
DEXUS: identifying differential expression in
RNA-Seq studies with unknown conditions
Günter Klambauer, Thomas Unterthiner and Sepp Hochreiter*

Institute of Bioinformatics, Johannes Kepler University, A-4040 Linz, Austria

Received June 17, 2013; Revised August 22, 2013; Accepted August 27, 2013

ABSTRACT

Detection of differential expression in RNA-Seq data
is currently limited to studies in which two or more
sample conditions are known a priori. However,
these biological conditions are typically unknown
in cohort, cross-sectional and nonrandomized
controlled studies such as the HapMap, the
ENCODE or the 1000 Genomes project. We present
DEXUS for detecting differential expression in RNA-
Seq data for which the sample conditions are
unknown. DEXUS models read counts as a finite
mixture of negative binomial distributions in which
each mixture component corresponds to a condition.
A transcript is considered differentially expressed if
modeling of its read counts requires more than one
condition. DEXUS decomposes read count variation
into variation due to noise and variation due to dif-
ferential expression. Evidence of differential expres-
sion is measured by the informative/noninformative
(I/NI) value, which allows differentially expressed
transcripts to be extracted at a desired specificity
(significance level) or sensitivity (power). DEXUS
performed excellently in identifying differentially ex-
pressed transcripts in data with unknown conditions.
On 2400 simulated data sets, I/NI value thresholds of
0.025, 0.05 and 0.1 yielded average specificities of 92,
97 and 99% at sensitivities of 76, 61 and 38%, re-
spectively. On real-world data sets, DEXUS was
able to detect differentially expressed transcripts
related to sex, species, tissue, structural variants or
quantitative trait loci. The DEXUS R package is
publicly available from Bioconductor and the
scripts for all experiments are available at http://
www.bioinf.jku.at/software/dexus/.

INTRODUCTION

The advent of next-generation sequencing has greatly
expanded our knowledge about transcriptomes. New
transcripts and splice variants have been found and

break points of known transcripts determined more
accurately (1–6). However, in RNA-Seq experiments,
quantification of the expression of transcripts can be dif-
ficult (7). Without biological variability, transcripts that
are differentially expressed between two conditions can be
detected reliably (8). In studies with biological variability,
however, detection of differential expression between two
conditions remains challenging (9). A transcript that is
differentially expressed between many conditions is hard
to detect because read count variation due to differential
expression and due to high overdispersion can only be
distinguished with many samples and high coverage. See
Supplementary Section S2 for more details. To detect dif-
ferentially expressed transcripts, we therefore assume that
the number of conditions is small compared with the
number of samples.

Identifying differential expression is currently limited to
particular study designs

Current methods for analyzing RNA-Seq data can
identify differential expression between two conditions.
For example, in a case-control study, only transcripts
that are differentially expressed between cases and
controls can be identified. Similarly, in a randomized
controlled study, differential expression between treated
and untreated subjects can be detected. These study
designs can be generalized to more case groups or more
treatments, which leads to multiple (more than two)
known conditions. For example, multiple conditions
may be due to different tissue types, as in the ‘Allen
Brain Atlas’ (10), the ‘Gene Expression Nervous System
Atlas’ (11), and the ‘BioGPS’ (12).
Identification of differential expression in RNA-Seq

data requires a priori known conditions. In cohort,
cross-sectional and nonrandomized controlled studies,
the biological conditions are unknown or only partially
known. Cohort and cross-sectional studies are observa-
tional studies in which the conditions of the subjects are
unknown. Examples of observational studies include the
HapMap (13), ENCODE (6) and the 1000 Genomes (14)
project, for which RNA-Seq data are available (15,16).
Nonrandomized controlled studies are treatment studies
in which conditions such as genetic, environmental
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or treatment effects are not completely known. In
nonrandomized controlled studies, unknown genetic vari-
ations such as single-nucleotide polymorphisms (SNPs),
copy number variations and unknown environmental factors
may result in differential expression between treated
subjects. Furthermore, individual unknown treatment
effects may cause variation in gene expression, for instance,
responses of cell lines to the addition of compounds (17).
Other examples are found in oncology, where unknown
cancer subtypes or unknown cancer stages are characterized
by a particular gene expression profile (18,19).
In nonclinical studies, the conditions are also often

unknown. During development, the transcriptome regu-
lates and controls cell growth, differentiation, movement
and morphogenesis. Genes are differentially expressed
between different time points and between different
tissues; even within one tissue, gene expression may vary
spatially. For two samples taken at different times or from
different locations it is often unknown whether the condi-
tions differ. Another example is in vivo or in vitro gene
expression in mice treated with drug candidates (20,21).
Unknown factors such as individual responses or side
effects lead to differentially expressed transcripts
between the samples.
The detection of differential expression in RNA-Seq

studies with unknown conditions is important to obtain
new biological knowledge. Current RNA-Seq methods,
however, require the conditions to be known. For micro-
array data, a method for identifying unknown conditions
in gene expression has been suggested (22). However, this
method cannot be applied to RNA-Seq data with
unknown conditions because a primary modeled factor
is required and the noise is assumed to be Gaussian,
which is not appropriate for RNA-Seq count data (23).
We therefore present DEXUS, a method capable of de-
tecting differential expression in RNA-Seq studies with
unknown conditions.
A summary of study designs and methods that can

detect differential expression in them is shown in Table 1.

Existing methods for detecting differential expression in
RNA-Seq data

Methods that detect differential expression in RNA-Seq
data are usually based on read counts, i.e. the number of
reads mapping to a DNA region that is transcribed, such
as a gene or an exon (32). These methods compare read

counts for two conditions. If read counts show a large and
consistent difference between the conditions, then the ac-
cording transcript is differentially expressed. In this sub-
section, we review methods that detect differential
expression in RNA-Seq data. Many methods model read
counts by a negative binomial distribution because even
after normalization the read counts have high variance.
Therefore, we divide methods into two classes: those
which do not use negative binomials (class A) and those
which do (class B).

The following methods belong to class A.
DEGSeq (28) assumes that the log fold change of mean

read counts between the two conditions follows a normal
distribution given the log average expression. A differen-
tially expressed gene is identified by a small P-value by
means of this distribution.

NOISeq (30) also considers the log fold change of read
counts between two given conditions together with their
absolute difference. Empirical distributions are calculated
using all pairs of replicates from different conditions.
NOISeq identifies a gene as differentially expressed if the
log fold change of read counts and the absolute difference
of read counts between the two conditions have both a
small P-value for the empirical distributions.

SAMSeq (27) performs a Wilcoxon test for each tran-
script testing the counts of one condition against the
counts of the other. Because standard normalization tech-
niques are not applicable, subsampling is used to normal-
ize the read counts. SAMSeq requires a relatively high
number of samples per condition to obtain significance
for differential expression.

PoissonSeq (29) fits a Poisson log-linear model to the
read counts after transforming them. A score statistic on
the model parameters determines the significance for dif-
ferential expression.

The following class B methods use negative binomial
distributions to model the read counts.

edgeR (25) uses a quantile-adjusted conditional
maximum likelihood estimator for the overdispersion par-
ameter of the negative binomial distribution. This estima-
tor is more accurate than the standard maximum
likelihood estimator when only few replicates per condi-
tion are available (33). Borrowing information across
transcripts allows the dispersion parameter to be
adjusted toward a consensus value using an empirical
Bayes procedure (34). Finally, edgeR uses an exact test

Table 1. An overview of study designs and methods that can detect differential expression in them

Study design DEXUS DESeq edgeR baySeq SAMSeq DEGSeq PoissonSeq NOISeq DSS

Two known conditions
Case-control study 3 3 3 3 3 3 3 3 3

Randomized controlled study 3 3 3 3 3 3 3 3 3

Multiple known conditions
Multiple case-control study 3 3 3 3 3

Multiple treatment RCS 3 3 3 3 3

Unknown conditions
Cross-sectional study 3

Cohort study 3

Nonrandomized controlled study 3

Alongside DEXUS, we included DESeq (24), edgeR (25), baySeq (26), SAMSeq (27), DEGSeq (28), PoissonSeq (29), NOISeq (30) and DSS (31).
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to determine whether the counts of the two conditions
come from the same negative binomial distribution.

DESeq (24) pools together transcripts with similar
expressions values to improve the estimate of the
overdispersion parameter. The overdispersion is assumed
to be a function of the mean read count and is therefore
estimated per condition. To determine whether a tran-
script is differentially expressed, the distribution param-
eters of the two conditions are tested by an exact test for
equality of means.

baySeq (26) determines the distribution of the
overdispersion parameter by applying a quasi-likelihood
method to the read counts of one condition. The resulting
distribution is used as prior for estimating the
overdispersion parameter when fitting the model to the
read count data.

DSS (31) is similar to baySeq. A negative binomial dis-
tribution is fitted to the read count data using a prior on
the overdispersion parameter. This prior is a log-normal
distribution, whose parameters are optimized using the
dispersion parameters of each condition. Finally, a Wald
test is used to determine differential expression.

In summary, the class B methods, which use negative
binomial distributions, i.e. DESeq, baySeq, DSS and
edgeR, mainly differ in the way they estimate the
overdispersion parameter. Estimating the overdispersion
parameter is crucial for the performance and not trivial
because the maximum likelihood estimator is biased and
has high variance if the sample size is small (33). The sub-
sequent statistical test has a smaller effect on the results
than the parameter estimates (23,31).

Extensions to multiple known conditions
McCarthy et al. (32) extended the R package edgeR to
more than two conditions. A generalized linear model is
fitted to the data, and then coefficients are tested for being
different from zero, which leads to the final P-values.
Again, the estimation of the overdispersion parameter
for a transcript borrows information from other tran-
scripts. DESeq, baySeq and SAMSeq have also been
extended to more than two conditions.

MATERIALS AND METHODS

Method overview

Our goal is to identify differentially expressed transcripts
in studies with unknown conditions. A transcript is differ-
entially expressed if the mean expression levels for differ-
ent conditions are different and read counts are observed
under more than one condition. Therefore we assume a
small number of conditions because, as mentioned above,
the detection of differential expression for many condi-
tions is difficult. RNA-Seq expression data are usually
represented as read counts per transcript, or alternatively
by exon or gene. It was observed that read counts from a
single condition follow a negative binomial distribution
(24–26,31). DEXUS therefore models read counts as a
finite mixture of negative binomial distributions.

The model that best explains the observed read counts is
selected from a set of models. In a Bayesian framework,

model selection is based on finding the parameter which
maximizes the posterior, the maximum a posteriori (MAP)
parameter. The MAP model is found by an expectation
maximization (EM) algorithm, where E-step and M-step
are alternated repeatedly. The E-step estimates the
unknown conditions based on actual model parameters,
and the M-step optimizes the model parameters based on
the E-step estimates. Models that use only one condition
to explain the read counts are preferred by means of a
prior distribution. One condition is the null hypothesis,
which is rejected only if the data show strong evidence
for more than one condition. Therefore, the parameters
of the prior distribution determine how much DEXUS
prefers to select models that explain the data without dif-
ferential expression. Consequently, via the prior param-
eters, DEXUS can be adjusted to have a low false
discovery rate at the detection of differential expression.
In the following subsections, we first describe the model

in more detail and then explain the EM algorithm for
model selection. Model selection includes prior assump-
tions that lower the false discovery rate and lead to
more accurate estimates. Finally, we show how to call
differentially expressed transcripts on the basis of an in-
formative/noninformative (I/NI) value.

The model

Read count x per transcript is explained by a mixture of
n negative binomial distributions:

pðxÞ ¼
Xn
i¼1

�i NBðx ;�i,riÞ ð1Þ

where �i is the probability of being in condition i out of n
possible conditions. In condition i, read counts are drawn
from a negative binomial distribution with mean �i and
size ri, where the size parameter ri is the inverse of the
overdispersion �i. Note that we use the ð�,rÞ instead of
the usual ð�,�Þ parametrization to locally accumulate par-
ameters that are associated with large overdispersions.
This accumulation is essential to define a prior within a
Bayesian framework.
A nondegenerate DEXUS model is identifiable (see

Supplementary Section S3.1.3), as required for the
maximum likelihood and the maximum a posterior esti-
mator to be consistent. Consistency means that the esti-
mator converges to the true parameter values with more
data points, which is important for identifying differential
expression. If the mean read count exceeds the variance,
the maximum likelihood estimate of r tends to1 and the
negative binomial converges to a Poisson distribution (see
Supplementary Section S3.2.2).

Model selection

We perform model selection in a Bayesian framework by
maximizing the posterior, i.e. by a MAP approach
(35–37). Therefore, the parameters a ¼ ð�1, . . . ,�nÞ,
l ¼ ð�1, . . . ,�nÞ and r ¼ ðr1, . . . ,rnÞ are considered to
be random variables, and the likelihood p(x) in
Equation (1) becomes the conditional probability
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pðxja,l,rÞ. The objective of the model selection is to
maximize the posterior of the parameters:

pðl,r,ajxÞ ¼
pðxjl,r,aÞ pðlÞ pðaÞ pðrÞR

pðxjl,r,aÞ pðlÞ pðaÞ pðrÞ da dr dl

¼
1

cðxÞ
pðxjl,r,aÞ pðlÞ pðaÞ pðrÞ

ð2Þ

where the priors on a, l and r are assumed to be inde-
pendent of each other, and are defined in the following.

Dirichlet prior for probabilities of conditions
First we choose the prior pðaÞ on the probabilities of the
conditions. Since the majority of transcripts in a data set
are usually not differentially expressed, the model should
favor explaining the read counts for a transcript with a
single condition. The null hypothesis of one condition
should only be rejected if the data contain strong
evidence for more than one condition. The prior reduces
the number of falsely discovered differentially expressed
transcripts and therefore keeps the false discovery rate
low. DEXUS uses a Dirichlet prior pðaÞ on a with param-
eters c to incorporate the preference for only one
condition:

pðaÞ ¼ bðcÞ
Yn
i¼1

��i�1i ð3Þ

where a is an n-dimensional probability vector. Each com-
ponent �i is distributed according to a beta distribution
with modeð�iÞ ¼ �i � 1ð Þ=

Pn
i¼1 �i � n

� �
.

To express the prior knowledge that most transcripts
are not differentially expressed and are generated under
only one condition, we set �1 � �i (for i > 1). This setting
assumes that most read counts are generated under con-
dition i=1, which we call the major condition, while con-
ditions i > 1 are called minor conditions. The vector of
hyperparameters ð�1,�2, . . . ,�nÞ can be simplified to one
hyperparameter G (Supplementary Section S3.2.1). In
Supplementary Section S3.4 we show that DEXUS is
not sensitive to the choice of the hyperparameter G.
Therefore DEXUS is easy to use as good results are
obtained with the default setting of G=1 (see
Supplementary Section S3.4). Without having seen the
data, we assume that only the major condition is
present, which means that the transcript is not differen-
tially expressed. Only when the data show strong evidence
also for minor conditions, does the posterior assign
nonzero probabilities to minor conditions and the tran-
script is called differentially expressed.

Truncated exponential priors for overdispersions
In DEXUS model selection, the second prior is on the size
parameter r of the negative binomial distribution, which
determines the overdispersion. A prior on r improves the
estimation of r if the number of samples is small. The
maximum likelihood estimator of r is biased for few
samples and overestimates the true size parameter
(38,39), as confirmed in Supplementary Section S3.2.5.
In a Bayesian approach, the influence of the prior de-
creases with an increasing number of samples, and

therefore the MAP estimator is asymptotically (number
of samples tending to infinity) unbiased.

To keep the estimate of r small, the prior pushes r
toward zero. We choose an exponential distribution as
prior:

pðrÞ ¼ � e��r, ð4Þ

where Z is a hyperparameter.
Like DESeq (24), we truncate the size parameter at the

right-hand tail by using the constraint r � rmax. The upper
bound rmax on the size parameter is equivalent to a lower
bound on the overdispersion and ensures minimal
overdispersion for the read counts of each transcript.
Further, this bound makes the parameter space
compact, which is required for a consistent estimator.
The same exponential prior is used for each component
of r. The hyperparameter Z for the exponential prior on r
is transformed to a hyperparameter y (see Supplementary
Section S3.2.5). Like the hyperparameter G, also y is
robust and supplies good results with � ¼ 2:5.

Uniform priors for means
Finally, DEXUS model selection uses a prior on the mean
m of the negative binomial distribution. If in one condition
all read counts were close to zero (transcripts are not
present), the estimate of the mean of the negative
binomial would not converge. Therefore, �i is lower
bounded by �min. To ensure a compact parameter space
as required for a consistent estimator, we use a uniform
prior on �i on the compact interval ½�min,�max�, where
�max can be set to the largest observed read count.

In summary, DEXUS has only few parameters which in
most applications need not be adjusted by the user, as
their default values give good results.

EM algorithm
With the priors defined, the model with maximum param-
eter posterior can be selected. The EM algorithm (40) is
used to minimize an upper bound on the negative log-pos-
terior of the parameters. The E-step of the EM algorithm
estimates the probability that a read count is generated
under a particular condition. The M-step optimizes the
model parameters based on the E-step estimates.

In the DEXUS model, �i is the probability of condition
i without observing any data. The model posterior ~�ik es-
timates the probability that read count xk is generated
under condition i (the probability of condition i after
observing data xk):

~�ik ¼
�i NBðxk ;�i,riÞPn

i¼1

�i NBðxk ;�i,riÞ

: ð5Þ

This equation is the E-step (expectation step) of the EM
algorithm. Using the posterior estimates ~�ik, we obtain
following update rules for the M-step (maximization step):

� estimate for �i:

�̂i ¼
1

N

XN
k¼1

~�ik ð6Þ
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� l update:

�i ¼

1
N

PN
k¼1

~�ik xk

�̂i
: ð7Þ

� r update:
The new ri is obtained by solving the following
equation for ri:XN

k¼1

~�ik  xk+rið Þ � N �̂i  ðriÞ+ ð8Þ

+N �̂i log
ri �̂i

1
N

PN
k¼1

~�ik xk+ri �̂i

0
BBB@

1
CCCA � � ¼ 0;

where  is the digamma function. The equation is solved
numerically for ri by means of a ‘bisection’ procedure.

� a update:

�i ¼
�̂i+

1
N �i � 1ð Þ

1+ 1
N

Pn
i¼1

�i � n

� � : ð9Þ

The complete derivation of the EM algorithm can be
found in the Supplementary Section S3.2.1.
�i and ri are initialized by using the results of k-means

clustering (see Supplementary Section S3.2.4). The values
�i are simply initialized with the maximum entropy setting
�i ¼ 1=n.

I/NI value: evidence of differential expression

The Bayesian framework allows definition of an I/NI call
(36,37,41,42). The I/NI call serves to extract differentially
expressed transcripts with a desired specificity (1� signifi-
cance level or 1� type I error rate) or sensitivity (power or
1 – type II error rate). DEXUS first computes the I/NI
value, which quantifies the contribution of differential ex-
pression to the read count variation. Transcripts are then
called informative if the I/NI value exceeds a threshold.

Unlike �i or ri, which capture noise variation, a captures
variation arising from differentially expressed transcripts.
The posteriorba of a indicates differential expression in the
data in the form of minor conditions with probabilities
larger than zero. The larger the posterior value �̂i of a
minor condition i > 1, the stronger the evidence for its
presence. Further, evidence is also required that the
minor condition is different from the major condition in
terms of mean read counts. Although identifiability of the
DEXUS model ensures that the negative binomials of dif-
ferent conditions are different, they may still be close to
one another. The more the mean �i of the minor condition
i > 1 differs from the mean of the major condition, the
stronger is the evidence that the minor condition is differ-
ent from the major condition. In conclusion, evaluating
the evidence of differential expression (the I/NI value)
should consider two factors: (i) �̂i as the evidence for the

presence of the minor condition i > 1; (ii) the difference
between the means of the major and minor conditions as
evidence that they are indeed different.
The difference between the means is expressed by

the log difference log �ið Þ � log �1ð Þ
�� ��. Factor (I) is

incorporated into the I/NI value by weighting these dif-
ferences by �̂i, which yields

I=NIðba,lÞ ¼
Xn
i¼1

�̂i log
�i

�1

� �����
����

¼
Xn
i¼1

�̂i log �ið Þ � log �1ð Þ
�� �� : ð10Þ

The I/NI value is the expected log fold change of read
counts with respect to the mean read count of the major
condition given a noise-free model. ‘Noise-free’ refers to
the assumption that under each condition, only the mean
read count is observed. For a mathematical interpretation
of the I/NI value see Supplementary Section S3.3.2.

Experiments

We evaluated DEXUS on simulated and real-world data
sets. The simulated data sets had various library sizes,
different numbers of replicates and different ratios
between mean read counts under the different conditions.
DEXUS was tested on the following real-world RNA-Seq
data sets: (i) ‘Nigerian HapMap’, based on 69 Nigerian
HapMap individuals, (ii) ‘European HapMap’, based on
60 European HapMap individuals, (iii) ‘Primate Liver’,
based on liver tissue samples from humans, chimpanzees
and rhesus macaques, (iv) ‘Maize Leaves’, using samples
from different locations of maize plant leaves, and (v)
‘Mice Strains’, based on different strains of mice
(Supplementary Section S4.2.4).
First we report the performance of DEXUS on 2400

simulated data sets for which the conditions were known
but withheld from DEXUS. We then present tests on real-
world data sets with either unknown conditions (‘Nigerian
HapMap’, ‘European HapMap’) or partially known con-
ditions (‘Primate Liver’, ‘Maize Leaves’). In the latter case
the conditions were withheld from DEXUS to ascertain
whether it can identify them.

DEXUS for known conditions

Before we tested DEXUS on data with unknown condi-
tions, we assessed how well it performs if the conditions of
interest are known. For known conditions, DEXUS esti-
mates only the parameters of a negative binomial for each
condition. Therefore, we compared the parameter esti-
mates of DEXUS to previously suggested methods in
terms of detecting differentially expressed transcripts,
namely the following eight state-of-the-art methods: DSS
(31), DESeq (24), baySeq (26), edgeR (25), DEGseq (28),
NOISeq (30), PoissonSeq (29) and SAMseq (27).
If only few samples per condition are available, the per-

formance of DEXUS is below the best performing other
methods. For medium and large sample numbers and
small library size (1e6) DEXUS is second and third best
method. For medium and large sample numbers and large
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library sizes (1e7 and 1e8) DEXUS outperforms all other
methods. The experiments and the respective results are
described in detail in Supplementary Section S4.2.

Simulated RNA-Seq data

Generating simulated RNA-Seq data
We simulated data sets from different experimental
settings following the suggestions of Robinson et al.
(34), Hardcaste and Kelly (26) and Wu et al. (31). For
all samples of a data set, the library size was 1e6, 1e7 or
1e8 to cover a wide range of applications. Keeping the
library size and the read quality constant for each
sample in a data set avoids the need for normalization
of the read counts, i.e. it avoids normalization biases.
For each experiment, we choose a particular number of
replicates per condition to evaluate DEXUS for different
sample sizes and for unbalanced data. In case of two con-
ditions, the numbers of replicates were 6/6, 9/3, 10/2, 11/1,
12/12, 18/6, 20/4, 22/2 (condition1/condition2). Each ex-
periment consisted of 100 data sets with 10 000 transcripts
each. The conditions were known and used for evaluation
but withheld from DEXUS.
For the simulation we assumed that under condition i

the reads x for a transcript are distributed according to a
negative binomial NBðx ;�i,riÞ. After Wu et al. (31), we
took the mean �i and the size ri from the ‘Mice Strains’
benchmark RNA-Seq data set (43) using only data from
one particular biological condition. For a randomly
selected transcript, the value �i was obtained as the
median read count of the condition.
The overdispersion �i ¼ 1=ri tends to decrease with

increasing mean read counts (see Supplementary Figure
S15). Therefore, we fitted a regression line to
overdispersion values by least squares. After sampling �i

values, the corresponding �i values were obtained by
means of the regression line to which zero-one normally
distributed noise was added. Thirty percent of the genes
were chosen to be differentially expressed. Differential ex-
pression was modeled by adjusting the means of the
negative binomials to obtain log fold changes of 0.5, 1
and 1.5 between the mean of the major and the minor
condition. The fold change values are randomly chosen
with equal probability, such that all 3-fold change
categories have about the same number of genes in each
data set.

Evaluation criteria for simulated RNA-Seq data
We formulate the detection of differential expression as a
classification task: DEXUS must decide whether a tran-
script is differentially expressed (positive prediction) or
not (negative prediction). For the simulated data, we
knew which transcripts were differentially expressed (the
positives) and which were not (the negatives). DEXUS
ranks the transcripts by the I/NI value from Equation
(10). For a given I/NI threshold (the I/NI call), we can
determine true positives, false positives, true negatives and
false negatives. Using these numbers, we computed the
specificity and the sensitivity of DEXUS. The specificity
corresponds to ‘1� significance level’ or ‘1� type I error
rate’. The type I error rate is the ratio between false

detections and all negatives. The sensitivity corresponds
to the ‘power’ or ‘1� type II error rate’. The type II
error rate is the ratio between missed positives and all
positives.

Results on simulated RNA-Seq data

We tested DEXUS on the simulated RNA-Seq data using
its default parameters. Table 2 shows the results in terms
of sensitivity and specificity for library size 1e8 at different
thresholds for the I/NI value. Transcripts with an I/NI
value above the threshold are called informative or
(equivalently) differentially expressed. Results for other
library sizes are presented in Supplementary Tables S12
and S13. The specificity of DEXUS is high across various
numbers of replicates, whereas the sensitivity varies con-
siderably. High specificity means that few transcripts are
falsely identified as being differentially expressed. In
highly unbalanced experiments, i.e. 11/1 and 22/2 repli-
cates, differentially expressed transcripts are detected
only at low I/NI thresholds of 0.025 and 0.05. Note that
the minor condition i=2 (smaller subgroup) leads to a
small �2 and therefore to a small I/NI value. For
unbalanced data, the few minor condition samples must
be distinguished from random outliers of the major
condition.

Real-world RNA-Seq data

‘Nigerian HapMap’
Pickrell et al. (16) sequenced RNA from 69 Nigerian
HapMap individuals to study expression quantitative
trait loci (eQTLs). The read count data were provided
by the ReCount repository (44). As in previous experi-
ments, DEXUS was applied to these data with its
default parameters and ranked genes according to the
I/NI value. The read counts of top-ranked genes and the
conditions identified by DEXUS are visualized as a
heatmap in Figure 1.

Five out of the 12 top-ranked genes are located on the Y
chromosome (RPS4Y1, CYorf15A, EIF1AY, TMSB4Y,
RPS4Y2). For these genes, the identified conditions are
related to the sex. For four of the 12 top-ranked genes,
at least one eQTL is known. For ZFP57, the associated
eQTL is the SNP rs1736924 with a minor allele frequency
(MAF) of 0.14 (16). CDH1 has 6 eQTLs, one of which is
SNP rs7196495 with a MAF of 0.22 (45). CLLU1OS
possesses the eQTL SNP rs12580153 with a MAF of
0.19 (46). L1TD1 has 2 eQTLs, one of which is SNP
rs12137088 with a MAF 0.30 (47). Because the MAFs
are high, it is plausible that the minor alleles are
observed in the HapMap data set and that they lead to
differential expressions of the associated genes. The con-
ditions that were found by DEXUS are related to the
alleles of corresponding SNPs.

Because the HapMap samples are lymphoblastoid cells,
we confirmed that the genes detected by DEXUS are
indeed expressed in lymphoblastoid cell lines. The gene
NLRP2, ranked 11th by DEXUS, is expressed in
lymphoblastoid cells but with large variability (48), as
shown in Supplementary Figure S17. NLRP2 is expressed
in the HapMap individuals, but in some at a low level.
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Schlattl et al. (49) identified a copy number variable region
that partially covers NLRP2 and causes its differential
expression. Therefore, the conditions that DEXUS
identified for NLRP2 may be related to copy number
states of the samples. Copy number states may also be
responsible for differential expression of MKRN3, which
was ranked 12th by DEXUS. Pinto et al. (50) and Redon
et al. (51) identified a copy number variable region
covering MKRN3. However, interpreting the MKRN3
conditions is difficult because only the paternal copy of
MKRN3 is expressed.

We analyzed the I/NI value ranking of transcripts:
genes on the X chromosome were ranked significantly
higher than other genes (P=3.0e�12), which can be ex-
plained by sex-related transcripts. An analogous test for
the Y chromosome was not significant because too few
genes were expressed. However, as already mentioned,
five out of the 12 top-ranked genes are located on the

Y chromosome. At an I/NI threshold of 0.1, DEXUS
called 366 differentially expressed genes. Gene set enrich-
ment analysis showed that the called genes are associated
with the extracellular region and the plasma membrane. In
total, 20 significant GO terms were found, including
‘extracellular space’, ‘extracellular region part’ and
‘plasma membrane part’ with P=2.5e�5, P=8.8e�5
and P=0.01, respectively. ‘Cell–cell signaling’,
‘chemokine receptor binding’ and ‘chemokine activity’
were also significant at P=4.0e�3, P=8.0e�4 and
P=9.8e�4 (P-values were corrected for multiple testing
by means of the Benjamini–Hochberg procedure). These
GO terms are in agreement with characteristics of
lymphoblastoid cells. Supplementary Table S18 provides
a complete list of all significant GO terms.

‘European HapMap’
We analyzed the RNA-Seq data of 60 individuals from the
HapMap cohort from Montogmery et al. (15), which were
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Figure 1. Heatmap of the normalized read counts of the 12 genes with the largest I/NI values for the ‘Nigerian HapMap’ data set. Colors range
from white for low expression to blue for high expression. Different individuals are denoted along the x-axis, while the top-ranked genes are denoted
by their gene symbols along the y-axis. Red crosses indicate samples that belong to the minor condition. At the right side of the heatmap, each gene
is annotated by the minimum (‘>’), the median of two conditions (‘m1’ and ‘m2’) and the maximum (‘<’) read count.

Table 2. The performance of DEXUS in terms of sensitivity and specificity in detecting differential expression with unknown conditions

I/NI threshold 0.025 0.05 0.1

C1/C2 Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

6/6 0.893±0.003 0.775±0.009 0.951±0.002 0.720±0.009 0.985±0.002 0.646±0.009
9/3 0.893±0.004 0.827±0.006 0.951±0.002 0.766±0.007 0.985±0.001 0.580±0.008
10/2 0.893±0.003 0.819±0.008 0.950±0.002 0.656±0.009 0.985±0.001 0.325±0.009
11/1 0.893±0.003 0.677±0.009 0.951±0.002 0.351±0.008 0.985±0.001 0.020±0.003
12/12 0.945±0.002 0.735±0.008 0.982±0.001 0.665±0.008 0.996±0.001 0.610±0.009
18/6 0.945±0.003 0.816±0.008 0.982±0.002 0.743±0.009 0.996±0.001 0.570±0.011
20/4 0.945±0.003 0.810±0.008 0.982±0.002 0.625±0.009 0.996±0.001 0.308±0.009
22/2 0.946±0.002 0.650±0.009 0.982±0.001 0.325±0.008 0.996±0.001 0.006±0.002
Mean 0.919±0.028 0.764±0.069 0.966±0.017 0.606±0.172 0.991±0.006 0.383±0.261

The first column ‘C1/C2’ contains the numbers of replicates for the first and second condition. The other columns list sensitivity and specificity (with
standard deviations) of DEXUS at different I/NI thresholds as the average across 100 data sets. The last row (‘Mean’) gives the average of the results
in the columns. The library size was 1e8 for all experiments.
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provided by the ReCount repository (44). Again, DEXUS
was applied to these data with its default parameters and
ranked genes according to the I/NI value. The read counts
of top-ranked genes and the identified conditions are
visualized as a heatmap in Figure 2.
RPS4Y1 is the gene with the largest I/NI value, differ-

entially expressed between males and females, and located
on the Y chromosome. The genes CYorf15A and
TMSB4Y, ranked fourth and fifth according to the I/NI
value, are also located on the Y chromosome. As in the
‘Nigerian HapMap’ data set, ZFP57 was detected as being
differentially expressed. In addition to ZFP57, two other
of the 12 top-ranked genes have eQTLs. CLLU1OS has as
eQTL the SNP rs12580153 with a MAF of 0.19 (46).
POU2F3 has as eQTL the SNP rs2847497 with a MAF
of 0.14 (52). As in the ‘Nigerian HapMap’ data set, some
top-ranked genes, such as NLRP2 (again rank 11), were
differentially expressed owing to variable copy numbers
(49). For the genes T, PRSS21 and RASSF10, DEXUS
identified two conditions for which an explanation
remains to be found and which may indicate a hitherto
unknown source of variability in gene expression. The
second-ranked gene T, the third-ranked gene PRSS21
and the 12th-ranked gene RASSF10 are known to be ex-
pressed in B-lymphoblastoid cells (6,12), the cell type of
the HapMap samples. The high expression variability of T
and PRSS21 in the B-lymphoblastoid cell line has already
been reported by the ENCODE Project (6). The
ENCODE Project expression values for the genes T,
PRSS21 and RASSF10 are visualized in Supplementary
Figures S19, S20 and S21.
Analyzing the I/NI value ranking, we found that genes

on the X chromosome are ranked significantly higher
(P=8.0e�6, Wilcoxon test). The analogous test for the
Y chromosome yielded no significant results, as too
few genes were expressed. However, three out of the 12

top-ranked genes with the largest I/NI value are located
on the Y chromosome.

At an I/NI threshold of 0.1, DEXUS called 680 differ-
entially expressed genes. Gene set enrichment analysis
showed that the called genes are associated with ion trans-
port. Significant Gene Ontology (GO) terms were ‘ion
transport’, ‘potassium ion transport’ with P=0.04 and
P=4.3e�03, respectively. Again ‘plasma membrane
part’ was significant at P=0.027. Although 36 of the
680 genes were related to ‘cell–cell signaling’ and 6 to
‘chemokine activity’, these GO terms were not significant
in this data set after correction for multiple testing by
means of the Benjamini–Hochberg procedure. A table of
all significant GO terms can be found in Supplementary
Table S19.

‘Primate Liver’
Blekhman et al. (53) investigated the differences in alter-
native splicing in liver tissue between humans, chimpan-
zees and rhesus macaques. For this purpose, they
performed RNA-Seq on three male and three female
liver samples from each species. They focused on the ex-
pression values of exons that had reliably determined
orthologs in all species. Read counts for exons were
provided by Blekhman et al. (53), who used gene models
from Ensemble (Release 50). After pooling technical rep-
licates, DEXUS ranked genes according to the I/NI value
using its default parameters. The 10 top-ranked genes are
visualized in Figure 3, which shows clear differential ex-
pression between the species. For these genes, and without
having been provided with this information, DEXUS
determined one of the three species as minor condition.
Interestingly, out of the 10 top-ranked genes, six are
human pseudogenes, AC010591.10, AC105383.3,
AC093874.3-1, AC105383.3, AL132855.4 and UOX,
which are inactive in humans because of recent structural
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Figure 2. Heatmap of the normalized read counts of the 12 genes with the largest I/NI values for the ‘European HapMap’ data set. Colors range
from white for low expression to blue for high expression. Different individuals are denoted along the x-axis, while the top-ranked genes are denoted
by their gene symbols along the y-axis. Red crosses indicate samples that belong to the minor condition. At the right hand side of the heatmap, each
gene is annotated by the minimum (‘>’), the median of two conditions (‘m1’ and ‘m2’) and the maximum (‘<’) read count.
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rearrangements (54). Because the rearrangements are
recent, their orthologs can be identified reliably in other
primates. Differential expression is detected because these
orthologs are still transcribed in Pan troglodytes and in
Macaca mulatta.

Several of the 10 top-ranked genes are associated with
liver pathways and are therefore expressed in liver tissues.
Differential expression of these genes between species may
have arisen from different diets. Examples of such genes
are the human pseudogene UOX, which catalyze the oxi-
dation of uric acid to allantoin in M. mulatta, ABP1 and
GSTM5, which participate in degradation and detoxifica-
tion pathways, VNN3, which helps to recycle vitamin B5,
and CHFR2, which is associated with lipoproteins.

Thresholding the I/NI call at 0.1, DEXUS called 3384
genes (16% of all genes) as differentially expressed. A gene
set enrichment analysis found the GO terms ‘intrinsic to
plasma membrane’ (P=7.9e�7) and ‘integral to plasma
membrane’ (P=4.0e�6) to be significant. Thus, genes
that encode membrane proteins seem to be differentially
expressed between species more often than other genes.
Interestingly, also ‘response to extracellular stimulus’,
‘response to nutrient’ and ‘response to nutrient levels’
were significant (all P-values <7.6e�5), which supports
the hypothesis that some genes are differentially expressed
owing to the different diets of the species. All P-values were
corrected by means of the Benjamini–Hochberg procedure.

‘Maize Leaves’
Using RNA-Seq data from various locations on maize
plant leaves, Li et al. (55) studied the developmental
dynamics of the maize transcriptome. For each location,
two biological replicates were sequenced with Illumina’s
Genome Analyzer II. The reads were mapped to the TE-
masked Zea maize ZmB73 reference genome version 2
(AGPv2), release 5a, using the GSNAP splicing short
read mapper (56). We counted the overlaps between
mapped reads and the Z. maize gene definitions from
the Ensemble Plants database (Release 14). Reads that
have multiple possible alignments or that overlap with
more than one gene were discarded. DEXUS was
applied to this data with its default parameters.
Figure 4 shows the genes with the largest I/NI value and

the conditions that were identified by DEXUS. DEXUS
found differences in gene expressions between different
locations on the leaf despite this information being
withheld. Further, it almost always assigned the two rep-
licates to the same condition without knowledge of repli-
cates or leaf locations. Thus, DEXUS assigns conditions
reliably.
Eight of the 10 top-ranked genes were also measured by

means of microarrays across different leaf locations of
Z. mays (57). In this microarray experiment, all eight
genes show an absolute log fold change of at least 1
between base and tip. Six of these eight genes show an
absolute log fold change greater than four.
The two remaining genes, GRMZM2G331518 and

AC213612.3_FG001, were not annotated on the
microarray. The function of the top-ranked gene
GRMZM2G331518 is not known. However, the
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Figure 3. Heatmap of the normalized read counts of the 10 genes with
the largest I/NI values for the ‘Primate Liver’ data set. Colors range
from white for low expression to blue for high expression. The x-axis
shows female and male individuals from the three species human Homo
sapiens (HS), chimpanzee P. troglodytes (PT) and rhesus macaques
M. mulatta (MM). The y-axis displays top-ranked genes indicated by
their gene symbols. Red crosses mark samples that were assigned to the
minor condition. At the right side of the heatmap, each gene is
annotated by the minimum (‘>’), the median of two conditions (‘m1’
and ‘m2’) and the maximum (‘<’) read count.
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Figure 4. Heatmap of the normalized read counts of the 10 genes with
the largest DEXUS I/NI values for the ‘Maize Leaves’ data set. Colors
range from white for low expression to blue for high expression. The
x-axis shows samples from different locations on the maize plant leaf.
The y-axis displays different genes denoted by their gene symbols. Red
crosses indicate that the according samples belong to the minor condi-
tion. At the right hand side of the heatmap, each gene is annotated by
the minimum (‘>’), the median of two conditions (‘m1’ and ‘m2’) and
the maximum (‘<’) read count.
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associated peptide is similar to the defensin-like protein 91
of Arabidopsis thaliana, which plays a role in immune
response. The gene ranked ninth, AC213612.3_FG001, is
a glycine-rich cell wall structural protein, which is com-
patible with cell walls at different locations having differ-
ent structure.
At a threshold of 0.1 for the I/NI call, DEXUS called

15 756 differentially expressed genes. Gene set enrichment
analysis using the R package goseq (58) yielded to the
significant GO terms ‘chloroplast’ (P=1.8e�92) and
‘plasma membrane’ (P=1.3e�34). Further, the GO
terms ‘cytosolic ribosome’ (P=9.8e�32), ‘chloroplast
thylakoid membrane’ (P=5.4e�31) and ‘chloroplast
stroma’ (P=1.8e�30) were significant. All P-values
were corrected by means of the Benjamini–Hochberg pro-
cedure. It is plausible that that chloroplast also differs at
different locations on the maize plant leaf. The GO term
‘cell wall’ was highly significant (P=3.9e�18), which
supports the above-mentioned hypothesis that the cell
walls differ at different locations on the plant leaf.

CONCLUSION

We have introduced DEXUS, an algorithm that identifies
differentially expressed transcripts in RNA-Seq data with
unknown conditions. DEXUS is appropriate for use with
data from cohort, cross-sectional and nonrandomized
controlled studies, where conditions are often unknown.
In experiments with simulated and real-world data with
known conditions, DEXUS successfully found differential
expressed transcripts and conditions, although the condi-
tions were withheld from DEXUS. For HapMap individ-
uals, DEXUS detected differentially expressed transcripts,
the vast majority of which are related to sex, eQTLs or
structural variants. We envisage that DEXUS will evolve
into an important tool for analyzing RNA-Seq data in
studies with unknown conditions and thus for obtaining
new biological and medical knowledge.
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