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Abstract: Predicting the potential microRNA (miRNA) candidates associated with a disease helps
in exploring the mechanisms of disease development. Most recent approaches have utilized
heterogeneous information about miRNAs and diseases, including miRNA similarities, disease
similarities, and miRNA-disease associations. However, these methods do not utilize the projections
of miRNAs and diseases in a low-dimensional space. Thus, it is necessary to develop a method that
can utilize the effective information in the low-dimensional space to predict potential disease-related
miRNA candidates. We proposed a method based on non-negative matrix factorization, named
DMAPred, to predict potential miRNA-disease associations. DMAPred exploits the similarities and
associations of diseases and miRNAs, and it integrates local topological information of the miRNA
network. The likelihood that a miRNA is associated with a disease also depends on their projections
in low-dimensional space. Therefore, we project miRNAs and diseases into low-dimensional feature
space to yield their low-dimensional and dense feature representations. Moreover, the sparse
characteristic of miRNA-disease associations was introduced to make our predictive model more
credible. DMAPred achieved superior performance for 15 well-characterized diseases with AUCs
(area under the receiver operating characteristic curve) ranging from 0.860 to 0.973 and AUPRs
(area under the precision-recall curve) ranging from 0.118 to 0.761. In addition, case studies on
breast, prostatic, and lung neoplasms demonstrated the ability of DMAPred to discover potential
disease-related miRNAs.

Keywords: miRNA-disease associations; non-negative matrix factorization; graph regularization;
projection of miRNAs and diseases; sparse characteristic of associations

1. Introduction

Several studies have shown that the abnormal expression of microRNAs (miRNAs) is inextricably
related to the occurrence and development of diseases [1–5]. As the number of identified miRNAs
continues to increase, a large number of disease-related miRNAs (disease miRNAs) are waiting to
be identified.

Some of the methods previously used to predict diseases-associated miRNAs can be divided
into two categories. The first category includes the use of regulatory relationships between miRNAs
and their target genes to predict potential associations between the miRNA and the disease [6]. Since
the number of experimentally validated target genes is not sufficient, some predictive algorithms
such as PITA [7], TargetScan [8], and MiRanda [9] are needed to extrapolate the existence of target
gene-miRNA associations [10–13]. The likelihood of a miRNA associated with a disease is predicted
based on the similarity or interaction between disease-related target genes and miRNA-related target
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genes. Since the predictions from such methods have higher false positives, these methods have
limited applicability.

Another category of methods is based on the notion that miRNAs with similar functions are often
associated with similar diseases [14–17], and thus, these methods do not depend on the interaction
between a miRNA and its corresponding target genes. First, the functional similarity between
miRNAs was calculated by the miRNA-related diseases [18]. These methods constructed a miRNA
network according to the miRNA functional similarity, and conducted random walks on the miRNA
network [19,20] or used information from neighboring nodes [21]. However, such methods rely on
a group of seed miRNAs associated with the disease and cannot be applied to new diseases. Some
methods have been improved in this regard. They established heterogeneous networks by employing
disease similarities, miRNA similarities, and known associations between diseases and miRNAs.
Global random walks [22,23], matrix completion [16], or matrix factorization methods [24–28] based on
heterogeneous networks are used to predict the association score between miRNA and disease. There
are some methods that use path-based search algorithms [29,30] and machine learning methods [31–33]
for association prediction.

In this study, we propose an effective method, DMAPred, based on non-negative matrix
factorization to predict miRNA candidates associated with diseases. Functional similarity between
miRNAs, similarities between diseases, and association information between miRNAs and diseases
are fully utilized in our method. DMAPred not only considers the sparse nature of miRNA-disease
association, but also deeply integrates the characteristics of miRNAs and diseases in low-dimensional
space and the local topological information of miRNA nodes. Integrating the local topological
information of a miRNA node can capture the association of the miRNA and its k most similar
neighbors with similar diseases. Experimental results based on cross-validation are superior to several
other methods, and the top ranking contains more real miRNA-disease associations. Case studies on
breast, prostatic, and lung neoplasms were also carried out to demonstrate the ability of the DMAPred
method to discover potential miRNAs.

2. Materials and Methods

Our aim was to predict potential miRNAs associated with diseases using the DMAPred method.
First, a dual heterogeneous network composed of nodes, miRNAs, and diseases, was constructed to
represent multiple relationships between miRNAs and diseases. Then, a new prediction model based
on non-negative matrix factorization was applied to take into account the disease similarities, miRNA
similarities, and associations between miRNAs and diseases. Finally, we obtained the final prediction
scores for disease and miRNA by iterative optimization formula.

2.1. Dataset

Human miRNA-disease database (HMDD) has collected a great many associations between
miRNAs and diseases that have been experimentally confirmed [34]. We got 5088 known associations
from HMDD, which involved 490 miRNAs and 326 diseases. Disease terms were obtained from the
National Library of Medicine (http://www.ncbi.nlm.nih.gov/mesh) to construct a directed acyclic graph
(DAG) of diseases. The disease semantic similarity and phenotypic similarity were obtained from
previous work [17].

2.2. Establishment of the miRNA-Disease Dual Heterogeneous Network

The dual heterogeneous network consisted of two types of nodes and three types of networks,
which is the similarity network of miRNAs, the similarity network of diseases and the bipartite network
between miRNAs and diseases.

Establishment of the miRNA network: The miRNA network (MiNet) was established on the
similarity between miRNAs (Figure 1a). If two miRNAs were similar, we put an edge between two
corresponding nodes. Every edge has a weight distributed between 0 and 1 to indicate the similarity
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of the nodes at both ends. Let matrix M =
[
Mi j

]
∈ RNm×Nm denote the miRNAs network, where Mi j

represents the similarity between ith miRNA mi and jth miRNA m j and Nm is the number of miRNAs.
RNm×Nm is a real number set of dimensions Nm × Nm.
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Figure 1. Construction and representation of a microRNA (miRNA)-disease heterogeneous network. 
(a) Calculate the miRNA similarity based on diseases associated with two miRNAs. (b) Construct the 
disease similarity by combining their disease phenotypes and phenotype ontologies. (c) Add edges 
between miRNAs and diseases. 

Two miRNAs that have similar functions are usually associated with similar diseases. Wang et 
al. [18] successfully calculated the similarity of miRNAs based on the similarity between the diseases 
that they were associated with. For example, miRNA 𝑚  is associated with a group of diseases 𝑃 =𝑑 , 𝑑 , 𝑑 , miRNA 𝑚  is associated with a group of diseases 𝑃 = 𝑑 , 𝑑 , 𝑑 ,𝑑 , the similarity 
between 𝑚  and 𝑚  is calculated based on the similarity of 𝑃  and 𝑃 . The miRNA similarity that 
we used was calculated by the Wang’s method.  

Establishment of the disease network: The disease network is built on the similarity of diseases 
(Figure 1b). Every node in the disease network indicates a disease. We added an edge between two 
corresponding nodes when the two diseases were similar. The weight of every edge is the similarity 
between two diseases at both ends and is a positive number less than 1. The similarity between two 
diseases was estimated by disease semantic and phenotype [20]. The more common the disease 
semantic and phenotype, the more similar are the two diseases, and therefore the higher the 
possibility of associating with similar miRNAs.  

The matrix 𝐷 = 𝐷 ∈ 𝑅 ×  represents the disease network, with 𝐷  symbolizing the 
similarity between the 𝑖  disease and 𝑗  disease and the values of similarity are distributed 
between 0 and 1. The number of the diseases in disease network is 𝑁 . 

Figure 1. Construction and representation of a microRNA (miRNA)-disease heterogeneous network.
(a) Calculate the miRNA similarity based on diseases associated with two miRNAs. (b) Construct the
disease similarity by combining their disease phenotypes and phenotype ontologies. (c) Add edges
between miRNAs and diseases.

Two miRNAs that have similar functions are usually associated with similar diseases. Wang et al. [18]
successfully calculated the similarity of miRNAs based on the similarity between the diseases that they
were associated with. For example, miRNA mi is associated with a group of diseases Pi = {d3, d4, d6},
miRNA m j is associated with a group of diseases P j =

{
d1, d2, d4,d8

}
, the similarity between mi and m j

is calculated based on the similarity of Pi and P j. The miRNA similarity that we used was calculated
by the Wang’s method.

Establishment of the disease network: The disease network is built on the similarity of diseases
(Figure 1b). Every node in the disease network indicates a disease. We added an edge between two
corresponding nodes when the two diseases were similar. The weight of every edge is the similarity
between two diseases at both ends and is a positive number less than 1. The similarity between
two diseases was estimated by disease semantic and phenotype [20]. The more common the disease
semantic and phenotype, the more similar are the two diseases, and therefore the higher the possibility
of associating with similar miRNAs.
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The matrix D =
[
Di j

]
∈ RNd×Nd represents the disease network, with Di j symbolizing the similarity

between the ith disease and jth disease and the values of similarity are distributed between 0 and 1.
The number of the diseases in disease network is Nd.

Establishment of the miRNA-disease bipartite network: A bipartite network that records the
associations between diseases and miRNAs was constructed by adding the edge between two types of
nodes (Figure 1c). This network is dissimilar from the other networks in that it contains two types of
nodes and each edge connects two different types of nodes. If we identify from known association
data that the disease d j is associated with the miRNA mi, we add a side between corresponding nodes,
and the weight of the edge is 1. Otherwise, when the associations between disease d j and the miRNA
mi has not been discovered or does not exist, there is no edge between the nodes.

The matrix A =
[
Ai j

]
∈ RNm×Nd was constructed to record weight information for each edge of

the bipartite network. The ith row of A is denoted as the associations between the miRNA mi and all
the diseases, and the jth column of A is denoted as the associations between the disease d j and all the
miRNAs. Ai j is 1 when mi are observed to be associated with d j or 0 otherwise.

2.3. miRNA-Disease Association Prediction Model

The proposed prediction model for predicting the potential miRNA-disease associations integrated
multiple sources from three networks (namely, MiNet, DisNet, and MiDisNet). To make it easier to
understand, we introduced a matrix U =

[
Ui j

]
∈ RNm×Nd . The matrix U is used to describe the scores of

the association possibility between Nm miRNAs and Nd diseases, where Ui j is a non-negative number
indicating the association possibility between mi and d j.

Modeling miRNA similarities: Three types of connections in MiDisNet can be used to construct
the prediction model. The first type is the similarities between miRNAs in MiNet. Matrix M describes
the miRNA similarities, where each row corresponds to the similarity between a miRNA and other
miRNAs. For example, the ith row of M is denoted as the similarity between mi and all the other
miRNAs. Data representation often has a large impact on the performance of the model. Projecting
high-dimensional information into low-dimensional space contributes to the reduction of the original
redundant information, thereby obtaining more dense and low-dimensional feature representations
of the data. Therefore, we projected miRNA similarities in low-dimensional space by non-negative
matrix factorization. Suppose M = [M1, M2, · · ·MNm ] ∈ RNm×Nm is the non-negative Nm data represents,
where Mi is the ith column of M and represents the Nm-dimensional original feature representation of
the ith miRNA. Let W = RNm×k and H = Rk×Nm be the base matrix and the new representations of data
in terms of the basis W and k is the dimension we require:

M ≈WH. (1)

The result of W and H can well approximate the original matrix. Thus, we aimed to minimize the
following objective function,

min ||M−WH ||2F , (2)

where ‖·‖F is the Frobenius norm of the matrix.
Modeling disease similarities: The second type of connection is similarities between diseases.

The jth column of D represents the similarities between d j and all the diseases. We also projected
disease similarities into low dimensional space similarly to the miRNAs to receive new representation
of the diseases.

Suppose D =
[
D1, D2, . . . , DNd

]
∈ RNd×Nd is the non-negative Nd data matrix where each column

is an original feature representation of a disease. Let X ∈ RNd×k be the base matrix and C ∈ Rk×Nd be
the new data vector of diseases. The disease similarities are projected as follows,

D ≈ XC. (3)
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Our aim was to find two matrices X and C whose product was closer to the original matrix.
To better measure the matrix fitting, we added an item to the loss function,

min ||M−WH ||2F + α ||D−XC ||2F, (4)

where α is a hyperparameter used to adjust the contribution of the disease similarity.
Modeling the miRNA-disease associations: The third type of connection is the association

between miRNAs and diseases. The miRNA-disease connections are recorded in matrix A in which
each 1 represents an observed association. The matrix A was very sparse due to the small number
of associations observed. Our model only considered the known associations in this situation.
Y =

[
Yi j

]
∈ RNm×Nd was defined as an indicator matrix, and Yi j = 1 if Ai j = 1 or 0 otherwise.

The predicted scores for associations between Nm miRNAs and Nd diseases were recorded in U.
The estimated association possibilities should be as close as possible to the known associations. As a
result, we extended the objective function,

min ||M−WH ||2F + α ||D−XC ||2F + β ||Y � (A−U) ||2F, (5)

where � is the multiplication of the corresponding elements of the matrix and β is a hyperparameter.
Modeling the characteristics in the low-dimensional space: H ∈ Rk×Nm is the low-dimensional

representation matrix of Nm miRNAs, where the ith column is mi. C ∈ Rk×Nd is the low-dimensional
feature matrix of Nd diseases, in which the jth column is d j. mi ∈ Rk and d j ∈ Rk indicates the feature
vectors of the ith miRNA and the jth disease, respectively. Our goal was to derive the association
score between miRNA and disease by updating U in the model U = HTC. Therefore, the loss
function becomes,

min ||M−WH ||2F + α ||D−XC ||2F + β ||Y � (A−U) ||2F + λ ||U −HTC ||2F, (6)

where λ is a hyperparameter.
Considering the sparse characteristic of associations: There are several diseases associated with

a miRNA. Hence, the miRNA-disease associations have a sparse characteristic. We used 1-norm to
ensure that the matrix U was sparse and added an item to the objective function as follows,

min ||M−WH ||2F + α ||D−XC ||2F + β ||Y � (A−U) ||2F + λ ||U −HTC ||2F, + δ ||U ||1. (7)

Therefore, the non-zero elements in the matrix U were sparse.
Modeling local topological information of the miRNAs: A miRNA and its k neighbors are usually

associated with similar diseases. First, a graph model S was constructed, based on the similar properties
of miRNAs. Each element in S was calculated according to the following formula,

S jl =

1 if ml is the k− nearest neighbor of m j

0 otherwise,
. (8)

u j and ul are the associations between miRNA m j and ml and all the miRNAs, respectively. Set S jl
to 1 when ml is the k-nearest neighbor of m j. Thus, u j and ul should be as consistent as possible. Then,
the finally loss function becomes,

min ||M−WH ||2F + α ||D−XC ||2F + β ||Y �A−U ||2F
+λ ||U −HTC ||2F,+δ ||U ||1 + 1

2η
∑N

j,l=1 ||u j − ul ||
2S jl,

(9)

where ||· || is the 2-norm; δ and η measure the contribution of the corresponding item in the formula.
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2.4. Optimization

The objective Function (7) is represented by F, which is a non-convex function. Therefore, it cannot
guarantee direct global optimal solution. We proposed an iterative method to optimize the objective
Function (7), and divide the problem of solving the objective function F into five sub-problems about the
matrix U, W, H, X, and C. Then, the local optimal solution was found for each of the five sub-problems
to obtain the global optimal solution. According to the conversion relationship between the trace
property and the Frobenius norm of the matrix, F can be written as following,

F = Tr(AAT
−AUT

−UAT + UUT) + αTr(MMT
−WHMT

−MHTWT + WHHTWT) + βTr
(DDT

−XCDT
−DCTXT + XCCTXT) + δ ||U ||1 + λTr(UUT

−UCTH −HTCUT+

HTCCTH) + δB + ηTr((V− S)U + (V− S)TU).
(10)

Tr(·) represents the trace of the matrix, which is the sum of the values on the main diagonal
of the matrix. Here V ∈ RNm×Nm is a diagonal matrix where each element is defined as
Vii =

∑Nm−1
k=0 Sik(i = 0, 1, 2, · · · , Nm − 1). B ∈ RNm×Nd is a matrix in which each element is 1.

U sub-problem: When updating U, the other four matrices W, H, X, and C were fixed.
The sub-problem about U can be written as,

F(U) = Tr
(
AAT

−AUT
−UAT + UUT

)
+ δ||U||1 + λTr

(
UUT

−UCTH −HTCUT + HTCCTH
)

+δB + ηTr((V − S)U +
(
V − S)TU

)
.

(11)

The derivative of the objective function for U was set to 0. Then there is:

∂F
∂U

= 2U − 2A + 2λ
(
U −HTC

)
+ 2η[(V − S)U] = 0. (12)

After multiplying both sides of the above equation by Ui j, the following formula was obtained,

(2U − 2A + 2λ
(
U −HTC

)
+ 2η[(V − S)U])

i j
Ui j = 0. (13)

Finally, according to the gradient descent algorithm, we obtained the local optimal solution of U
in the current situation. Updated U was as follows,

Unew
ij ← Ui j ·

(2A + 2λHTC + 2ηSMU)i j

(2U + 2λU + 2ηVMU)i j
. (14)

H sub-problem: When the matrices U, W, X, and C are fixed, the sub-problem about H can be
written as,

F(H) = αTr
(
MMT

−WHMT
−MHTWT + WHHTWT

)
+

λTr
(
UUT

−UCTH −HTCUT + HTCCTH
)
.

(15)

Let the derivative of the objective function F to H be 0. Then we have:

∂F
∂H

= 2αWTWH − 2αWTM + 2λCCTH − 2λCUT = 0. (16)

Multiply both sides of the equation by A, we obtained:(
2αWTWH − 2αWTM + 2λCCTH − 2λCUT

)
Hi j = 0. (17)
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Finally, we got the update formula of matrix H by gradient descent method as follows,

Hnew
ij ← Hi j ·

(2αWTM + 2λCUT)i j

(2αWTWH + 2λCCTH)i j
. (18)

Then, the same method was used to find the formula to update W, X, and C. The remaining
four matrices were fixed when updating a matrix. We obtained three optimization formulas for the
other matrices,

Wnew
ij ←Wi j ·

(2MHT)i j

(2WHHT)i j
, (19)

Xnew
ij ← Xi j ·

(2DCT)i j

(2XCCT)i j
, (20)

Cnew
ij ← Ci j ·

(2αXTD + 2λHU)i j

(2αXTXC + 2λHHTC)i j
(21)

The jth column of the final matrix U represents the association scores between the jth disease
and all miRNAs (Figure 2). The miRNAs associated with the disease were not found to be sorted
according to the association score in U. In the ordered list, the higher the position of the miRNAs based
association score, the more likely it is to be a potential miRNA associated with the disease.Genes 2019, 10, 685 7 of 14 
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3. Performance Evaluation and Analysis

3.1. Performance Evaluation

To evaluate the algorithm performance, we performed fivefold cross validation. In the fivefold
cross validation, all known associations between miRNAs and drugs were randomly divided into five
subsets. Each time, we used four subsets to train the model, and the remaining one was used as a
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test set. For a disease d j, miRNAs associated with disease d j are considered positive, and unlabeled
miRNAs that were not associated with disease, were considered negative. The higher the positive
samples order, the better the prediction performance of the algorithm.

Given a threshold θ, if the associated prediction score was greater than θ, it was judged as a
positive example, otherwise it will be judged as negative. The true positive rate (TPR) and false positive
rate (FPR) according to the following formulas,

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

, (22)

where TP and TN represent the number of positive and negative examples, respectively. FN and FP
represent the number of predicted errors in positive and negative examples. The TPR and FPR at
different thresholds can be used to plot the Receiver Operating Characteristic (ROC) curve. The area
under the ROC curve (AUC) can reflect the comprehensive prediction performance of the algorithm.
The larger the AUC, the better the comprehensive prediction performance.

In the miRNA-disease association data, the number of known associations was much smaller
than the unknown association, which created a serious imbalance between the positive and negative
samples. In the case of positive and negative imbalances, precision and recall are more suitable for
measuring the performance of the method. The precision P and the recall R are defined as,

P =
TP

TP + FP
, R =

TP
TP + FN

. (23)

P represents how many of the samples predicted to be positive are correct, and R indicates how much
of the positive examples are correctly identified by the model. We calculated precision and recall at
different thresholds, and used the precision as the vertical axis and the recall as the horizontal axis to
obtain the P–R curve. The area under the PR curve (AUPR) indicates the predictive performance of the
model in certain aspects. The larger the AUPR, the better the predictive ability of the model.

In the process of biological research, biologists often select the top miRNA candidates for further
biological experiments. To identify how many of the positive examples among the top candidates are
important for biological research, we computed the recall rate within top k to measure the performance
of the prediction model.

3.2. Comparison with Other Methods

To confirm that the proposed method has a superior performance in predicting potential miRNA
candidates associated with diseases, we compared DMAPred with Liu’s method [22], DMPred [35],
PBMDA [29], GSTRW [36], and BNPDMA [37], which are state-of-the-art prediction methods for
miRNA-disease associations. Liu et al. integrated the similarities and associations between miRNAs
and diseases to propose a method of random walks with a restart in a heterogeneous miRNA-disease
network to predict the association score between a miRNA and a disease. You et al. proposed a
method, PBMDA, based on the path to predict the likelihood of a miRNA association with a disease.
This method not only integrates the similarity of miRNA functions and the semantic similarity of
diseases, but also considers the similarity of the Gaussian interaction spectrum between miRNAs and
diseases. Xuan et al. proposed DMPred, based on non-negative matrix factorization, to predict the
associations between miRNAs and diseases taking into account the sparse nature of miRNA disease
associations. Chen et al. proposed a method, called GSTRW, that calculates the global similarity of a
network and predicts the association between a miRNA and a disease by performing random walks in
miRNA and disease similarity networks, respectively. BNPDMA uses a bipartite recommendation
algorithm to predict potential disease-associated miRNAs by assigning bias ratings to the associations
between miRNAs and diseases.

Several hyperparameters in the objective function might impact the performance of the proposed
algorithm. By enumerating the sensitivity of each parameter, we selected the values of the parameters
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α, β, λ, δ, η from {0.1, 0.4, 0.8, 1, 4, 8}. The contribution of each parameter to the algorithm was
measured by varying each parameter to compare the AUC values. Finally, we established the
parameters as α = 0.1, β = 0.1, γ = 0.1, and δ = 1, η = 0.4 by comparing the AUC values for the
different parameters.

The predictive performances of the proposed method and Liu’s method, DMPred, GSTRW, PBMDA,
and BNPMDA for all the diseases were compared based on different evaluation criteria. Figure 3a shows
the average ROC curves for DMAPred and the other five methods for the 326 diseases. The average
AUC values obtained with DMAPred, Liu’s method, DMPred, GSTRW, PBMDA, and BNPDMA were
0.927, 0.859, 0.901, 0.810, 0.834, and 0.823, respectively.
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methods. (a) the Receiver Operating Characteristic (ROC) curves and area under the receiver operating
characteristic curve (AUC) values of DMAPred and other five methods; and (b) precision–recall (PR)
curves and area under the PR curve (AUPR) values of DMAPred and other five methods.

The proposed method, DMAPred, achieved the best performance, with the average AUC value
being higher than those obtained using the other five methods by 6.8%, 2.6%, 11.7%, 9.3%, and 10.4%,
respectively. The faster the TPR values grow versus FPR values, the larger the AUC value for the
corresponding ROC curve is. However, the growth rate of TPR is affected by the predicted association
scores of positive samples. The larger the predicted score of the positive samples is, the closer our
prediction results are to the actual values and the faster the TPR grows. Among the five other
methods, the performance of the DMPred method was the second best. This method is based on
the matrix factorization, similar to our method, although the calculation of disease similarity and
miRNA similarity takes into account factors different from ours. Liu’s method was a little worse than
other methods, the main reason being that the calculation of similarity between miRNAs is indirectly
measured by genes and LncRNA, and does not take into account the direct relationship between
miRNA and disease. The GSTRW method was the worst of the four methods probably because it
uses a two-layer random walk. We also list the AUCs for 15 well-characterized diseases associated
with at least 80 miRNAs (Table 1). DMAPred achieved the best predictive performance for 10 of the
15 well-characterized diseases.

The PR curve reacts better than the ROC to reflect the predictive performance of different methods
when the positive and negative examples in the data set are unbalanced. Figure 3b shows the PR curve
for DMAPred and the other five methods with an average AUPR of 0.445, 0.389, 0.349, 0.193, 0.334,
and 0.346 for 326 diseases. The performance of DMAPred was evaluated as the best and GSTRW was
the worst. DMAPred was 5.6%, 9.6%, 25.2%, 11.3%, and 9.9% higher than the other methods. Table 2
shows the AUPR values of DMAPred and the other five methods for 15 diseases. DMAPred achieved
best performance for 10 among the 15 diseases.
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Table 1. AUC values of five methods for all the diseases and 15 common diseases.

Diseases Name
AUC

DMAPred GSTRW DMPred PBMDA Liu’s Method BNPMDA

Breast neoplasms 0.966 0.822 0.938 0.852 0.863 0.905
Hepatocellular carcinoma 0.957 0.779 0.900 0.803 0.845 0.853

Renal cell carcinoma 0.926 0.816 0.903 0.813 0.832 0.845
Squamous cell carcinoma 0.942 0.817 0.908 0.881 0.890 0.877

Colorectal neoplasms 0.895 0.737 0.842 0.826 0.857 0.801
Glioblastoma 0.928 0.814 0.904 0.803 0.842 0.817
Heart failure 0.965 0.817 0.987 0.791 0.828 0.891

Acute myeloid leukemia 0.967 0.788 0.890 0.844 0.874 0.845
Lung neoplasms 0.973 0.791 0.948 0.905 0.920 0.912

Melanoma 0.907 0.789 0.913 0.836 0.860 0.889
Ovarian neoplasms 0.939 0.830 0.929 0.889 0.897 0.725

Pancreatic neoplasms 0.933 0.838 0.916 0.891 0.904 0.829
Prostatic neoplasms 0.958 0.822 0.951 0.843 0.855 0.894
Stomach neoplasms 0.935 0.762 0.908 0.821 0.836 0.784

Urinary bladder neoplasms 0.860 0.816 0.919 0.854 0.865 0.901

Average AUC for the 326 diseases 0.927 0.810 0.901 0.834 0.859 0.823

Bold values indicate the higher AUCs.

Table 2. AUPR values of five methods for all the diseases and 15 common diseases.

Disease Name
AUPR

DMAPred Liu’s Method GSTRW DMPred PBMDA BNPMDA

Breast neoplasms 0.761 0.573 0.322 0.699 0.574 0.254
Hepatocellular carcinoma 0.719 0.498 0.279 0.501 0.454 0.618

Renal cell carcinoma 0.485 0.186 0.150 0.293 0.181 0.334
Squamous cell carcinoma 0.299 0.208 0.109 0.213 0.211 0.214

Colorectal neoplasms 0.340 0.371 0.141 0.186 0.367 0.197
Glioblastoma 0.517 0.243 0.151 0.219 0.217 0.227
Heart failure 0.786 0.189 0.191 0.700 0.168 0.178

Acute myeloid leukemia 0.317 0.236 0.140 0.211 0.191 0.190
Lung neoplasms 0.740 0.503 0.147 0.511 0.537 0.547

Melanoma 0.342 0.397 0.171 0.389 0.363 0.334
Ovarian neoplasms 0.441 0.361 0.169 0.404 0.361 0.357

Pancreatic neoplasms 0.303 0.354 0.137 0.329 0.364 0.357
Prostatic neoplasms 0.532 0.264 0.166 0.463 0.282 0.345
Stomach neoplasms 0.469 0.346 0.220 0.446 0.344 0.284

Urinary bladder neoplasms 0.118 0.280 0.163 0.315 0.252 0.242

Average AUPR for the 326 diseases 0.445 0.349 0.193 0.389 0.334 0.346

Bold values indicate the higher AUPRs.

The larger the recall value of top k in the ranked list indicates that more positive examples in the
top k miRNA candidates are identified (Figure 4). DMAPred performed better than all other methods,
with 59.19% in the top 30 candidates, 84.67% in the top 60, and 94.88% in the top 90. DMPred’s
performance achieved the second best, with 56.76% in the top 30 candidates, 79.82% in the top 60,
and 91.68% in the top 90. Liu’s method was slightly worse, with 50.01% in the top 30 candidates,
70.52% in the top 60, and 81.84% in the top 90. The performance of PBMDA showed with 50.11% in the
top 30 candidates, 70.14% in the top 60, and 79.49% in the top 90. GSTRW was the worst, with recalls
of 26.90%, 57.79%, and 75.89%, respectively.

In addition, we conducted a t-test to further prove that our method was superior to others in AUC
and AUPR. All paired t-test results less than 0.05 means that our method was better than the other
methods (Table 3).
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Table 3. Comparison of different methods based on AUC and AUPR with a paired t-test.

DMPred Liu’s Method GSTRW PBMDA BNPMDA

p-value of AUCs 0.00247 5.0135 × 10−7 2.4835 × 10−9 2.3143 × 10−6 9.5824 × 10−6

p-value of AUPRs 0.00168 0.00199 3.6475 × 10−6 0.00289 0.00182

3.3. Case Studies on Breast Neoplasms, Prostatic Neoplasms, and Lung Neoplasms

To further demonstrate our approach in identifying potential disease-related miRNAs, we conducted
case studies for the top 50 candidates for breast neoplasms, prostate neoplasms, and lung neoplasms.
The top 50 candidates related to breast neoplasms are listed for detailed analysis and verification
(Table 4).

Table 4. The top 50 candidates related to breast neoplasms.

Rank MiRNA Name Description Rank MiRNA Name Description

1 hsa-mir-15b dbDEMC2,PhenomiR 26 hsa-mir-184 dbDEMC2,PhenomiR
2 hsa-mir-142 PhenomiR 27 hsa-mir-363 dbDEMC2
3 hsa-mir-192 PhenomiR 28 hsa-mir-30e PhenomiR
4 hsa-mir-378a Literature [38] 29 hsa-mir-208a dbDEMC2,PhenomiR
5 hsa-mir-106a dbDEMC2,PhenomiR 30 hsa-mir-449b dbDEMC2
6 hsa-mir-99a dbDEMC2,PhenomiR 31 hsa-mir-491 PhenomiR
7 hsa-mir-130a dbDEMC2,PhenomiR 32 hsa-mir-494 dbDEMC2,PhenomiR
8 hsa-mir-150 dbDEMC2,PhenomiR 33 hsa-mir-186 dbDEMC2,PhenomiR
9 hsa-mir-196b dbDEMC2,PhenomiR 34 hsa-mir-362 Literature [39]

10 hsa-mir-130b dbDEMC2,PhenomiR 35 hsa-mir-424 dbDEMC2,PhenomiR
11 hsa-mir-98 dbDEMC2,PhenomiR 36 hsa-mir-370 dbDEMC2,PhenomiR
12 hsa-mir-1266 dbDEMC2 37 hsa-mir-542 Literature [40]
13 hsa-mir-92b dbDEMC2 38 hsa-mir-32 dbDEMC2,PhenomiR
14 hsa-mir-372 dbDEMC2,PhenomiR 39 hsa-mir-181d dbDEMC2,PhenomiR
15 hsa-mir-138 dbDEMC2,PhenomiR 40 hsa-mir-483 PhenomiR
16 hsa-mir-574 Literature [41,42] 41 hsa-mir-302e dbDEMC2
17 hsa-mir-144 dbDEMC2,PhenomiR 42 hsa-mir-302f dbDEMC2
18 hsa-mir-28 dbDEMC2,PhenomiR 43 hsa-mir-208b dbDEMC2
19 hsa-mir-212 dbDEMC2,PhenomiR 44 hsa-mir-134d dbDEMC2
20 hsa-mir-181c dbDEMC2,PhenomiR 45 hsa-mir-330 dbDEMC2,PhenomiR
21 hsa-mir-371a Literature [43] 46 hsa-mir-381 dbDEMC2,PhenomiR
22 hsa-mir-449a dbDEMC2,PhenomiR 47 hsa-mir-198 dbDEMC2,PhenomiR
23 hsa-mir-185 dbDEMC2,PhenomiR 48 hsa-mir-548a dbDEMC2
24 hsa-mir-211 dbDEMC2,PhenomiR 49 hsa-mir-154 dbDEMC2,PhenomiR
25 hsa-mir-99b dbDEMC2,PhenomiR 50 hsa-mir-503 dbDEMC2
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The databases involved were dbDEMC [44] and PhenomiR [45]. The dbDEMC database contained
807 miRNAs with significant abnormal expression levels in human cancer and has an online public
database. The PhenomiR database contains miRNA expression information that is differentially
regulated during disease, and its data was extracted from more than 365 scientific articles. Using the
dbDEMC database, we found 42 of the 50 candidates were up-regulated or down-regulated in breast
neoplasms. Thirty-five of the 50 miRNA candidates were included in PhenomiR. The remaining five
miRNAs labeled ‘Literature’ were supported by relevant research literatures.

The top 50 candidates associated with prostate neoplasms are listed in supplementary table
ST1. Abnormal expression of 39 candidates in prostate neoplasms was included in the dbDEMC2
database and 36 candidates were included in the PhenomiR database. Three candidates marked
‘Literature’ means that it was supported by the relevant literatures. There were several miRNAs
labeled ‘Unconfirm’, which were associated with prostate neoplasms without a relevant database or
literature support.

The top 50 candidates associated with lung neoplasms are shown in supplementary table ST2.
Abnormal expression of 29 candidates with up-regulation or down-regulation in lung neoplasms
was recorded in the dbDEMC2 database, and seven candidates were confirmed by relevant literature.
The PhenomiR database included abnormal regulation of 17 candidates in the lung neoplasms. Analysis
of breast neoplasms, prostate neoplasms, and lung neoplasms predictions further demonstrates the
ability of our methods to predict disease-associated miRNAs.

4. Conclusions

The method based on non-negative matrix factorization, DMAPred, was developed to predict
potential miRNAs associated with diseases. DMAPred captures the internal relationships of miRNAs
and diseases, including miRNA similarities and disease similarities, and the relationship between
miRNAs and diseases, i.e., miRNA-disease associations. Moreover, local topological information for
each node in the miRNA network and dense features of miRNAs and diseases in low-dimensional
space also contributes for screening of potential disease miRNA candidates. The objective problem
was divided into five sub-problems. An iterative algorithm was developed to obtain the final
miRNA-disease association scores that could be used to rank the candidate miRNAs for each disease.
In our experiment, DMAPred was found to be superior to several other methods, with regard to both
AUCs and AUPRs. In addition, DMAPred can help biologists to find candidates they are interested in
because the top ranking list contains more true miRNA-disease associations. Case studies on three
diseases confirmed that DMAPred is able to discover potential miRNA candidates associated with
specific disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/9/685/s1.
Table ST1: The top 50 candidates for prostatic neoplasms. Table ST2: The top 50 candidates for lung neoplasms.
Table ST3: The top 50 potential candidates for 326 diseases. Table ST4: The specific hyperparameters of the five
methods and their values.
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