
micromachines

Review

A Review: Preparation, Performance, and
Applications of Silicon Oxynitride Film

Yue Shi 1,†, Liang He 2,† , Fangcao Guang 1, Luhai Li 1, Zhiqing Xin 1 and Ruping Liu 1,*
1 School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication,

Beijing 102600, China
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of

Technology, Wuhan 430070, China
* Correspondence: liuruping@bigc.edu.cn; Tel.: +86-10-6026-1602
† Yue Shi and Liang He contributed equally to this work.

Received: 15 July 2019; Accepted: 14 August 2019; Published: 20 August 2019
����������
�������

Abstract: Silicon oxynitride (SiNxOy) is a highly promising functional material for its luminescence
performance and tunable refractive index, which has wide applications in optical devices, non-volatile
memory, barrier layer, and scratch-resistant coatings. This review presents recent developments,
and discusses the preparation methods, performance, and applications of SiNxOy film. In particular,
the preparation of SiNxOy film by chemical vapor deposition, physical vapor deposition, and
oxynitridation is elaborated in details.

Keywords: silicon oxynitride; thin film; photoluminescence; chemical vapor deposition; physical
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1. Introduction

Silicon oxynitride (SiNxOy) is an important inorganic material widely studied for its outstanding
electronic and mechanical performance. SiNxOy is the intermediate phase between silicon dioxide
(SiO2) and silicon nitride (Si3N4) [1,2], which possesses high durability at high temperature, high
resistance to thermal-shock and oxidation, high density, excellent mechanical performance, and a
low dielectric constant [3–8]. Due to these unique performance, SiNxOy has great potential for
high-temperature related applications, for example, it is typically used in non-linear optics [9] and as
mechanical component owing to its high strength, thermal insulation, and electronic and chemical
resistance [10,11]. When Si3N4 thin film is utilized as the core material of waveguide devices,
Si3N4 waveguides have better tolerance to sidewall roughness and geometric variations than silicon
waveguides, and its relative refractive index difference can increase to 0.62, allowing for much tighter
bending radius. Tighter bending radius will not only reduce the bending radius and improve the
device integration, but also narrow the waveguide and reduce the input loss [12–16]. However, Si3N4

has low fracture toughness and poor electrical insulation, limiting its wide applications. SiO2 film has
a wide range of applications, from microelectronics [17,18] to optical waveguides [19], due to its low
dielectric constant, low defect density, and low residual stress. However, SiO2 does not perform as an
encapsulation layer since oxygen, sodium, and boron can diffuse within it [20,21], which is different
from Si3N4. For these mentioned applications, SiNxOy is a more promising candidate, in addition, it has
tunable optical and electrical performance. By varying the chemical composition of SiNxOy, during the
fabrication process, its refractive index and dielectric constant will be tuned [22–24]. Except the tunable
refractive index, SiNxOy also has adjustable thin film stress [25] and exhibits photoluminescence (PL)
in the visible light range at room temperature [26]. Thus, SiNxOy is highly attractive in integrated
circuits (IC) [27], barrier layers [28,29], non-volatile memory [30], optical waveguides [31], organic
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light emitting diode (OLED) [32], and anti-scratch coatings [33,34]. This review presents a discussion
and summary of the preparation methods, performance, and applications of SiNxOy film.

2. Performance of SiNxOy Film

2.1. Luminescent Performance

With the development of semiconductor technology, silicon-based micro/nano devices with
applications in optoelectronics and IC are in the rapid development. Optoelectronic integration
technology urgently requires high-efficiency and high-intensity luminous materials, and the
currently-existing silicon integration technology is utilized to develop high-performance optoelectronic
devices/systems. Previously, the research on PL of porous silicon and nano-scale silicon at room
temperature has aroused widespread attention in this field [34–36]. However, porous silicon exhibits
several disadvantages such as degradation and poor stability, and it is the most important that it
isvery difficult to use it on standard CMOS circuits, thin film sensors, or flexible substrates [37,38].
In addition, nano-scale silicon has problems such as insufficient density, difficulty in controlling size
and distribution, unbalanced carrier injection efficiency, complicated luminescence mechanism, and
non-radiative recombination [39–43]. As known to all, SiNxOy film is an important protective and barrier
film with its luminescence characteristics, high mechanical performance, and high reliability [44,45].
Therefore, it is of great significance to study the luminescence characteristics of SiNxOy film. Some
reported results showed that the luminescence mechanism of SiNxOy film is generally divided into
three types: defect-state radiation composite luminescence [46], band-tail (BT) radiation composite
luminescence [47] and quantum dot radiation composite luminescence [48].

The light-emitting performance of SiNxOy film is effected by its composition, because its
composition has significant influences on the formation of Si-O, Si-N, Si-H, and N-H bonds, resulting in
the changes of absorption peak position of SiNxOy film [49,50]. As a result, many researchers studied
the atom ratio of N and O in SiNxOy film [51,52]. During the preparation of SiNxOy film, it is found
that the luminescence performance of the SiNxOy film can be adjusted by changing the flow rate of
nitrogen (N2) and concentration of oxygen. In order to investigate the effect of flow rate of N2 on the
evaporated SiNxOy film, Lee et al. [53] prepared a SiNxOy film on a poly(ethylene naphthalate) (PEN)
substrate by ion-beam assisted electron beam evaporation at room temperature. It is found that when
the flow rate of N2 is 40 sccm, the refractive index of SiNxOy film increased to 1.535, and the SiNxOy

film density increased to ~2.5 g cm−3, whereas the surface roughness and optical transmittance of
SiNxOy film decreased. In preparation of the SiNxOy film, adjusting the flow rate of N2 has a significant
improvement on the luminescent performance of the doped SiNxOy film. Among them, Labbé et al. [54]
prepared a nitrogen-rich SiNxOy film doped with Tb3+ by reactive magnetron co-sputtering under N2

with different flow rates and annealing conditions. The influences of flow rate of N2 on the atomic
composition of SiNxOy film, the N excess (Nex) in the sedimentary layer and the deposition rate are
shown in Figure 1a. For the synthesis, the reverse flow of N2 during deposition is studied. Through the
characterization results, the researchers carefully identified different vibration modes of Si-N and Si-O
bonds, especially the ‘non-phase’ tensile vibration mode of Si-O bonds. The highest PL intensity of
Tb3+ is obtained by optimizing the nitrogen incorporation and annealing condition. The aggregation
effect in Si3N4 matrix is significantly reduced, thus allowing the higher concentration of optically active
Tb3+, which promoted its luminescence applications. In related researches, Ehré and co-workers [55]
prepared a cerium (Ce)-doped SiNxOy film by magnetron sputtering under N2 atmosphere. Their
results showed that a broad and strong PL peak is red-shifted at the N2 flow rate of 2 sccm. The peak
of PL band shifts to 450 nm, and the results showed that the PL strength is 90 times higher than the
BT strength of the sample deposited at a low flow rate of N2. The effects of flow rate of N2 on PL
of Ce-doped SiNxOy film, PL spectrum (solid line), and PL excitation spectrum (dotted line) at flow
rate of N2 (2 sccm) are shown in Figure 1b,c. As described above, it is possible to adjust not only the
luminescence characteristics of the SiNxOy film by changing the flow rate of N2 but also the oxygen
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content, such as Huang et al. [56] demonstrated the strong PL of SiNxOy film by adjusting the oxygen
content. With the oxygen content in the SiNxOy film increasing from 8% to 61%, the PL changed
from red light to orange light and white light, and they indicated that the change in PL performance
of SiNxOy film is due to the change in the center of the defect luminescence and the change in the
main phase structure from Si3N4 to SiNxOy and SiO2. Similarly, the researchers studied the effect of
oxygen concentration on PL of SiNxOy film doped with other components. Steveler et al. [57] prepared
an Er3+-doped amorphous SiNxOy film by reactive evaporation. They found that the PL of Er3+ is
observed only in the samples with oxygen concentration equal to or less than 25%, and they indicated
that oxygen will make Er3+ ions optically active and can be indirectly excited in the presence of excess
Si. It is further confirmed that, when both the amounts of oxygen and nitrogen are equal to or about
25%, Er3+ related PL increases with the increase of annealing temperature.

Processing conditions of the preparation of SiNxOy film also have influences on the PL performance
of SiNxOy film, such as the annealing process. For instance, the SiNxOy film prepared by reactive
sputtering on a silicon substrate, and then vacuum-annealed at 900 ◦C for 1 hour, is amorphous,
composed of mixed Si-N and Si-O bonds, and blue and green emission are observed in the PL spectra
of this prepared SiNxOy film, as shown in Figure 1d [46], so the SiNxOy film integrated with a top
electrode is used for a electroluminescent device.
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Figure 1. The luminescent performance of SiNxOy film. (a) Above part shows the effect of flow rate of
N2 on the atomic composition of the Tb-doped nitrogen-rich SiNxOy film, and below part shows the
effect of the flow rate of N2 on the nitrogen excess parameter (Nex) and deposition rate of the deposited
layer [53]. Copyright 2017, Nanotechnology. (b) Effect of flow rate of N2 on the PL of the Ce-doped
SiNxOy film. (c) PL spectrum (solid line) and photoluminescence excitation spectrum (PLE) (dashed
line) of a Ce-doped SiNxOy film at flow rate of N2 of 2 sccm [55]. Copyright 2018, Nanoscale. (d) Effect
of annealing temperature on SiNxOy film [46]. Copyright 2013, J. Lumin.

2.2. Adjustable Refractive Index

Adjustable refractive index means that the refractive index can be continuously tuned along
the normal direction of the surface of the SiNxOy film by changing the proportion of the reaction
gas [58]. In order to prepare graded-index SiNxOy film for applications in optical waveguide materials,
gradient-index films, and anti-reflection films, researchers conducted extensive research on the refractive
index-adjustable performance of SiNxOy film, such as the research on controlling the flow rate and ratio
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of reactive gas, reaction process, etc. [59–61]. Hänninen et al. [62] found that the refractive index and
extinction coefficient of the SiNxOy film decrease with the increase of oxygen and nitrogen contents in
the SiNxOy film, which could be adjusted by controlling the ratio of reactive gas. Therefore, in order to
control the ratio, they applied reactive high-power pulsed magnetron sputtering to synthesize a SiNxOy

film using N2O as a single source, providing oxygen and nitrogen for SiNxOy film’s growth. The
characterization results showed that the synthesized SiNxOy film has the characteristics of silicon-rich,
amorphous, and randomly-chemical-bonding structure. Furthermore, Himmler et al. [32] used reactive
magnetron sputtering to deposit SiNxOy film and found that the refractive index of SiNxOy film
depends on its oxygen and nitrogen contents, so they adjusted the refractive index by controlling
the content ratio of oxygen/nitrogen. It is found that the reaction gases are differently incorporated
into the layer due to different plasma conditions in the coating region, so there is a higher nitrogen
incorporation and a higher refractive index in plasma regions with a high plasma density, while plasma
regions with lower plasma density will result in a higher oxygen bonding and a lower refractive index.
In addition to controlling the proportion of gas, the preparation method also has a certain influence on
the refractive index of the SiNxOy film. Farhaoui et al. [63] used the reactive gas pulse in sputtering
process (RGPP) to adjust the composition of SiNxOy film from oxide to nitride by controlling the
average flow rate of O2. Compared with the conventional reaction process (CP), not only did the
deposition rate increase, but also a wide range of SiNxOy films’ refractive indexes varying within
the same range could be obtained through this pulse process. Moreover, extinction coefficient of the
SiNxOy film is low, and this SiNxOy film can be used for multi-layer anti-reflection coating (ARC).
Nakanishi et al. [64] also introduced argon (Ar) in the preparation of SiNxOy film by pulsed direct
current (DC) reactive magnetron sputtering. They found that the higher the Ar concentration is, the
more stable the SiNxOy film’s formation and the higher the deposition rate is. The researchers claimed
that a large amount of sputtered silicon atoms reach the substrate at high Ar concentration, causing
the oxidation probability of the SiNxOy film to decrease and the refractive index of the SiNxOy film to
gradually change with the percentage of oxygen in the reactive gas. The tunable refractive index of
SiNxOy film makes it superior to Si3N4 and SiO2 in optical device applications. Furthermore, it also
provides a new strategy for development of optical devices.

3. Preparation of SiNxOy Film

At present, the preparation methods of SiNxOy film are mainly classified into chemical
vapor deposition (CVD), physical vapor deposition (PVD), high-temperature nitridation, and ion
implantation [65]. The descriptions and comparisons of these preparation processes are as follows.

3.1. CVD Method

CVD is a vapor phase growth method for preparing materials by introducing one or more
compounds containing a constituent film element. During this growth process, the reactive gas
is purged into a reaction chamber in which a substrate is placed, and a depositing process on the
gas–phase or gas–solid interface is executed to generate solid sediments [66]. CVD based methods are
mainly divided into plasma enhanced CVD (PECVD), low-pressure CVD (LPCVD), photochemical
vapor deposition [67], thermal CVD [68], etc. Among them, PECVD and LPCVD are the most
commonly employed methods. Additionally, PECVD can be extended to radio frequency PECVD
(RF-PECVD) [69], electron cyclotron resonance PECVD (ECR-PECVD) [70,71], and inductively coupled
PECVD (IC-PECVD) [72].

3.1.1. PECVD

PECVD is a method for preparing a semiconductor thin film which is subjected to chemical
reaction deposition on a substrate using a glow discharge in a deposition chamber [73]. The preparation
process of SiNxOy film via PECVD is generally described as follows: at low temperature (<400 ◦C),
ammonia (NH3), pure silane (usually SiH4), N2, and nitrous oxide (N2O) are generally employed in a
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PECVD chamber with a certain power. There are generally some differences in the composition of the
precursor gases reported in studies. In general, the flow rates of NH3, pure silane, and N2 remain the
same, and the total flow rate is controlled by adjusting the flow rate of N2O [74]. Generally, SiNxOy

film is deposited on silicon substrate or quartz substrate, wherein the substrate’s temperature is kept
at room temperature, but some composite films are deposited on other composite layers by PECVD,
such as the preparation of SiNxOy and Si3N4 by Park et al. [75]. For composite film, they deposited a
SiNxOy film directly on the deposited Si3N4 layer.

For SiNxOy film by PECVD, NH3 is often used as the reaction gas of the nitrogen source, and SiH4

is used as the reaction gas of the silicon source. Although NH3 reacts with SiH4 easily, the SiNxOy film
produced by NH3 at a lower temperature has a higher hydrogen content, which causes the decreased
electrical performance of SiNxOy film, so some studies used RF-PECVD, with N2 and SiH4 as precursor
gases to prepare SiNxOy film with lower hydrogen content, and some studies used RF-PECVD, with
N2, SiH4 and NH3 as the front gases [76]. For example, Kijaszek et al. [77] used RF-PECVD and
maintained the RF of 13.56 MHz, pressure, power, and substrate temperature (350 ◦C), and controlled
the composition of SiNxOy film by the flow ratio of different gaseous precursors: NH3, 2% SiH4/98% N2

and N2O, wherein the flow rate of 2% SiH4/98% N2 and N2O remained the same, and the flow rate of
NH3 is adjusted to control the SiNxOy film’s performance. When the flow rate of NH3 is low, the SiNxOy

film’s hydrogen content is also lowered, and the electrical performance of the SiNxOy film is improved.
ECR-PECVD is also included in the PECVD method. Okazaki et al. [78] deposited a SiNxOy film

under hydrogen-free conditions by ECR-PECVD at a low temperature of ~200 ◦C with O2 and N2 as
reaction gases, and the obtained deposition rate is ~0.1 µm min−1. The deposited SiNxOy film has good
optical performance. Furthermore, Wood [79] used an ECR-PECVD system to deposit SiNxOy dielectric
film at low substrate temperature. The electrical performance of these films is found to be comparable
with those deposited in systems using ion-assisted PVD and sputtering systems. Furthermore, thin film
electroluminescence devices containing ECR SiNxOy dielectrics exhibit high brightness and excellent
breakdown characteristics.

3.1.2. LPCVD

For LPCVD, a gas source under low pressure is decomposed to deposit SiNxOy film directly on a
substrate. Since the mean free path of the reactive gas molecules increases at a low pressure, the diffusion
coefficient increases. Thereby, the transmission speeds of gaseous reactants and by-products are increased,
the aggregation of impurities on the substrate is reduced to some extent, and the film is more uniform.
It has the advantages of structural integrity, few pinhole defects, and high deposition rate, therefore it is
suitable for large-area production [80]. Kaghouche et al. [81] deposited a SiNxOy film on a single crystal
silicon wafer using LPCVD at a high temperature of 850 ◦C with N2O, NH3 and dichlorosilane (SiH2Cl2)
as precursor gases. In the synthesis, the control variable experiment is carried out by adjusting the flow
ratio of NH3/N2O via keeping the flow rate of SiH2Cl2 as constant. Additionally, the deposition duration
remains constant to maintain similar annealing conditions during the deposition process. Finally, the
thickness of the obtained SiNxOy film is generally in the range of 300–400 nm.

However, the LPCVD has its disadvantages of low heating rate, long reaction time, and high
deposition temperature (generally >550 ◦C), which limit its applications to some extent. A comparison
of different CVD methods is summarized in Table 1 [76,82–85].

Table 1. Comparison of materials, ratios, and deposition conditions in different chemical vapor
deposition (CVD) methods.

Deposition Method Precursor Gases Ratio of Precursor Gases Deposition Condition Reference

PECVD SiH4, N2O SiH4/N2O = 0.05–0.125 200 ◦C, 97.09 Pa [82]
RF-PECVD SiH4, N2O, NH3 (NH3 + SiH4)/N2O = 0.64–3.22 120 Pa [76]

ECR-PECVD N2, O2, SiH4 O2/N2 = 0.03–0.1 - [83]
IC-PECVD N2, Ar, SiH4 N2/Ar = 0.0625–0.5 90–250 ◦C, 1–6 Pa [84]

LPCVD N2O, NH3 SiH2Cl2 N2O/NH3 = 4.8- 860 ◦C, 53.2 Pa [85]
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3.1.3. High Temperature Thermochemical Vapor Deposition (HTCVD)

The HTCVD method uses a direct heating method to decompose or chemically react to obtain a
solid film on the surface of a substrate [86]. Since the HTCVD method uses direct heating to provide
activation energy for the gas, it does not require complicated equipment, and the operation is relatively
facile. In addition, the reaction rate is high, and the formed film has less impurity of hydrogen and
a dense structure [80]. However, the heating temperature of the HTCVD method is generally high
(≥700 ◦C), which easily causes deformation and internal structural change of the substrate, reducing
the mechanical performance of the substrate and the bonding force between film and substrate.

For optimization of this method, a rapid thermal CVD (RTCVD) is investigated [68]. RTCVD
refers to the formation of a single-layer SiNxOy film by a rapid annealing method to seal the substrate,
thereby avoiding the substrate being affected by high temperature [76]. The RTCVD method can
deposit advanced dielectric films on III-V substrates under high temperature. This method not only
has the advantages of HTCVD, but also prevents the V group elements from sublimating due to high
temperature. Lebland et al. [87] deposited SiNxOy film on III-V substrates by RFCVD. They controlled
the deposition rate and stoichiometry of the SiNxOy film by adjusting the partial pressure of N2O and
temperature. It is found that a deposition rate of up to 10 nm s−1 is obtained at 750 ◦C, and the InP
substrate does not degrade, solving the contradiction between the high deposition temperature using
the direct CVD method and the degradation of the V group element.

3.1.4. Photochemical Vapor Deposition (Photo-CVD)

Photo-CVD is a novel low-temperature deposition method using ultraviolet (UV) light or laser
to photodecompose a reaction gas to obtain a solid film [88]. It has the following advantages:
greatly reducing the substrate temperature (≤250 ◦C), avoiding the damage caused by high-energy
particle radiation on the surface of the film, making the surface of the film smooth, and reducing the
by-product [89]. However, the main disadvantages of the photo-CVD are its high cost, and that the
formed film is not stable.

The CVD method has certain advantages and many extension methods, Table 2 shows the pros
and cons of four different CVD approaches [80,89–92], among them PECVD and LPCVD are the most
commonly used deposition methods. Even so, it is difficult to avoid the existence of hydrogen in
preparing SiNxOy film by PECVD or LPCVD, and the hydrogen deposited in the raw material is
difficult to remove due to the low deposition temperature of the CVD method, further affecting the
performance of SiNxOy film [90]. To this end, researchers have proposed various methods to reduce the
hydrogen content of SiNxOy film. Among them, the thermal oxidation treatment by Hallam et al. [91]
is highly promising, they deposited a SiNxOy film by PECVD and demonstrated that the SiNxOy film
with Si-H peak wave number of >2200 cm−1 has an open circuit voltage of up to 80 mV during thermal
annealing. They pointed out that the result is due to an increase in oxygen content. In addition,
increasing the flow of raw materials and the annealing temperature will also reduce the hydrogen
content to various degrees.

Table 2. Advantages and disadvantages of SiNxOy film prepared by PECVD, LPCVD, HTCVD and
Photo-CVD methods.

Method Advantages Disadvantages

PECVD

Flexible operation method,
High process repeatability,

High step coverage,
Low deposition temperature (<400 ◦C) [92]

High cost,
High H content in film

LPCVD

Uniform film,
Complete structure,
Less pinhole defects,

High deposition speed,
Large-area preparation [80]

Low heating rate,
Long reaction time,

High deposition temperature
(generally >550 ◦C)
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Table 2. Cont.

Method Advantages Disadvantages

HTCVD Simple operation and operation, High reaction rate,
Low H content in film and dense structure [80]

High deformation,
Impaired interface performance

Photo-CVD
Low reaction temperature (≤250 ◦C),

Smooth film surface,
Less by-products [89]

High cost,
Low film stability

3.2. PVD

PVD is a physical method of vaporizing a material source into gaseous atoms, molecules,
or ionized ions under vacuum conditions, and depositing a film on the substrate by sputtering
or plasma technology [93]. The main processes of PVD are vacuum evaporation, sputter coating,
ion plating, arc plasma coating, etc. [94–96]. Among them, sputter coating is a widely used and
mature method, which means that under vacuum conditions, the surface of the target material is
bombarded with the particles having the function, then the surface atoms of the target are obtained
with sufficient energy to escape, and the sputtered target is deposited on the substrate to form a
film [97]. The large-scale magnetron sputtered coating developed on the basis of sputter coating has
high deposition rate, good process repeatability, easy automation, etc. [90].

Magnetron sputtering coating method is also divided into several categories such as reactive
pulsed magnetron sputtering, pulsed DC magnetron sputtering, rotatable dual magnetron pulsed
DC reactive magnetron sputtering, intermediate frequency (MF) magnetron sputtering, etc. [98].
Tang et al. [99] deposited SiNxOy film by reactive pulsed magnetron sputtering, and the effects of
nitrogen ratio on the optical, structural, and mechanical performance of SiNxOy film are investigated.
They found that with the increase of nitrogen ratio, the refractive index of the SiNxOy film increased
from 1.487 to 1.956, its surface roughness decreased from 1.33 to 0.97 nm, its hardness increased
from 13.51 to 19.74 GPa, and its Young’s modulus increased from 110.41 to 140.49 GPa. When the
SiNxOy film is applied to the anti-reflection coating, the hardness of the coating is greatly improved.
Additionally, Simurka et al. [100] deposited a SiNxOy film on a glass substrate by pulsed DC magnetron
sputtering with a constant flow of Ar (38–94 sccm) as the working gas and a constant gas flow ratio
of oxygen (2–5 sccm) and nitrogen (20 sccm) is employed. Through experimental characterizations,
it is found that as the sputtering power increases, the density, refractive index, hardness, and Young’s
modulus of the film increase slightly. Therefore, in the preparation process, it is very important to
select the appropriate sputtering power according to the requirements. Furthermore, in the preparing
process of SiNxOy film, not only a reasonable sputtering power should be set, but also the voltage is
important. Himmler et al. [32] deposited a single layer of SiOx, SiNy, and SiNxOy using a rotatable
dual magnetron pulsed DC reactive magnetron sputtering, as shown in Figure 2a, showing a layout of
deposition zone within the roll-to-roll coating tool. Experimental results demonstrated that the ratio
of oxygen/nitrogen in the layer is determined not only by the reactive gas, but also by the voltage.
Furthermore, Li et al. [101] deposited a multilayer film of hydrogenated silicon nitride (SiNx:H)/silicon
nitride (SiNx)/SiNxOy for silicon crystal solar cells using intermediate frequency (MF) magnetron
sputtering, and the process design and application of passivation film on anti-reflection surface of
silicon solar cell in laboratory are shown in Figure 2b. The multilayer film prepared by this process has
excellent cell efficiency when applied to solar cells.

Although the SiNxOy film prepared by the PVD method has a lower hydrogen content than that
of the SiNxOy film by CVD, the PVD is superior to the CVD for preparing SiNxOy film. Moreover, the
sputtering method has a low deposition temperature and is easy to control. However, it is difficult to
perform rapid film deposition on a large-scale substrate by sputtering method [102] and the sputtering
method is prone to “target poisoning” [103], that is the added reaction gas generates a composite
material on the target, thereby changing the sputtering yield and the deposition rate. Finally, the film
stoichiometry is changed.
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3.3. Oxynitridation

Oxynitridation is generally a method of reacting gas such as N2O, NO, NH3, N2, and O2 with Si,
SiO2, or Si3N4 under suitable conditions to obtain a SiNxOy film.

The high-temperature nitridation is a more commonly used method, which refers to the preparation
of SiNxOy film by introducing N into SiO2 film by means of thermal nitriding [104], rapid annealing [105],
and plasma nitriding [106] under certain conditions with reactive gas containing nitrogen (e.g., N2O,
NO, NH3, N2) [107]. Among them, a SiO2 film which can be obtained by a thermal oxidation
method [108] and a sol–gel method [109]. Different performance of membranes prepared under
different oxidation/nitridation conditions in the nitrogen oxidation process are obtained. When the
temperature is 800–1200 ◦C, NH3 is introduced as a nitrogen source for high-temperature nitridation of
SiO2 by thermal nitridation, although a simple and smooth SiNxOy film can be obtained, H is inevitably
introduced. H doping in the SiNxOy film affects its electrical performance, such as the formation of a
large number of electron traps in the SiNxOy film. In order to reduce the effect of H on membrane
performance, reoxidation is an effective method [110]. Furthermore, a nitrogen-containing gas without
H can be used as a nitrogen source, such as N2O, to form a Si-O-N film in situ generation without
introducing a H atom. However, the high temperature conditions of the high temperature nitridation
process have a serious influence on the substrate and are prone to defects. In addition, the SiNxOy film
obtained by this method has poor uniformity and poor compactness.

Three methods for preparing SiNxOy film are introduced above, and the advantages and
disadvantages of different preparation methods are summarized in Table 3 [110–113].

Table 3. Preparation methods of SiNxOy film.

Method Advantages Disadvantages

CVD
High deposition rate

Low deposition temperature
Uniform film

Hydrogen content has an effect on electrical
conductivity [111]

PVD Low hydrogen content Low deposition rate [112]
Target poisoning is common

Oxynitridation Relatively simple operation, large-scale
preparation

Film thickness is difficult to control
Toxicity of raw gas [110]

Low N2 nitriding degree [113]

The deposition process of the SiNxOy film is reviewed. The properties of the film microstructure
for different growth conditions and post-growth thermal annealing will be illustrated by Figure 3.
As shown in Figure 3a–c, when the ratio of Ar/SiH4 and O2/(O2 + N2) is 4.5 and 0.1, respectively, the
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porosity of the SiNxOy film gradually decreases. However, at this state, the SiNxOy film is still porous
and pore-oriented. The effect of the rate reduction is small. As shown in Figure 3d, by changing
Ar/SiH4 from 4.5 to 41 and RF to 0.9 KW, a very significant decrease in porosity is observed, showing a
very dense SiNxOy film, and it is shown by Figure 3e when Ar/SiH4 changes from 4.5 to 41, and when
the RF is 0.9 KW, its water vapor transmission rate (WVTR) is the lowest, and it has good protection
function [72]. Figure 3f,g shows HRTEM images of different types of Ce3+ and Tb3+ co-doped SiNxOy

film and structure (III) multilayer designs. It is worth noting that no ripples and layer mixing are
observed. Furthermore, the fact that the morphological structure remained unchanged even after
annealing at 1180 ◦C for 1 h confirmed the manufacturing process and showed the robustness of the
sample (Figure 3g) [114]. As shown in Figure 3h, (I) and (II) are infrared transmission photographs
of the bond pairs and the annealed pairs, respectively. The results show that the crack length of
the composite is obviously shortened after annealing at 120 ◦C, and the bond strength is obviously
improved. After the sample is annealed at 300 ◦C for 2 h, the bond strength is sufficient to withstand
peeling, and the infrared transmission photograph is shown in Figure 3 h(III). As shown in the AFM
chart (Figure 3i), the SiNxOy film has a smooth and uniform surface with a root mean square (RMS)
roughness of 0.162 nm, which is sufficient for direct soldering without complicated grinding and
polishing processes. Figure 3j shows the corresponding depth profiles of N, O, and Si. Obviously, you
can find two layers. From the surface to a depth of about 40 nm, the amounts of O and N are about 40%
and 20%, respectively. Starting from 40 nm, the O concentration gradually decreases compared with
the first layer, but the concentration of N increases. After annealing at 1100 ◦C, the higher structural
disorder confirmed by XRD analysis in the SiNxOyy film can be attributed to the presence of O. This
helps to inhibit polycrystallization of the buried insulator during post-annealing in conventional
CMOS processes [115]. By analyzing the effects of different growth conditions and the properties of
the thermally annealed film microstructure by post-growth on the performance of SiNxOy film, it is
helpful to effectively control the parameters as needed in later applications.
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and 0.1, respectively with RF power of (a) 0.5 kW, (b) 0.7 kW, (c) 0.9 kW, and (d) at Ar/SiH4, O2/(O2

+ N2) of 41 and 0.1, respectively with RF power of 0.9 kW. (e) Effect of Ar/SiH4 ratio and RF power
variation on the density and WVTR of 100 nm-thick SiNxOy film deposited at O2/(O2 + N2) ratio of
0.1 [72]. Copyright 2019, Thin Solid Films. (f) Sample description, being (I) a Ce3+ and Tb3+ co-doped
SiNxOy film, 60 nm thick with 42 at.% of N; (II) a bilayer composed of a Ce3+ doped SiNxOy single
layer and a Tb3+- doped SiNxOy single layer, each 30 nm thick; and (III) a multilayer made of two
layers of Tb3+- doped SiNxOy and two layers of Ce3+-doped SiNxOy (each sub-layer with a thickness
of 15 nm), separated by SiO2 spacers of 5 nm. All SiNxOy layers have a nitrogen content of 42 at. %.
(g) HRTEM image of the multilayer design (structure (III), as-deposited sample). The inset shows
a magnified region of the multilayer close to the Si substrate, for a sample annealed at 1180 ◦C for
1 h [114]. Copyright 2016, J. Appl. Phys. (h) Infrared transmission image of a bonded pair after the
crack-opening test: (I) as-bonded, (II) after annealing at 120 ◦C, (III) after annealing at 300 ◦C. (i) AFM
image of SiNxOy film synthesized by plasma immersion ion implantation (PIII). (j) Depth profiles of Si,
O, and N in SiNxOy film acquired by sputtering XPS [115]. Copyright 2005, Appl. Surf. Sci.

4. Applications of SiNxOy Film

As an intermediate of SiNx and SiO2, SiNxOy film has an adjustable dielectric constant,
refractive index, and extinction coefficient by controlling the ratio of nitrogen/oxygen in the chemical
composition [116]. The gas ratio and process parameters of the various reactants involved in the
preparation of SiNxOy are different, so that the stoichiometry of each element in SiNxOy is different,
and the limit forms may be a-Si, SiO2, and Si3N4.As shown in the Figure 4, a series of possible forms of
the SiNxOy film is given, as well as changes in the properties of different film forms as the O content
and H content increase, are mainly reflected in changes in transparency, band gap width, refractive
index, and insulation [117]. SiNxOy film has performance between SiO2 and Si3N4. Due to its excellent
photoelectric performance, it has been widely used in optical devices, dielectric gate dielectric materials,
and optical waveguide materials [118]. The SiNxOy film also has high chemical stability, high resistance
to impurity diffusion, and water vapor permeability, which is highly promising for applications in
barrier devices such as gas barriers [119]. In addition, the SiNxOy film has a small defect density and is
advantageous in applications as a storage medium. The applications of SiNxOy film in microelectronic
devices, optical devices, barrier materials, and non-volatile memory will be introduced in this section.
Micromachines 2018, 9, x FOR PEER REVIEW  11 of 23 

 
Figure 4. A series of possible forms of the SiNxOy film and their performance. 

4.1. Application of Barrier Material 

Most organic conductive polymers and chemically reactive electrodes degrade when exposed 
to water or oxygen, causing failure of electronic devices [120]. Therefore, in order to enhance the 
service life of device, it is necessary to use a barrier material for encapsulation layer of the device 
with a low water vapor transmission rate and oxygen permeability. Currently, glass or metal is often 
used for device packaging, however, these rigid materials with high spring constant will greatly 
limit the widespread applications of devices, especially in flexible devices. On this basis, researchers 
studied thin-film encapsulation (TFE) technology [121]. In recent years, the SiNxOy film has also been 
widely used as encapsulating layers. However, SiNxOy film has some problems served as an 
encapsulation layer. The basic degradation mechanism of water vapor or oxygen on a single layer of 
SiNxOy film is studied, and it is found that water vapor diffuses into the SiNxOy film through the 
percolation channel and nano-defects to react with SiON:H, making Si-N gradually changes to Si-O 
bond under repeated erosion of water vapor, eventually becoming a fully oxidized film. Therefore, 
the degradation of SiO2:H becomes a way for water vapor to diffuse, and because of the lower 
density of SiO2:H, the diffusion rate of water vapor in the SiNxOy film is further enhanced [116]. In 
addition, the difference in moisture resistance of the SiNxOy film is explained by film oxidation and 
surface defect density. Oku and co-workers [122] indicated that the surface of SiNxOy film easily 
changes to a low-quality film containing an excessive amount of H2O molecule and O-H bond, 
which reduces the waterproofness, after pressure cooker test (PCT) test. Therefore, it is generally 
formed by depositing a multilayer film to reduce film defects and the probability of film pores 
communicating with the atmosphere, thereby forming a perfect barrier layer. On the other hand, 
SiNxOy film deposited at a higher temperature has higher performance, and its defects are less, 
however, the high-temperature treatment should be avoided in some devices, and the deposited 
SiNxOy film has poor barrier performance under low temperature, which is not conducive to the 
protection of the device. Therefore, Satoh et al. [123] developed a AlOx/SiON composite bilayer 
structure deposited at a relatively low temperature (<160 °C), in which the AlOx layer is used as a 
barrier layer, and the SiNxOy layer ensured the chemical and thermal stability of the film to protect 
the device from damage during processing. The test results indicated that the device did not show 
any degradation at 85 °C, and 85% relative humidity (RH) is obtained. 

Additionally, some researchers have developed other methods, such as changing the 
preparation process and controlling the preparation parameters, to optimize the barrier performance 

Figure 4. A series of possible forms of the SiNxOy film and their performance.



Micromachines 2019, 10, 552 11 of 23

4.1. Application of Barrier Material

Most organic conductive polymers and chemically reactive electrodes degrade when exposed
to water or oxygen, causing failure of electronic devices [120]. Therefore, in order to enhance the
service life of device, it is necessary to use a barrier material for encapsulation layer of the device with
a low water vapor transmission rate and oxygen permeability. Currently, glass or metal is often used
for device packaging, however, these rigid materials with high spring constant will greatly limit the
widespread applications of devices, especially in flexible devices. On this basis, researchers studied
thin-film encapsulation (TFE) technology [121]. In recent years, the SiNxOy film has also been widely
used as encapsulating layers. However, SiNxOy film has some problems served as an encapsulation
layer. The basic degradation mechanism of water vapor or oxygen on a single layer of SiNxOy film
is studied, and it is found that water vapor diffuses into the SiNxOy film through the percolation
channel and nano-defects to react with SiON:H, making Si-N gradually changes to Si-O bond under
repeated erosion of water vapor, eventually becoming a fully oxidized film. Therefore, the degradation
of SiO2:H becomes a way for water vapor to diffuse, and because of the lower density of SiO2:H, the
diffusion rate of water vapor in the SiNxOy film is further enhanced [116]. In addition, the difference in
moisture resistance of the SiNxOy film is explained by film oxidation and surface defect density. Oku
and co-workers [122] indicated that the surface of SiNxOy film easily changes to a low-quality film
containing an excessive amount of H2O molecule and O-H bond, which reduces the waterproofness,
after pressure cooker test (PCT) test. Therefore, it is generally formed by depositing a multilayer film
to reduce film defects and the probability of film pores communicating with the atmosphere, thereby
forming a perfect barrier layer. On the other hand, SiNxOy film deposited at a higher temperature
has higher performance, and its defects are less, however, the high-temperature treatment should be
avoided in some devices, and the deposited SiNxOy film has poor barrier performance under low
temperature, which is not conducive to the protection of the device. Therefore, Satoh et al. [123]
developed a AlOx/SiON composite bilayer structure deposited at a relatively low temperature (<160 ◦C),
in which the AlOx layer is used as a barrier layer, and the SiNxOy layer ensured the chemical and
thermal stability of the film to protect the device from damage during processing. The test results
indicated that the device did not show any degradation at 85 ◦C, and 85% relative humidity (RH)
is obtained.

Additionally, some researchers have developed other methods, such as changing the preparation
process and controlling the preparation parameters, to optimize the barrier performance of SiNxOy

film to air and water vapor. Shim et al. [124] deposited a thin SiNxOy layer on the surface of poly(ether
sulfone) (PES) membrane by PECVD using a mixture of hexamethyldisiloxane (HMDSO) and ammonia.
SiNxOy is used as gas barrier layer, and a silicon-based coating layer of an organic/inorganic hybrid
structure is added between the surface of PES and SiNxOy film as a buffer layer for both. The results
showed that the undercoat layer is indispensable in the composite film. Under the action of the
undercoat layer, the dense inorganic SiNxOy layer has an excellent oxygen barrier performance of
0.2 cm3 m−2 day−1 at a critical coating thickness of ~20 nm. Moreover, the presence of the undercoat
layer not only prevents the film from being cracked when the composite film is highly curved, but
also maintains the initial gas barrier performance of the curved film. Iwamori et al. [125] prepared
a SiNxOy-based transparent gas barrier material by depositing a SiNxOy film on a polyethylene
terephthalate (PET) substrate by reactive sputtering in a nitrogen plasma. The results showed that
the SiNxOy film has a lower oxygen transmission rate than that of the SiO2 film, because the use of
nitrogen plasma instead of oxygen suppresses the formation of defects induced by peroxide, and the
increase in nitrogen content greatly enhances the density of SiNxOy film, forming a composite film with
excellent gas barrier performance. Liu et al. [126] deposited a SiNxOy film on PES by RF magnetron
sputtering in Ar/N2 atmosphere as a barrier to prevent water vapor permeation. The experimental
results showed that the RF power is 250 W. At the fixed film pressure of 1.6 Pa, with the deposition
time of 30 min, the 100% N2 content, and the absence of substrate bias, the water vapor transmission
rate of the composite film is two orders of magnitude smaller than that of the uncoated PES.
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These studies provided some new research ideas for the development of high-quality SiNxOy

barrier material, and have important research significance for the applications of SiNxOy film in
packaging materials, protective layer materials, and gas barriers.

4.2. Application of Non-Volatile Semiconducting Memory

Non-volatile semiconducting memory (NVSM) means that when the current is turned off, the stored
data does not disappear, which can be applied to many fields [127–129]. Wrazien et al. [130] conducted
a lot of work on non-volatile memory. They studied NVSM with silicon-oxide-nitride-oxide-silicon
(SONOS) structure, which theoretically proves its storage capacity under low pressure and 150 ◦C
can be as long as 10 years and the erase/write cycle is 105 times. Moreover, the SONOS based
device has an oxynitride charge storage layer. In recent years, resistive memory is considered as a
non-volatile memory with broad application prospects because of its excellent durability, high data
transmission speed, and low power consumption [131]. Resistive random access memory (RRAM) is
also known as a memristor-an electronic component with memory function [132]. Currently, excellent
resistance switching characteristics of silicon-based dielectrics are often applied in RRAM devices.
Recently, with the development of SiNxOy film, it has been found that the defect density of SiNxOy

film is low, and the high operating voltage is more advantageous when used as a storage medium.
Chen et al. [133] proposed that the SiNxOy film has non-uniformities such as operating voltage and
current, and improved uniformity of the RRAM by doping. They prepared SiNxOy film with different
oxygen concentrations by reactive magnetron sputtering. The resistance conversion performance and
conduction mechanisms of Cu/SiNxOy/ITO device are investigated. The SiNxOy is deposited under
O2 with a flow rate of 0.8 sccm in their investigation. The fabricated Cu/SiNxOy/ITO device showed
reliable resistance conversion behavior, including high durability and retention. Zhang et al. [134]
prepared a SiNxOy film with ultra-low power a-SiN0.69O0.53:H by PECVD and pass N2O into a vacuum
chamber. An a-SiN0.69O0.53:H film is prepared under high resistance state and low power conversion.
The RRAM cells based on the a-SiN0.69O0.53:H film shows an ultra-low current compared with the
pure a-SiN0.62:H-based RRAM, effectively reducing the operating current.

Recently, Wang et al. [135] developed a diffusion type memristor composed of two electrodes
and a SiNxOy film embedded with nano silver particles, wherein the film is placed between the two
electrodes. The SiNxOy film is an insulator, but after electrification, under the action of heat and electric
power, the positions of the silver particles arranged neatly on the film begin to scatter, gradually diffuse,
and penetrate the film to finally form a cluster of conductive filaments. Current is passed from one
electrode to the other. After turning off the power, the temperature drops and the nano silver particles
are rearranged. The work of the memristor developed by the researchers is very similar to that of
calcium ions in biological synapses, so the device can simulate the short-term plasticity of neurons,
and the schematic diagram and circuit diagram of RRAM simulating synaptic memory are shown
in Figure 5. In addition, the diffusion memristor can also be used as a selector with large transient
nonlinearity, which has great research significance and application prospects.

4.3. Application of Optical Devices

By controlling the ratio of oxygen and nitrogen in the SiNxOy film, the refractive index and
extinction coefficient of the SiNxOy film can be controlled, and it can be used as an optical waveguide
material and an anti-reflection film.

Optical waveguide materials are generally required to have low transmission loss, single mode
transmission, and the ability to fabricate a variety of active and passive devices on the same platform.
The outstanding feature of planar optical waveguides based on SiNxOy and SiN is their ultra-low
loss. Planar waveguides with attenuations less than 0.1 dB m−1 have been implemented, such as
Baudzus et al. [136] studied phase shifters based on electro-optic (EO) polymers and SiN and SiNxOy

waveguide materials systems, and found that SiNxOy and SiN can be combined with EO polymers
and a fast adaptive phase shifter with very low attenuation can be made. The phase shifter has an
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attenuation of 0.8 dB cm−1 at 1550 nm and an EO efficiency factor of 27%, which can achieve lower loss
and has important research significance.
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Optical waveguide materials, such as SiNxOy and SiN, also have applications in resonators.
Compared with the straight waveguide structure, the ring resonator (RR) has the advantages of
small footprint, high wavelength selectivity, and accumulated light intensity in the cavity, so that
a large absorption is obtained in the case of a short absorption medium. Therefore, the microring
resonator structure can achieve high responsiveness in the photodetector, achieving large extinction
in the modulator. In recent years, the excellent performance of silicon waveguide photodetectors
with integrated graphene has been experimentally verified. In a recent study of SiN microring
resonators, Wang et al. [137] used a graphene-photonic integrated circuits (PICs) structure to fabricate
microring resonators on the Si3N4 platform. Compared with the graphene-Si3N4 straight waveguide,
the absorption of the ring resonator is increased, and the length of the required graphene is greatly
shortened, and the quality factor of the prepared resonator is 0.282 × 105–0.038 × 105. In 2018,
Jia et al. [138] developed a SiNxOy-based optical waveguide ring resonator (OWRR), which employed
a liquid source CVD (LSCVD) method to deposit a SiNxOy film with a good refractive index. It is
found that the SiNxOy-based resonator achieves a measured waveguide loss of 4.07 dB cm−1 and a
quality factor of 0.93 × 105 in the transverse electric (TE) mode, which provides a new idea for the
preparation of other SiNxOy-based optical devices. The use of SiN and SiNxOy described above in ring
resonators exhibits different ranges of quality factors, and in specific applications, is effectively selected
based on the required bandwidth. In order to improve the controllability of the deposition process and
the precise control of the SiNxOy film performance, PECVD and LPCVD methods are both used in the
preparation process. When the refractive index is less than 1.7, it is suitable for deposition by PECVD.
When the refractive index is greater than 1.7, the dependence of the refractive index of the SiNxOy film
on the gas flow rate in PECVD deposition is large, which is not conducive to precise control. It must be
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deposited by LPCVD. The product rate is 1–10 nm/min, suitable for growing thin films with a thickness
of 10–500 nm. The two deposition methods described above have thickness and refractive index
uniformity and process repeatability of the resulting SiNxOy film deposited in the respective refractive
index ranges, which can meet the requirements of high performance waveguides [139]. In addition to
these, Trenti et al. [140] not only confirmed the low loss of SiNxOy, but also assumed that SiNxOy has
thermal and nonlinear optical properties, and that SiNxOy is an excellent platform for nonlinear and
quantum optical integrated photonic circuit design.

As an anti-reflective film, SiNxOy film can greatly reduce light reflection and loss, and increase
efficiency when applied to photovoltaic devices such as solar cells and OLEDs. The excellent optical
properties of SiNxOy film can increase the transmittance of light and reduce the reflectivity. Sapphire
substrate is widely used in various photoelectric applications on glass substrate. However, sapphire
has a low transmittance. In order to increase the transmittance of sapphire substrate and reduce the
refractive index, Loka et al. [141] used RF magnetron sputtering to deposit a layer of SiNxOy film
on the surface of sapphire, followed by annealing at a high temperature of 1099.85◦C.The visible
light transmittance is comparable with that of sodium-calcium glass. In this study, it is worth noting
that after high temperature annealing, the nitrogen in the SiNxOy film disappears and the film is
converted into SiOn. It is believed that the formation of SiOn and the high temperature annealing by
increasing the oxygen content help to lower the refractive index and reflectivity. Moreover, SiNxOy

film is used as an anti-reflection film on solar cells and OLEDs, which not only improves efficiency,
but also protects the device due to its high resistance to corrosion and oxidation. However, in most
preparation processes, composite films of SiNxOy and other components are usually double or even
multilayered in order to obtain higher performance. In these studies, Nguyen et al. [142] developed a
dual stack of SiNxOy/Al2O3 for n-type c-Si solar cells. They deposited a SiNxOy layer on the surface of
Al2O3 as a coating by PECVD. It is found that the Al2O3/a-SiNx:H phase is excellent due to its excellent
anti-reflection and front surface passivation of the Al2O3/SiON stack. The refractive index and high
positive fixed charge of the SiNxOy cap layer in the Al2O3/SiNxOy stack are reduced, but the lifetime is
significantly improved, and the optical properties are excellent, such as the average transmission in the
entire wavelength range of 300–1100 nm. The rate is 93.8%, the average absorption rate is 0.33%, the
energy conversion efficiency is increased from 17.55% to 18.34%, the short-circuit current density and
open circuit voltage are also improved. Sahouane et al. [143] further investigated the application of
multilayer anti-reflective coatings to reduce optical losses in solar cells. They deposited multilayer
silicon nitride film and SiNxOy film by PECVD and found that the best reflectivity of six layers of
film is 1.05%, and that of four layers is 3.26%. It is proved that multilayer deposition can greatly
reduce reflectivity, reduce loss, and improve efficiency. Parashar et al. [144] found that the hybrid
plasma structure formed by adding self-assembled silver-aluminum alloy nanoparticles to the SiNxOy

film can also significantly reduce the reflectivity of silicon. The results showed that SiNxOy/Ag2Al
nanoparticles reduce the average reflectance of silicon from 22.7% to 9.2%, and the SiNxOy cover layer
reduces the reflectivity of silicon from 9.2% to 3.6% in the wavelength range of 300–1150 nm. By
further enhancing photon management, the reflectivity decreased from 22.7% to ~3.6% in a 35 nm
SiNxOy/Ag2Al nanoparticles /25 nm SiNxOy hybrid plasma structure, and when used as a battery,
photocurrent and cell efficiency are improved to some extent.

4.4. Application of Anti-Scratch Coating

With the development of flexible optoelectronic devices, more and more transparent polymers are
developed as flexible substrate in devices, and the polymer is widely used because of its advantages
of light weight, low cost, high transparency, and easy to process and design [145,146]. However, for
long-term use, the polymer is limited in many applications due to its poor scratch resistance, fragility,
or influence on device. Researchers have further protected the device by depositing a coating on
the surface of the transparent polymer to enhance its scratch resistance. In recent years, silica-based
coatings (SiNxOy film) have been considered as promising transparent coatings for protection of
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transparent polymers. Lin et al. [147,148] deposited organo-silicon oxynitride (SiOxCyNz) film on
a flexible polycarbonate (PC) substrate by low-temperature tetramethylsilane (TMS)-O2-N2 plasma
polymerization at room temperature. They also studied the effect of N2 flow rate on scratch resistance
of PC substrates, and found that the optimal flow rate of N2 is 3 sccm, and the scraping rate is 0%
after scraping 200 times with steel wool under the pressure of 300 g. The SiOxCyNz film covered
PC substrate has very good scratch resistance and provides a hard and smooth surface for flexible
PC substrates. In addition, they also deposited SiOxCyNz film on reinforced carbon fiber reinforced
polymer composites (FCFRPCs) by atmospheric pressure plasma low temperature polymerization
to enhance the scratch resistance of the composites. There is a large amount of scratching (100%) on
the original FCFRPC. By depositing SiOxCyNz film, the scratch resistance of FCFRPCs is significantly
improved. After scratch testing, there are no scratches (0%), which is of great significance for the
development of FCFRPCs. Furthermore, Zhang et al. [149] prepared a SiNxOy coating on glass and
PET films by thermally annealing the inorganic polymer perhydropolysilazane (PHPS) between 60 and
200 ◦C. The results showed that the glass and PET film covered by SiNxOy film have higher hardness,
stronger hydrophobicity and excellent adhesion. Additionally, the coated PET film exhibited high
transparency and excellent scratch resistance in the visible wavelength range, and is advantageous as a
hydrophobic scratch-resistant coating in optical devices, as shown in Figure 6.

The high hardness and high scratch resistance of the SiNxOy film make it widely used as a
coating on transparent polymer and glass, which enhances the reliability of devices and has important
research significance.Micromachines 2018, 9, x FOR PEER REVIEW  16 of 23 
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is observed on the left and the right shows the coated PET film after wear test [149]. Copyright 2015,
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5. Conclusions

The SiNxOy film has important applications in optical devices, non-volatile memory, barrier
materials, and scratch-resistant materials due to its good optoelectronic performance, mechanical
strength, chemical stability, and barrier performance. The review focuses on the optical performance of
SiNxOy, including luminescent performance and adjustable refractive index. This is a characteristic of
SiNxOy film that is superior to conventional silicon-containing films such as Si3N4 and SiO2. Moreover,
several methods for preparing SiNxOy film, including chemical deposition methods, sputtering
methods, and nitrogen oxidation methods, which are mainly used at present, are reviewed and
compared, and the advantages and disadvantages of different methods will help us design and select
the preparation methods correctly.

As a new type of thin film, SiNxOy film has a wide range of research space in many aspects.
We believe that with the maturity and development of various preparation methods, the application
prospect of SiNxOy film will be brighter.
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