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Antibiotic resistance genes (ARGs), environmental pollutants of emerging 

concern, have posed a potential threat to the public health. Soil is one of the 

huge reservoirs and propagation hotspot of ARGs. To alleviate the potential 

risk of ARGs, it is necessary to figure out the source and fate of ARGs in the 

soil. This paper mainly reviewed recent studies on the association of ARGs 

with the microbiome and the transmission mechanism of ARGs in soil. 

The compositions and abundance of ARGs can be changed by modulating 

microbiome, soil physicochemical properties, such as pH and moisture. The 

relationships of ARGs with antibiotics, heavy metals, polycyclic aromatic 

hydrocarbons and pesticides were discussed in this review. Among the various 

factors mentioned above, microbial community structure, mobile genetic 

elements, pH and heavy metals have a relatively more important impact 

on ARGs profiles. Moreover, human health could be  impacted by soil ARGs 

through plants and animals. Understanding the dynamic changes of ARGs 

with influencing factors promotes us to develop strategies for mitigating the 

occurrence and dissemination of ARGs to reduce health risks.
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Introduction

Antibiotic resistance refers to the mechanism in which microorganisms can resist a 
high concentration of antibiotics, while other organisms are susceptible to these antibiotics 
(Martinez et al., 2007). The sum of all ARGs in soil environment is called “soil resistome” 
(Gorovtsov et al., 2018). ARGs are considered as environmental pollutants of emerging 
concern (Tan et al., 2018), and its global spread and dissemination pose a great threat to 
human health. Human pathogens carrying various ARGs can generate superbugs, which 
persist after antibiotic treatment and eventually lead to human death. Antibiotic resistance 
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is reported to cause 700,000 people deaths a year, more seriously, 
it is estimated to account for 10 million deaths by 2050 if 
uncontrolled (O’Neill, 2016).

Most antibiotics are natural compounds or originate from 
natural compounds, produced by different kinds of bacteria, fungi 
or plants (Davies and Davies, 2010). Before the introduction of 
synthetic antibiotics, the existence of natural antibiotics may exert 
continuous selective pressure on microorganisms, but most 
microorganisms were susceptible to antibiotics before the era of 
antibiotics discovery (Davis and Anandan, 1970; Hughes and 
Datta, 1983). From 2010 to 2030, it is estimated that the use of 
antibiotics in animal production worldwide will increase by 67%, 
and China is predicted to increase by 99% (Van Boeckel et al., 
2015). The huge market demand for antibiotics and its 
inappropriate use globally have promoted the increase and spread 
of ARGs in soil microorganisms (Cheng et  al., 2013; Gorecki 
et al., 2019).

Soil is one of the largest environmental reservoirs for ARGs 
(Forsberg et al., 2012), accounting for about 30% of the known 
ARGs, and it is also one of the most complex ecosystems in terms 
of niches and biodiversity. At present, several main antibiotics 
used by humans are screened and cultured from soil (30%), and 
more than 80% of antibiotics used clinically come from soil 
bacteria. ARGs are indigenous in soil (World Bank, 2017), which 
may resist to β-lactam, tetracycline and glycopeptide, and these 
ARGs are detected in 30,000-year-old Beringian permafrost 
sediments, and exogenous ARGs can also be introduced into the 
soil by applying organic manure, sewage discharge, and irrigation 
of wastewater treatment plants (WWTPs) in densely populated 
areas. Thus, soil can act as a reservoir and potential source of 
ARGs, which poses a threat to the environment and 
human health.

The influencing factors on ARGs profiles are different 
depending on soil types. Microbial community structure, 
antibiotic type and concentration, soil physicochemical properties 
(such as pH, humidity, nutrition and temperature), heavy metals, 
polycyclic aromatic hydrocarbons (PAHs) and pesticides can exert 
selective pressure on the soil resistomes (Figure 1) and interact 
with each other. Given that the potential transmission of 
environmental ARGs to human commensals and pathogens, 
investigating the source and transmission mechanism of antibiotic 
resistance in soil, their relationships with microorganisms, mobile 
genetic elements (MGEs), soil physicochemical properties and 
various pollutants will contribute to managing antibiotic resistome 
in soil, and develop effective mitigation strategies to improve 
human health.

Despite these advances mentioned above, many knowledge 
gaps still remain in the field of soil antibiotic resistance, as 
described below. What inexpensive and easy-to-operate 
technologies can effectively treat emissions of ARGs-containing 
substances? What are the mechanisms that affect soil ARGs by soil 
special substrates, such as clay and humic acid? What are the 
complex interactions and molecular mechanisms between soil 
ARGs and environment and human health? What are the 

individual and compound effects of various environmental and 
biological factors on soil ARGs? More researches are needed to 
address these questions.

Antibiotic resistance gene classes 
distribution across soil

Some ARGs are indigenous in soil, and may originate from 
soil indigenous bacteria. β-Lactam, tetracycline and vancomycin 
resistance genes can be  detected in some relatively primitive 
environments with no or limited human impacts (Martinez et al., 
2015), such as permafrost (Mindlin et  al., 2008; Perron et  al., 
2015), Antarctic soil (Van Goethem et al., 2018) and Qinghai-
Tibet Plateau (Yang et al., 2019; Li B. et al., 2020). Therefore, ARGs 
are natural and ancient, preceding the selective pressure exerted 
by man-made antibiotics. ARGs detected in the relatively 
primitive Qinghai-Tibet plateau soil with high altitude and limited 
human activities are mainly uncommon glycopeptides (such as 
vancomycin), rifamycin (Van Bambeke, 2004; Damodaran and 
Madhan, 2011) and a small part of β-Lactamase resistance genes 
(LRA-3, LRA-9 and LRA-5). Amycolatopsis in the soil can secrete 
vancomycin and rifamycin (McIntyre et al., 1996; Tan et al., 2006). 
Although β-Lactam antibiotics are widely used in clinical 
treatment, the three genotypes of LRA-3, LRA-9 and LRA-5 have 
not been reported in clinical pathogens (Li B. et al., 2020). Seven 
kinds of ARGs, including quinolones, aminoglycosides, β-Lactam, 
macrolide-lincomycin-streptomycin B (MLSB), multidrug, 
sulfonamides and tetracycline resistance genes, were detected in 
24 pristine forest soils in China, in which aminoglycosides and 
quinolones resistance genes were dominant (Song et al., 2021). 
Thirty classes of ARGs resisting to the sulfonamides, tetracyclines, 
aminoglycosides, quinolones, macrolides and β-Lactam were 
detected in polar sediments. Among these ARGs, sul genes were 
the most common, and the abundance (10−8 ~ 10−6 copies/16S 
rRNA gene copies) was about 2 to 5 orders of magnitude lower 
than that other areas having higher anthropogenic activities 
(10−4 ~ 10−2 copies/16S rRNA gene copies; Tan et al., 2018). In the 
relatively primitive Qinghai-Tibet plateau wetlands, FCAs 
(fluoroquinolone, quinolone, florfenicol, chloramphenicol, and 
amphenicol resistance genes), β-Lactamase, MLSBs, 
aminoglycoside and tetracycline resistance genes were dominant 
(Yang et al., 2019). In conclusion, the types of dominant ARGs 
detected in different soil types are distinct (Table 1).

Tetracycline resistance genes are generally dominant in 
various soil types, such as agricultural soil (Durso et al., 2012; 
Cadena et al., 2018), and ~ 60% of soil-derived strains are resistant 
to tetracycline (D’Costa et al., 2006). The possible reason is that 
tetracycline is widely used in animal husbandry and is one of the 
top five antibiotics most commonly used in China (Zhang et al., 
2015). Tetracycline, an indigenous and ancient antibiotic, exerts 
strong selection pressure on ARGs, which have been detected in 
Beringian permafrost formed 30,000 years ago (D’Costa et  al., 
2011) and polar sediments (Tan et al., 2018).
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Vancomycin resistance genes are widely distributed and 
detected in most wetlands of relatively primitive Qinghai-Tibet 
Plateau (Yang et al., 2019) and other types of soils (D’Costa et al., 
2011), which pose a great threat to public health because 
vancomycin is the last resort against Gram-positive bacteria (some 
strains are resistant to most antibiotics; Hubbard and Walsh, 2003).

Multidrug resistance genes, one of the dominant ARGs in soil, 
explain the emergence of multidrug-resistant bacteria in the clinic. 
Several common ARGs have been detected in the river beach soils 
of Port Philip Bay and Yarra River in Victoria, Australia, among 
which multidrug resistance genes were the most abundant, 
accounting for 32.7% of the total number of detected ARGs 
(Zhang Y. et al., 2019).

The origin of antibiotic resistance 
genes

Natural antibiotic resistance genes in soil

Microorganisms in soil secrete some antibiotics to compete 
for resources (high concentration antibiotics; Newman et  al., 
2003) or communicate (low concentration antibiotics; Linares 
et  al., 2006). Microorganisms resist antibiotics to protect 
themselves from “suicide” (i.e., the “producer hypothesis”; 
Cundliffe, 1989; Wright, 2007; Davies and Davies, 2010; Cordero 
et al., 2012). Microorganisms without resistance can be killed or 
inhibited by antibiotics. Therefore, according to Darwin’s 

“arms-shields race” hypothesis, in order not to be  killed or 
inhibited by antibiotics, microorganisms adjacent to antibiotics 
producers acquire antibiotic resistance through gene mutation 
and expression of latent genes under the selective pressure of 
antibiotics (Cytryn, 2013). Therefore, some ARGs are indigenous 
in the soil itself. And it is estimated that the origin of natural 
antibiotics is before 2 Gyr ~ 40 Myr, thereby the antibiotic 
resistance should also be equally ancient (Hall and Barlow, 2004).

Antibiotic resistance genes with 
composting

In addition to the indigenous resistome, resistome obtained 
through various ways are called the “acquired resistome.” As 
common drugs and feed additives, antibiotics are widely used and 
even abused to treat diseases and promote animal growth. Even 
after taking antibiotics for a long time, antibiotic-resistant bacteria 
(ARB) can continue to exist in the intestine for many years 
(Clemente et al., 2015). Up to 30 ~ 90% of antibiotics are not fully 
absorbed or metabolized after ingestion and excreted through 
faeces in the form of original drugs, conjugates and by-products 
(Johnson et al., 2016; Qian et al., 2018). After animal manure is 
applied to soil, the residual antibiotics exert selective pressure on 
microorganisms, then conferring antibiotic resistance (Guo et al., 
2018). A large number of ARGs were detected in human faeces 
and animal intestines and faeces. For the sake of amending soil 
and increasing soil nitrogen source and organic matter 

FIGURE 1

The influencing factors of ARGs.
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TABLE 1 Antibiotic resistance genes (ARGs) and mainly influencing factors in different soil types.

Soil type ARG numbers Dominant ARGs ARG abundance Mainly influencing 
factors Reference

24 Pristine forest soils 

(broadleaf forests)

25 Subtypes of the 30 

target ARGs

Aminoglycoside (36.3%), 

quinolone (27.7%), MLSBa 

(17.5%) resistance genes

Average absolute abundance: 

1.78 × 105 copies/g soil

Average relative abundance: 

7.22 × 10−3 ARG copy 

numbers/16S rRNA gene copy 

numbers

Physicochemical factors 

(e.g., temperature, total 

phosphorus) (65.8%), 

microbiota (48.3%), spatial 

factors (longitude) 

(26.79%), and MGE (3.6%).

Song et al. (2021)

5 Forest soil from 

north to south (boreal 

forest, temperature 

mixed coniferous 

forest, temperate 

deciduous forest, 

subtropical (evergreen 

broadleaf) forest and 

tropical (rainforest) 

forest)

160 ARGs Multidrug (22.4%), 

β-lactam (21.8%), 

aminoglycoside (13.5%), 

MLSB (14.1%), tetracycline 

(11.2%) and vancomycin 

(8.2%) resistance genes

– MGEs, microbiota, herbs 

and pH

Hu H-W. et al. (2018)

Amazon rainforest 

soils

215 ARG subtypes Multidrug resistance genes 0.243 Copies/16S rRNA gene Bacterial community 

composition

Qian et al. (2021)

Deciduous forest 7 ARGs Sul1, ermB, vanA, aph(3′)-

IIa, aph(3′)-IIIa, tet(W) and 

blaTEM-1

– – Radu et al. (2021)

Deep forest in Yunnan – Multidrug, MLS (macB) 

resistance genes

– – Zheng et al. (2021)

Paddy soil in South 

China

16 ARGs, corresponding 

to 110 ARG

subtypes

Multidrug (38–47.5%), 

acriflavine (16.4–21%), 

MLS (13.2–20.7%), 

bacitracin (5.4–12.5%) 

resistance genes

7–10 ppm Microbial communities, 

pH

Xiao et al. (2016)

Paddy soil in Shaoxing 

City

5 ARGs TetB, tetC, tetW, sul1, sul2 2.37 ~ 5.01 log10-transformed 

copies/g dry weight

Microbial community Lin et al. (2016)

Paddy soil in the Lake 

Tai Basin

>6 ARGs Multidrug (>90%) 

resistance genes

– MGEs Zhang et al. (2021)

Paddy soil in Hunan 

province

119 ARGs Multidrug (17.6%), 

tetracycline (16.8%), 

aminoglycoside (16.0%), 

MLSB (15.1%) and β lactam 

(14.3%) resistance genes

109 ~ 1.2 × 1012copies/g dry soil Bacteria, MGEs, As Zhao et al. (2020)

Urban soil in Belfast, 

Northern Ireland

164 ARGs β-lactams (23%) and 

multidrug (23%) resistance 

genes

6.8 × 102 ~ 1.7 × 108 copies/g soil MGEs, heavy metals (Cu, 

Zn, etc), pH

Zhao Y. et al. (2019)

Urban soil in Victoria, 

Australia

40 ARGs β-lactam (>23%), MLSB 

(16.34%), and quinolones 

and fluoroquinolones 

(11.76%) resistance genes

– Reclaimed water irrigation, 

MGEs, bacterial 

community composition, 

pH, total nitrogen

Han et al. (2016)

Urban soil in Greater 

Melbourne, Australia

217 ARGs Multidrug (52.22%), MLSB 

(18.50%) and β-lactamase 

(12.30%) resistance genes

Around 10−3 copies/16S rRNA 

gene

MGEs, industrial 

distribution

Yan et al. (2019)

aMacrolide-lincosamide-streptogramin B. 
tet, tetracycline resistance genes; sul, sulfonamide resistance genes; erm, macrolide resistance genes; bla, β-lactam resistance genes; van, vancomycin resistance genes; aph (3′)-IIa, 
aminoglycoside resistance genes.
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(Garcia-Pausas et  al., 2017), applying manure has become a 
routine operation. However, this operation introduces fecal ARGs 
into the soil (Graham et al., 2016; Peng et al., 2017). It is reported 
that there were no significant differences in ARGs abundance and 
types between soil and animal faeces in a relatively primitive 
Tibetan environment (Chen B. et al., 2016). Long term application 
of livestock manure can increase the diversity and abundance of 
ARGs (Li S. et  al., 2020). The number of observed ARGs in 
manured soil increased significantly and continuously during the 
three consecutive years of fertilization from 2015 to 2017 
compared with the treatment without manure application 
(fertilized pig manure 68–92, fertilized chicken manure 70–84, 
fertilized cow manure 69–83; Liu et al., 2021). However, other 
researchers have pointed out that long-term application of organic 
fertilizer does not always increase the abundance of ARGs. Firstly, 
the composting process and high temperature (the temperature 
above 70°C can completely and directly degrade bacterial DNA) 
can reduce the abundance of ARGs by killing the bacterial hosts 
(Guo et al., 2019). The total abundance of ARGs decreased by 
90.19–91.87% on the 17th day of composting (Guo et al., 2019). 
Secondly, the exogenous ARG-containing bacteria cannot 
acclimatize to soil environment and can be inhibited by soil native 
bacteria; thus, some faecal ARG-containing bacteria can only 
survive temporally in the soil. After the application of manure, the 
abundance of ARGs may subsequently decreased (Sun et  al., 
2015c). The total relative abundance of ARGs decreased gradually 
with composting, from 2,910 ppm at day 0 to 1,200 ppm and 
700 ppm in day-71 and day-171 composting, respectively (Zhang 
et al., 2020). In addition to manure, the decomposition of animal 
carcasses, especially fish, livestock and poultry, will also introduce 
ARGs into the soil. For example, the absolute and relative 
abundance of total ARGs were enriched 536.96 and 18.16 folds in 
the Crucian carps carcass soil, respectively (Feng et al., 2021).

Antibiotic resistance genes in WWTPs

As the interface between humans and the environment, 
WWTPs in densely populated cities contain various antibiotics, 
ARBs and ARGs discharged from farms, hospitals and 
pharmaceutical industries. Microorganisms are subjected to 
multiple selection pressures in WWTPs, making it possible for 
horizontal gene transfer (HGT) between environmental bacteria 
and pathogenic bacteria (Rizzo et  al., 2013), and microbial 
opportunists such as multidrug-resistant bacteria occur after 
exposure to various toxic compounds (Tello et  al., 2012). The 
WWTPs aim to remove carbonaceous materials, nutrients, and 
pathogenic bacteria, and are not explicitly used to remove 
antibiotics and ARGs. The wastewater discharged from the 
WWTPs introduces and enriches many antibiotics and ARGs, 
which may pollute soil. High concentration of sulfamethoxazole 
(18 μg kg−1) was detected in the soil adjacent to WWTP of 
Puchukollo, while sulfamethoxazole has not been observed in 
other soil sampling sites staying away from WWTP (Archundia 

et al., 2017). Therefore, WWTPs can act as a source of pollutants 
(Guo J. et al., 2017), which contains plenty of resistance genes.

The impacting factors of antibiotic 
resistance genes

The association between antibiotic 
resistance genes and microorganisms

Soil microorganisms are main producers of antibiotics and 
their derivatives, which can equip themself to compete for limited 
resources. Actinomycetes are well-known bacteria that produce 
antibiotics (Lima-Mendez et al., 2015; Zhang et al., 2020; Song 
et  al., 2021). Approximately 5–6% of soil bacteria are 
actinomycetes, most of which can secrete tetracycline. Soil 
microorganisms are also potential hosts of ARGs. In the study of 
soil metagenomics, Proteobacteria and Actinobacteria are the 
most common predictive hosts of multidrug resistance genes 
(D’Costa et al., 2006; Rafiq et al., 2017; Guo et al., 2019; Yang et al., 
2019). All isolates carrying gram-negative sulI/sulII genes belong 
to Proteobacteria (Razavi et al., 2017).

Previous studies have shown that bacterial community 
structure mainly determines the soil ARGs profiles (Forsberg 
et al., 2014), and bacterial phylogenetic and taxonomic structure 
significantly affect resistant components in the soil (Chen Q. et al., 
2016). Therefore, ARGs profiles can be  affected by changing 
bacterial communities (Xie et al., 2018). Microbial diversity is 
negatively linked to the abundance of resistance genes (Van 
Goethem et al., 2018; Chen et al., 2019b; Li B. et al., 2020). After 
controlling for other potential drivers such as culture time and 
microbial abundance, this correlation still exists. The reason may 
be  that high biodiversity as a biological barrier can resist the 
spread of antibiotic resistance (Chen et al., 2017b), or microbial 
communities with high ARGs abundance compete with 
susceptible species to reduce soil diversity (Van Goethem et al., 
2018). Thereby, increasing microbial diversity can slow down the 
propagation of ARGs in the soil (Chen et al., 2019b).

Transmission mechanism of antibiotic 
resistance genes and their relationships 
with MGEs

ARGs are highly diverse because they can move between 
microbes (Gorecki et  al., 2019). There are two main ways for 
ARGs to spread in the environment, vertical gene transfer (VGT) 
and horizontal gene transfer (HGT). VGT refers to that the 
genomic content passes from generation to generation. Generally, 
these ARGs are located on the chromosomes. HGT refers to the 
transfer of MGEs such as plasmids, integrons and transposons 
carrying ARGs between two strains through transformation, 
transduction and conjugation, so that the recipient bacteria can 
obtain new metabolic ability to adapt to the new niche (D’Costa 
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et al., 2007). These ARGs are usually located on plasmids. These 
three HGT mechanisms are shown in Figure 2. Transformation 
refers to that the competent receptor bacterial cells embed the free 
ARGs absorbed from the external environment (ARBs are released 
into the environment after dissolution) into the bacterial 
chromosome, then obtain a new phenotype. Transformation is the 
most common way of HGT in bacteria (Wang, 2019). 
Transduction refers to the process of transferring ARGs from 
donor bacteria to recipient bacteria by phage (Barlow, 2009), then 
conducting gene recombination. Penadés and his colleagues found 
that phages were active in transmission of ARGs related to MGEs 
(Penades et  al., 2015). Conjugation refers to ARG transfer to 
recipient cells through sexual pili during direct contact between 
donor and recipient cells (Abe et al., 2020).

Most MGEs before the antibiotic era did not carry ARGs 
(Davis and Anandan, 1970; Hughes and Datta, 1983), but with 
the selective pressure posed by the increased use of antibiotics, 
more and more MGEs were accompanied with resistance genes. 
Studies have shown that the total relative abundance of ARGs 
and the relative abundance of several individual ARGs are 
significantly positively correlated with total transposase genes 
and total integrase genes (Pehrsson et al., 2016; Guo et al., 2019; 
Zhang Y-J. et  al., 2019; Li S. et  al., 2020). Moreover, we  can 
observe the correlation of antibiotic resistance genes and MGEs 
after controlling various influencing factors such as pH and 
temperature. The variation of ARGs can be explained mainly by 

MGEs, accounting for 36.41%; 10 of 16 ARGs were associated 
positively with MGEs (Guo et al., 2019). IntI1 (class I integron-
integrase gene) was significantly positively correlated with sulI, 
sulII and tetG gene in manure-amended soil (Guo et al., 2019). 
Quinolone resistance genes are prevalent, probably because they 
are located on plasmids and are easy to transfer between natural 
bacteria (Vaz-Moreira et al., 2016). In agriculture soils, HGT 
mediated by MGEs may enable nonpathogenic environmental 
bacteria and pathogens acquire resistance (Johnson et al., 2016), 
thus increasing the difficulty of clinical treatment. However, 
other studies have shown that the association of MGEs and 
ARGs does not always exist (Zhang et al., 2020), or MGEs cannot 
explain much about ARG variations (Xu et  al., 2021). For 
example, the absolute abundance of ARGs was significantly 
correlated with the abundance of integrons, but not with the 
abundance of transposases in wetland soil on the Qinghai-
Tibetan Plateau (Yang et al., 2019). These phenomena need to 
be studied further.

The association between antibiotic 
resistance genes and soil 
physicochemical properties

The main factors shaping ARGs profiles are distinct in 
different geographical locations and soil types. Soil pH, moisture, 

FIGURE 2

Mechanisms of horizontal gene transfer (HGT). Transformation refers to that the receptive receptor bacterial cells embed the free antibiotic 
resistance genes (ARGs) into the bacterial chromosome, integrate and stable express. Transduction refers to transfer ARGs from donor bacteria to 
recipient bacteria by phage. Conjugation refers to transfer of ARGs through sexual pili during direct contact between donor and recipient cells.
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temperature, and C/N ratio all can affect ARGs profiles. Soil pH 
and moisture are common influencing factors in various soils.

Soil pH is one of the most vital factors affecting ARGs 
diversity and composition (Xie et al., 2018). ARGs diversity is 
highest when pH is neutral (Hu H-W. et al., 2018), and positively 
correlated with pH (pH: 4.0 ~ 5.5) in Amazon rainforest soil 
(Lemos et  al., 2021). Soil pH was significantly and negatively 
correlated with ARGs abundance in bulk soil (Yan et al., 2021). 
For instance, the abundance of ARGs (tetO, tetQ, tetC and tetX) 
increased significantly under acidic conditions and decreased 
under alkaline conditions (Guo A. et al., 2017). Previous studies 
showed that soil pH is also the essential factor that influences the 
soil microbial diversity and community structure (Shen et al., 
2013; Sun et al., 2015c), and soil pH can select microorganisms by 
affecting nutrient availability or physiological activity (Xiao et al., 
2014). The certain pH levels may exert direct pressure on bacterial 
cells, selecting some bacterial population (e.g., Acidobacteria; 
McCaig et al., 1999, Zhang et al., 2014), and then indirectly affect 
the ARGs profiles. The optimal pH of most soil bacteria is narrow 
(the intracellular pH value is usually within 1 unit of near neutral 
pH; Xiao et al., 2016), and the growth of soil microorganisms is 
inhibited, if pH deviates from the optimal pH (Rousk et al., 2010).

In addition, soil moisture is another key factor driving the 
ARGs pattern (Hu H-W. et al., 2018; Yang et al., 2019; Zhang et al., 
2020). Soil moisture is positively correlated with the relative 
abundance of ARGs encoding inactivation mechanism (Cheng 
et al., 2019; Song et al., 2021). The absolute copy numbers of sulI 
and tetO gene were positively correlated with moisture (Song 
et al., 2016), which might be explained that water is one of the 
main limitations for growth of the total microbial community in 
soils. Thus increased moisture will increase the microbial biomass, 
then increase the ARG content. In the thermophilic composting 
stage, the main factor affecting ARGs is moisture. Low moisture 
conditions are helpful to removing ARGs (Cheng et al., 2019), 
because high moisture promotes the propagation of ARGs by 
MGEs (Wang et  al., 2016), or ARGs migrate with water flow. 
Moreover, the moisture level can also indirectly affect ARGs level 
by affecting microbial activity (Liang et al., 2003), free airspace 
(Awasthi et al., 2018), metabolic activity, physiological activity 
(Zhang M. et al., 2019), ARGs dissipation (Song et al., 2016) and 
increasing the sensitivity of microbial community to antibiotics 
(Reichel et al., 2014).

Nutrients in the soil are also correlated with ARGs. For 
instance, potassium is positively correlated with the relative 
abundance of ARGs with protective mechanisms or sulfonamides 
classes (Song et  al., 2021). Total phosphorus is negatively 
correlated with the relative abundance of ARGs encoding efflux 
pump mechanism or tetracyclines classes (Zhang Y-J. et al., 2019). 
High C/N ratio and NO3

−-N contents are positively correlated 
with the absolute abundance of ARGs (Guo et al., 2020). Moreover, 
the nitrogen conversion indicators (TKN: total Kjeldahl nitrogen, 
NO3

−-N, NH4
+-N) explain part of the variation of ARGs (24.21%; 

Guo et  al., 2019). The nutrient is one of the most significant 
determinants for the direction of microbial interaction. In 

nutrient-rich environment, microorganisms show competition 
and increases the diversity of ARGs (Hammarlund and 
Harcombe, 2019).

Soil temperature shapes the distribution of resistome and it is 
negatively correlated with ARGs abundance. The reason may 
be  that increasing soil temperature decreased microbial 
community diversity, then leaded to reduce ARGs abundance in 
soils (Dunivin and Shade, 2018). The diversity and abundance of 
bla_A, bla_B, dfra12 and tolC gene decreases with soil temperature 
(Dunivin and Shade, 2018). High temperature can reduce the 
abundances of most ARGs (Banerjee et al., 2016), which is usually 
used to remove ARGs in the composting process.

The association between antibiotic 
resistance genes and meteorological 
parameters

Meteorological parameters (e.g., precipitation and 
atmospheric temperature) have great effects on ARGs. The 
abundance, diversity and composition of ARGs increase 
substantially during rainfall (Jang et  al., 2021). Total ARGs 
suddenly reached to the highest level (4.5 × 109 copies/ml) at the 
7th after rainfall (Jang et al., 2021). The average concentrations of 
sulII gene in the wet season (9.04 × 107 copies/g sediments) were 
higher than those in the dry season (3.78 × 107 copies/g sediments; 
Li et al., 2018). Moreover, the absolute abundances of the sul1, 
sul2, tetA, tetQ, qepA, qnrB, qnrS, ampC, and aacC2 gene increased 
by nearly one order of magnitude during rainfall compared with 
before rainfall (approximately 12, 16, 3.6, 11, 1.1, 32, 7.5, 5.7, and 
3.8 folds, respectively; Wang Q. et al., 2021). Several reasons can 
explain the phenomena. Firstly, almost 98% of airborne ARB 
particles fall to the ground surface through the scavenging action 
of rainwater, promoting the dissemination of ARGs from ambient 
air to soil during rainfall (Wang Q. et  al., 2021). The relative 
contribution of rain to resistance genes was 16.34% (Hu J. et al., 
2018). Secondly, wetter weather can lead to bacterial blooms, 
compared with drier conditions (Marti et  al., 2014). Thirdly, 
rainwater increased the abundance of MGEs, especially the intI1 
(2.35 × 106 copies m−3), which accelerated the propagation of 
ARGs (Wang Q. et al., 2021).

It appears that the effect of atmospheric temperature on ARGs 
was less important than that of precipitation (Meyers et al., 2020). 
Previously, some studies found that ARGs were positively 
associated with air temperature. The absolute abundance of 
resistance genes was highest in summer (2.81 × 109 copies/L on 
average), and the ARG abundance in four seasons fluctuated along 
with local air temperature (Zheng et  al., 2018). For example, 
temperature was positively associated with vancomycin and 
sulfonamide resistance genes (Yang et  al., 2019). This may 
be  attributed to the warming climate, which will very likely 
contribute to increased soil temperature, alter the ARGs-
containing microbial community structure and then increase the 
background levels of ARGs. Climate warming is one of the severe 
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environmental challenges of the world today, and this may 
contribute to increasing ARGs abundance, especially high risk 
ARGs. If high-risk ARGs are transferred to human pathogens, this 
could pose a huge burden for public health. Conversely, the 
absolute abundances of seven types of ARGs (tetM, tetO, tetW, 
ermB, ermQ, mphE and aph (3′)-IIIa) showed little correlations 
with temperature (Ouyang et al., 2020). Therefore, the association 
of ARGs and temperature remains elusive.

The association between antibiotic 
resistance genes and antibiotic use

The relationship between antibiotics and ARGs is unclear (Tan 
et  al., 2006; Zhang et  al., 2015). Traditionally, according to 
Darwin’s “arms-shields race” evolutionary hypothesis, antibiotics 
directly select ARGs. The concentration of antibiotics are 
positively correlated with the abundance of ARGs (Su et al., 2014; 
Zhang et al., 2020) and negatively correlated with the diversity of 
ARGs (Zhao R. et al., 2019). Moreover, high concentrations of 
antibiotics are associated with class 1 integrons and can accelerate 
the spread of ARGs (Andersson and Hughes, 2014).

However, the effect of antibiotics on ARGs is not always strong, 
sometimes weaker than other drivers, such as MGEs and metals. 
The reason may be that antibiotics can inactivate rapidly through 
adsorption, photolysis and biodegradation, so the effect of 
antibiotics on ARGs profiles may be  temporal. The effect of 
antibiotic concentration on ARGs abundance is insignificant in 
paddy soil (Zhao et  al., 2020). Moreover, antibiotics and their 
corresponding ARGs do not always appear synchronously, and 
ARGs can persist even without antibiotic selection pressure. In a 
remote Alaskan soil that was not contaminated by antibiotics, 
blaLRA-13 gene (β-Lactamase resistance genes) was detected (Allen 
et al., 2009). The direct selection pressure of given antibiotics leads 
to the enrichment of corresponding and non-corresponding ARGs, 
which reveals the collateral effect of antibiotics on the development 
of resistance. Although sulfonamides were not detected in soils, sul 
gene (sulfonamides resistance genes) with high abundance was 
detected in all soil samples (Wang et al., 2015).

The association between antibiotic 
resistance genes and heavy metals

The content of heavy metals in soils is generally positively 
correlated with ARGs, but the soil type should be considered. Cu 
is positively correlated with aminoglycosides (aadA and aac) and 
MLSB (mefA) resistance genes detected in Belfast, Northern 
Ireland soil (Zhao Y. et al., 2019). Zn, Cu and Cd are positively 
associated with vancomycin resistance genes in the soil of gold 
tails (Qiao et al., 2021). The strong correlation between heavy 
metals and ARGs implicates that heavy metals (not easy to 
degrade) impose continuous selective pressure on metal resistance 
genes (MRGs). ARGs and MRGs may be located in the same DNA 

fragment (Kiran et al., 2015). Class I integrons (intI) generally 
exist in metal-polluted environment (Poole, 2017). Heavy metals 
can combine antibiotics to promote the transmission of ARGs 
through co-selection by intI (Seiler and Berendonk, 2012). For 
example, Cd/Zn resistance gene (cadD) and aminoglycoside 
resistance gene (aph (3′) IIIA) are located on the same plasmid, 
and β-Lactam resistance gene (blaCTX-M) and Cu resistance gene 
(pcoA-E (5/25)) are on the same IncHI2 plasmid (Fang et  al., 
2016). Therefore, the transmission of corresponding resistance 
genes can be accelerated in metal-polluted environment. In turn, 
microbes may utilize similar mechanisms to fight antibiotics and 
heavy metals. Furthermore, to some extent, the use of metal-
containing antimicrobial agents may promote the occurrence of 
multidrug resistance (Pal et al., 2017). However, heavy metals do 
not always correlate with ARGs depending on the concentration 
of heavy metals. Low heavy metal concentration has little or no 
effect on ARG profiles; On the contrary, high heavy metal 
concentration greatly impacts ARG profiles (Wang X. et al., 2021). 
Low concentration of Ni (the geo-accumulation index (Igeo) < 0 in 
some samples) is not related to most of the ARGs detected; High 
concentrations of As, Pb and Cd (Igeo>4 in some samples) are 
positively correlated with aminoglycoside and vancomycin 
resistance genes (Qiao et al., 2021).

The association between antibiotic 
resistance genes and other pollutants

The PAHs in soils, including pyrene, benzopyrene, 
phenanthrene and naphthalene, can affect the pattern of ARGs. 
The expression of ARGs cassette elevated in PAHs-contaminated 
soil, and the fluctuation of the abundance of tetracycline resistance 
genes (tetM, tetW) and sulfonamide resistance genes (sulII, sulIII) 
was positively correlated with the pyrene concentration in soil (Sun 
et  al., 2015a). The 100 mg L−1 naphthalene and 10 mg L−1 
phenanthrene increased the abundances of sulfonamide resistance 
gene (sulI) and aminoglycoside resistance gene (aadA2; Wang 
et al., 2017). This is possibly because PAH directly enriches ARGs 
and produces mutagenic effect by triggering stress/repair system 
or changing DNA composition (Busch et al., 2018). In addition, the 
abundances of ARGs such as macB, mexB and tolC in PAHs-
contaminated soil were about 15 times higher than those in lightly 
polluted soil. ARGs enriched in PAHs-contaminated soil are 
mostly in chromosomes rather than plasmids, so their frequencies 
of HGT among bacteria are low (Chen et al., 2017a). Phenanthrene, 
a small molecule, leaded to the reduction of ampicillin resistance 
gene (Ampr) transformation through noncovalent interaction; the 
transformation was not significant in the presence of 
macromolecule pyrene and benzopyrene, which further indicated 
the reduction of HGT in PAH-contaminated samples (Kang et al., 
2015). However, the total amount of phenanthrene or pyrene in soil 
was not always related to ARGs abundance, but their bioavailability 
was significantly related to ARGs abundance (Sun et al., 2015b), 
thus, the relationship between PAHs and ARGs needs further study.
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Pesticides and antibiotics together exert selective pressure on 
microorganisms to produce pesticide-antibiotic cross-resistance 
(Rangasamy et al., 2018). The application of pesticides increased 
the absolute and relative abundance of ermB, aph (3′)-IIIa and 
tetW gene in the soil quickly (Radu et al., 2021). The 20.0 mg kg−1 
chloropyrophos significantly increased the total abundance of 
tetM, tetO, tetQ, tetW, tetX, sulI and sulII gene (Guo et al., 2020). 
Furthermore, bacteria in pesticide-contaminated soil contained 
IncP plasmid, which further promoted the propagate of ARGs 
(Anjum et al., 2011).

The association between antibiotic 
resistance genes and plants

Plants can acquire exogenous ARGs by soil. The dynamics and 
transfer of ARGs amongst plants are associated with soil. On one 
hand, plant phyllosphere and rhizosphere bacteria can absorb 
exogenous ARGs from soil (Chen et  al., 2019a). Ten ARGs 
(vanTC, vanC, vanYD, mexF, ttgA, oprJ, ampC, blaCTX-M, pncA, 
cmx (A)) were absorbed into Brassica phyllosphere from soil 
(Chen et  al., 2017c). On the other hand, soil ARGs can 
be  horizontally transferred to microbiomes that parasitize or 
adhere to plants (Chen et al., 2019c). Moreover, the intI1 and 
genes encoding transposases are common in vegetables (Wang 
et al., 2015; Chen et al., 2018). Some self-transmissible plasmids 
resisting tetracycline occur in arugula (Blau et al., 2018), which 
speeds up transferring ARGs from soil to plants. High risk ARGs 
in vegetables may be transferred to the human gut and may harm 
human health if ARGs reside in the body.

The association between antibiotic 
resistance genes and human 
health

The relationship between antibiotic resistance and human 
health can be characterized by the soil–plant/animal-human cycle 
in soil. Antibiotics, ARGs or ARBs are brought into the soil by 
wastewater inflow, reclaimed water irrigation, composting and 
other ways. Then, plants can absorb ARGs from soil. Fortunately, 
most plant ARG-carrying microbes are non-pathogenic (Zhang 
et al., 2011), but their possible participating in the spread of ARGs 
to human pathogens by HGT via MGEs (Rossi et  al., 2014). 
Endophytic bacteria of plants closely related to human pathogens 
or opportunistic human pathogens may potentially harm human 
health. In 2011, multidrug resistant enterohemorrhagic 
Escherichia coli (EHEC) broke out in Europe, causing 50 persons 
dead by eating raw fruits and vegetables contaminated by animal 
feces (Buchholz et  al., 2011). Outbreaks of Salmonella poona 
infections in America associated with consuming melons were 
associated to unhygienic irrigation at the source farms (Lee and 
Gilmore, 2004). Therefore, ARGs in soil spread to vegetables and 
threaten human health if vegetables are not or rarely processed.

Animals intake ARGs from soil through contact, feedings, and 
other ways, acting as intermediate hosts for ARBs and becoming 
reservoirs for ARGs to transfer to human pathogens (Allen et al., 
2010). Then, humans acquire ARGs by eating animal products 
(Winokur et al., 2001), which causes direct and indirect harm to 
human health. Mcr-1 myxin resistance genes were initially found 
in animals and meat and then detected in food samples and 
human intestinal flora (Hu et al., 2016), indicating that ARGs were 
transmitted from animals to humans. It is reported that the 
outbreak of quinolone-resistant Campylobacter infections in the 
United States is caused by humans consumption of chicken (Barza 
and Travers, 2002).

Antibiotics are one of the greatest discoveries before the 
Second World War. The mortality rate of infectious diseases drops 
sharply by antibiotics treatment (Rachakonda and Cartee, 2004). 
Therefore, the liberal use of antibiotics in clinical practice causes 
widely-distributed antibiotic resistance, which leads infectious 
diseases to be one of the leading causes of death in the world 
(Nathan, 2004). In Europe, the Escherichia coli resistance to the 
third generation cephalosporins increases (European Center for 
disease prevention and control, 2016). Cephalosporins, as a 
common over-the-counter drug in China, its resistance 
consequences have certain reference implications.

Moreover, the excessive use and abuse of various antibiotics 
by humans has led to the emergence of multidrug-resistant 
bacteria in the environment and human body, and even 
“superbacteria” such as NDM-1 (Ahammad et al., 2014; Nesme 
and Simonet, 2015). Then, the pathogens has become insensitive 
to most antibiotics used in the clinic (World Bank, 2017). 
Previously, highly pathogenic Klebsiella pneumonia was detected 
in Chinese hospitals, resistant to all tested antibiotics (Gu et al., 
2018). These make us stand on the edge of the post-antibiotic era 
(Tyrrell et al., 2019). The American Centers for Disease Control 
and Prevention estimates that more than 70% of the bacteria 
causing the infection are resistant to at least one antibiotic 
commonly used for treatment (IDSA, 2004). This has greatly 
increased the treatment difficulty of clinical infectious diseases 
and increased infection mortality. By 2050, it is expected that 10 
million people will die of antibiotic resistance every year (WHO, 
2019), which will bring a substantial economic burden to patients 
and society. A WHO report point out that by 2050, the global 
financial burden caused by antibiotic resistance will be equivalent 
to that caused by the economic crisis in 2008 (WHO, 2019).

Future perspectives

Since the discovery of ARGs in the last century, people 
constantly get the knowledge about it, from what to how to spread 
and then to harm. However, much remains unknown. Firstly, which 
technologies can reduce the source and presence of ARGs in soil? 
Secondly, what are the molecular mechanisms of environmental 
factors affecting soil ARGs transmission? Thirdly, how does soil 
ARGs affect human health, and how can it be mitigated? Some work 
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needs to be  done to figure out these problems. The following 
initiatives are put forward for future research:

 1. Develop highly efficient technologies to treat agricultural 
waste, waste water and minimize their ARGs input to soil. 
Materials introduced into soil, such as ARGs in compost 
and irrigation water, should be treated in advance to reduce 
input. Establish a sound surveillance system to reduce the 
release of ARG into the soil.

 2. Investigate the influence mechanisms of special substrates 
in soil, such as clay minerals and humic acid, on the genetic 
transformation and horizontal gene transfer of ARGs; The 
effects of different ARGs in soil environment and their harm 
to human body may vary greatly, therefore, it is necessary to 
analyze the environmental and health effects of important 
ARGs in soil from the perspective of molecular mechanism.

 3. Continue to deeply study the transfer and transformation 
regulation of ARGs in soil, clarify the individual and 
compound effects of various environmental and biological 
factors, establish biogeochemical models, predict the 
migration and fate of ARGs in soil, and provide scientific 
guidance for biological governance.

 4. Develop strategies to regulate soil ARGs. Whether ARGs 
can be modified to reduce the impact on the environment 
and human health through cultivation, fertilization, 
irrigation and other measures.

 5. Formulate reasonable and standardized antibiotic use 
measures and legal norms to reduce the abuse of antibiotics, 
especially in agriculture, so as to reduce ARGs in 
soil environment.

Conclusion

ARGs are indigenous and ancient in soil, and soil can acquire 
exogenous ARGs from various ways. Microbiome, as the producer 
and potential host of ARGs, its composition and structure shape 
ARGs profiles, which acquire resistance by HGT via MGEs. ARG 
abundance are negatively correlated with pH, but are positively 
associated with moisture and rainfall amount. Antibiotics, heavy 
metals, PAHs and pesticides in high concentration can exert selective 

pressure on ARGs and enrich ARGs. Plants and animals can absorb 
ARGs from soil, then spread to humans and possibly pose a potential 
harm to human health. Our study systematically reviewed various 
influencing factors of soil resistome, such as microorganisms, MGEs. 
Although we have acquired these achievements of ARGs, there are 
still many unknowns that need to be  further studied to protect 
humanity from ARGs. In the future, we need to study how soil ARGs 
are transmitted to the human body and affect human health and how 
this potential harm can be reduced.
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