confounding vari-
ables, namely sex and age. After the mentioned analysis,
we obtained 4,259 candidate SNPs.

IV. EXPERIMENT AND RESULT
A. SIMULATION STUDY
To evaluate the performance of our method, we performed
a simulation experiment. First, our simulation experiment
started with a data generation step. We generated the genetic

dataset A ∈ Rn×p and imaging datasets B1,B2 ∈ Rn×q where
ground truth is known. The data size was set to n = 100, p =

820, and q = 160, where n is the number of patients, p is the
number of SNPs, and q is the number of imaging features.
The number of SNP and imaging features were chosen to
be similar to existing studies [32]. For the genetic dataset
A = aℓ + e, let ℓ be a latent variable that was randomly
sampled from a normal distribution, e be the noise that was
added to the ground truth value of a latent variable, and
a be the binary indicator variable to denote the significant
element. For neuroimaging data B1 and B2, the same method
in genetic data generation was used.

We experimentedwith different noise levels (from 0 to 5) to
ensure diversity in the experiment. We assumed structurally
linked features across the neuroimage datasets B1 and B2
with matrix P where non-zero elements denote linked fea-
tures. For example, if Pij is non-zero, it implies that i-th
element of the first modality is linked with the j-th element of
the second modality. We also simulated the graph Laplacian
matrix L for the genetic data as L = D − C , where D repre-
sents the degree matrix of the connectivity matrix C [32].

B. REAL DATA
We evaluated the performance of our approach on real
data of healthy individuals from the HCP database. The
regional fMRI time series data were averaged in the
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TABLE 1. Comparison of detection performances among methods.

temporal dimensional yielding 360 regional values similar
to the Amplitude of Low-Frequency Fluctuation (ALFF)
approach [33]. We applied our S2CCA to temporally aver-
aged fMRI times series feature (from fMRI) and cortical
thickness features (from T1-weighted images), which were
constrained by the probabilistic DTI tractography so that
we can explore the association between genes and brain
imaging data to extract not only significant features but also
structurally connected features in fMRI and T1-weighted
images. In our experiments, we examined the associations
between 360 brain regions (fMRI and cortical thickness
features) and 4,259 SNPs extracted from the preprocess-
ing steps as described before to identify highly correlated
and simultaneously structurally connected regions. For this
purpose, 10, 200, 0.01, 0.3, and 0.5 were chosen as
the five hyperparameters of the algorithm, we obtained
an average canonical correlation value of 0.1771 across
cross-validations.

Table 2 shows the top 5% (18 regions out of 360 regions)
features selected by applying S2CCA in each imaging modal-
ity. There are 6,480 (i.e., top 1% of 129,600 possible
connections) strong connections in the tractography matrix
and the identified imaging features are all subsets of the
strong connections. This shows the benefits of constraining
the algorithm with tractography.

Figure 3 (a) shows a comparison of selected features
in Table 2 based on the Yeo 7-network parcellation [31].
Regional weights were summed to generate the network-level
maps. The results of both modalities are dominated by the
frontoparietal and the default mode networks. Previous study
indicates that the default mode and frontoparietal networks
are heavily connected playing a central role in integrat-
ing various cognitive and functional processes [34]. Unlike
approaches that focus solely on functional connectivity, our
S2CCA approach allowed us to integrate both structural
connectivity (via DTI) and genetic influences (via SNP corre-
lations). These constraints likely accentuated the prominence
of the frontoparietal and default mode networks, as these net-
works not only demonstrate robust neuronal fiber connections
but also exhibit significant heritability in their connectivity
patterns. The existing study supports the notion that genetic
factors can exert a substantial influence on regional gray
matter, particularly within the prefrontal and parietal cortices,

TABLE 2. The top 5% selected neuroimaging features with non-zero
canonical weights.

areas that are central to the frontoparietal network [35],
[36]. These genetic influences, in turn, could underlie the
strong connectivity observed within the default mode net-
work, especially during resting-state conditions [37]. This
genetic mediation may explain why networks such as the
dorsal attention or ventral attention networks, despite their
known functional connectivity with the default mode net-
work, were not highlighted in our results. Figure 3 (b)
shows the canonical weight from the result of S2CCA con-
firming that the frontoparietal network and default mode
regions have high canonical weights. Figure 3(c) shows
the summed weights for the 22 parcellated cortical regions
from HCP-MMP 1.0 atlas [22], a finer level than the
Yeo-7 network.

We found 24 gene features with non-zero weights from
our S2CCA method. The identified SNPs were mapped to
18 genes and they were mostly in the SORC2, SRGAP1,
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FIGURE 3. (a) Comparison of selected features for each imaging modality at the network level. (b) Canonical weights visualized on the brain from the
result of S2CCA. (c) Canonical weights according to 22 parcellated cortical regions.

SYT1, and WDR21A genes (Supplement Table 1). Further
discussions of these SNPs are given in the Discussion and
Conclusion section.

V. DISCUSSION AND CONCLUSION
The SCCA method is a multivariate technique used in neu-
roimaging genetics for identifying features simultaneously
linked with imaging and genetic data [7]. To enhance the
selection of relevant features, several regularization tech-
niques have been introduced [7], [8], [11]. We propose
an algorithm that leverages the SCCA, referred to as the
S2CCA, incorporating prior knowledge of structurally linked
regions. This approach guarantees the simultaneous extrac-
tion of features that are recognized to have high correlation
and connectivity. We argue that our S2CCA framework with
structural connectivity constraint identifies features that are
consistent with biological prior knowledge and thus improves
the existing SCCA-based methods. Results of the simula-
tion data indicated that our algorithm is highly effective
at modeling and detecting intricate gene-imaging relation-
ships, even under conditions of arbitrary data designed to
mimic real challenges. When applied to real data of SNP,
T1-MRI, and fMRI, our method revealed SNPs that are sig-
nificantly correlated with key neuroimaging markers, thus

demonstrating the practical applicability of the approach in
uncovering genetic influences on both the structural and func-
tional aspects of the human brain.

Our study distinguishes itself by not only integrating struc-
tural T1-weighted and fMRI measurements with genetic
markers within a normal population but also by harnessing
the capabilities of DTI tractography. This addition of trac-
tography has allowed us to assign weights to the physical
connections between brain structures, thereby enriching our
analysis with the dimension of actual neural connectivity
offering insights into how structural and functional brain
networks are modulated by genetic factors. This integration
is particularly crucial for unraveling the complex interactions
that underlie neurodevelopmental and neurodegenerative pro-
cesses, potentially opening new avenues for the diagnosis
and treatment of neurological and psychiatric conditions.
While our findings offer a broad overview rather than disease-
specific insights, they notably expand the understanding of
potential neurobiological variations, setting a foundation for
further exploration of genetic and neuroimaging correlations.

We chose the cortical thickness of T1 MRI and ALFF of
fMRI as two neuroimaging measures. Cortical thickness is a
well-established marker of brain morphology [38]. Variations
in cortical thickness are associated with a variety of cognitive
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functions, developmental stages, and neurological conditions.
Thus, we can identify structural traits in the brain that may
have genetic underpinnings, providing clues about how genes
influence brain development, aging, and susceptibility to dis-
eases [39]. ALFF quantifies low-frequency oscillations in
fMRI signal, representing spontaneous brain activity. ALFF
analysis enables the identification of functional abnormalities
and variations in brain activity that could be genetically medi-
ated. This helps in understanding how genetic factors may
influence brain function and connectivity patterns, offering
insights into the genetic basis of cognitive functions and
neuropsychiatric disorders [40]. Together, cortical thickness
and ALFF are complementary to one another and provide a
comprehensive view of the brain’s structural and functional
status.

We identified 22 unique regions mostly concentrated in
frontoparietal network and default mode network from two
neuroimaging modalities that are closely related. For the
genetic features, we identified 18 genes annotated from
4,259 SNPs. A few of the resulting genes, ARHGAP26,
SORCS2, and SRGAP1, have been reported to be influential
in the structural and functional integrity of the brain. For
instance, ARHGAP26 is known for its role in cell signaling
and cytoskeletal organization, which could be pivotal in the
development and maintenance of neural pathways as evi-
denced by DTI tractography [41]. Similarly, SORCS2, with
its involvement in neuronal growth and guidance, may play a
crucial role in shaping the connectivity patterns we observed
among the highlighted brain regions [42]. In addition, our
findings suggest a potential genetic basis for the connectivity
between areas such as the Primary Visual Cortex and the
Superior Temporal Visual Area, areas crucial for visual pro-
cessing and integration. The genetic markers identified in our
study, including those associated with synaptic transmission
(e.g., SYT1), might explain the functional synchrony and
structural coherence observed in these regions, offering a
genetic lens through which to understand the complex web
of neural connections [42]. Furthermore, the observed asso-
ciations between genetic markers and regions involved in
auditory processing, executive functions, and spatial naviga-
tion (e.g., Area 46, Intraparietal Areas) emphasize the genetic
contributions to cognitive and sensory processing capacities.
This underscores the importance of considering genetic data
alongside neuroimaging to fully grasp the neurobiological
substrates of brain function [42].

Neurosynth [43] meta-analysis revealed that the ARHGAP
26 and SYT1 genes show strong expression in the frontopari-
etal and default mode networks (e.g., Area 8C, Area posterior
9-46v, Area 46, Area PGs, Area PGi, Temporo-Parieto-
Occipital Junction1, STSd posterior, IntraParietal 0, Area
TE1 posterior, Auditory 5 Complex, Area PFm Complex).
Additionally, ARHGAP26, EPC2, and CCDC147 genes are
associated with regions within the visual, dorsal attention,
and ventral attention networks (e.g., Primary Visual Cortex,
Superior Temporal Visual Area, Intraparietal Area, and
Temporo-Parieto-Occipital Junction 2) [43]. Furthermore, the

C20orf26, RSRC1, SRGAP1, CBX5, and CD82 genes show
high expression in the thalamus, a central brain region piv-
otal for sensory information transmission and processing.
This indicates a vital connection to the functionality of this
region, underscoring the potential importance of these genes
in maintaining normal brain function. However, we could not
find existing reports on the remaining regions. Additional
gene ontology analysis on the 18 genes revealed potentially
different roles (Supplement Fig.1). Thus, all the identified
genetic features could have been reported before. In sum,
the identified gene – brain region associations emphasize
the close relationship between genes and the brain func-
tionally. These findings suggest the significant roles these
identified genes may play in cognitive and attentional func-
tions, further emphasizing the intricate relationship between
genetic expressions and brain functionality. Still, the iden-
tified regions and genetic features need further validation
studies to fully explore their role.

Our study has several limitations. This is a single-center
study and thus our findings should be interpreted with care.
Future studies are needed to see if our findings are repli-
cable across other normal cohorts. We adopted ALFF as
the fMRI measurement. There are other measures such as
functional connectivity. Integrating other fMRI-related mea-
surements might offer novel insights into the brain and
this is left for future work. We considered only White and
non-Hispanic subjects in our study and thus our findings
might not generalize to other ethnic groups.

Our study shares the idea of leveraging multiple data
modalities to decipher the intricacies of brain function and
genetics, akin to disease-focused research, but it distin-
guishes itself by its broad applicability and potential to
inform on the vast heterogeneity observed in the general
population. Future research should aim to build upon these
initial findings, incorporating longitudinal studies to further
elucidate the developmental and aging processes as influ-
enced by genetic and neuroanatomical variations. This study
exemplifies the importance of integrating diverse scientific
methods to enhance our understanding of the human brain,
potentially leading to personalized medical interventions that
consider the unique genetic and neurobiological makeup of
individuals.
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