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Abstract: After the International Agency for Research on Cancer (IARC) classified ingested nitrites
and nitrates as “probably carcinogenic to humans” under conditions favoring endogenous nitrosation,
several meat products labeled as “made without nitrite” were launched. In order to distinguish
uncured products truly made without nitrite from cured products made with any nitrite source
(vegetal or mineral), this article presents an approach to detect and quantify nitrite from different
origins added to meat. The method consists on the determination of nitrous oxide as a target
compound using headspace gas chromatography–mass spectrometry (HS-GC–MS). Nitrous oxide
(N2O) is formed after two reduction steps: from nitrite to nitric oxide (NO) and then to N2O. The NO
is bound to myoglobin (Mb) or metmyoglobin (Met-Mb), forming a complex, which is subsequently
released using sulfuric acid, which also favors the reduction to N2O. The HS-GC–MS conditions
were split ratio 1:10; injection temperature at 70 ◦C; incubation temperature at 30 ◦C and time 45 min;
and injection volume 1 mL. As a result, a relationship was established between the concentration of
nitrite in cooked ham samples and the area of the N2O peak generated, meaning that this method
allows the quantification of added nitrite within a concentration range of 10 to 100 mg kg−1.

Keywords: nitrite; nitrous oxide; cured meat; headspace gas chromatography–mass spectrometry

1. Introduction

Nitrites have been used in the production of cooked meat derivatives as curing agents
because their role in the development of a pink-red color and specific flavor profile and
because of their bacteriostatic and bactericidal activity against some spoilage bacteria and
dangerous foodborne pathogens. Nitrites prevent the growth of and toxin production
by Clostridium botulinum and delay oxidative rancidity by chelating oxygen or reactive
oxygen species (ROS) that promote oxidation, and also by forming nitrite and nitrosyl
compounds that have antioxidant properties [1]. The European Commission classifies
nitrites (potassium nitrite, E249; sodium nitrite, E250) and nitrates (sodium nitrate, E251;
potassium nitrate, E252) as permitted food additives under Commission Regulation (EU)
No. 1129/2011. The nitrite amount permitted as an additive in cured meat is currently
150 mg kg−1 (expressed as NaNO2). However, nitrites and their metabolic compounds
are linked to potential adverse health effects. The main risks reported are the formation
of metmyoglobin in blood, preventing the transport of oxygen through the body and the
formation of N-nitroso compounds. In 2015, the Agency for Research on Cancer (IARC)
classified ingested nitrates and nitrites as “probably carcinogenic to humans” under condi-
tions favoring the endogenous nitrosation [2]. Although the nitrite amount established in
cured meat does not involve a risk, excessive and prolonged nitrite consumption can affect
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human health. Myoglobin (Mb) is the main pigment in meat, and its forms determine the
color changes that occur in meat. The deoxymyoglobin form is present inside of meat and
has a purple color, while the oxygenated form (MbO2, Mb-Fe2+-O2) predominates in the
meat surface and has a red color. Both Mb and MbO2 in their reduced forms provide the
red color of meat. However, the oxidation of MbO2 leads to the complex metmyoglobin
(Met-Mb, Mb-Fe3+), which is an unattractive brown in color. One way to stabilize the red
color consists of adding nitrite anion (NO2

−), which is reduced to nitric oxide (NO). The
formation of NO is desirable because it acts as a ligand for binding to myoglobin and
metmyoglobin (Met-Mb). Upon heating, nitrosylhemochrome species are formed from
the dark-red NO complexes and have the pink-red color characteristic of cooked cured
meat [3].

Nitrite can be used in cured meat products as sodium or potassium salts. The added
nitrite is distributed in the cured meat between protein (20–30%), myoglobin (5–15%),
lipid (1–5%), –SH (1–15%), as nitrate (1–10%), as nitrite (5–20%), gas (1–5%), and other
species [4].

The nitrite anion can proceed from permitted food additives according to Commission
Regulation (EU) No. 1129/2011, which must be labeled. Other sources of nitrite can
be fermented vegetable extracts that are rich in nitrate, such as concentrated celery juice.
Vegetable juices have been analyzed, obtaining amounts of 171, 2114, 2273, and 3227 µg g−1

of nitrate for carrot, celery, beet, and spinach juice, respectively [5]. Commercial celery juice
powder was analyzed, and a nitrate content of 27,462 µg g−1 or about 2.75% was obtained,
showing a higher concentration when drying [6]. The addition of nitrates leads to a prior
reduction to nitrite by reducing bacteria, which makes the color stabilization slower. For
long-life meat products, the addition of both nitrate and nitrite is necessary to ensure a
continuous source of nitrite in meat over a long period of time. Frequently, meat products
produced with these vegetable extracts are labeled “produced without nitrite” and this can
mislead the consumer. The EU regulation establishes the permitted amount of additives
that can be added to meat products but does not differentiate according to their origin.

Another way of stabilizing the color is by addition of natural antioxidants, mainly
polyphenols, which are capable of regenerating Met-Mb to MbO2 [7–9]. Plant extracts
have phenolic compounds, flavonoids, and organic acids, which have antimicrobial and
antioxidant properties. These compounds can break the cell membrane, releasing the
cellular components and affecting microorganisms [10] because they act as donors in the
free radical chain reaction of lipid oxidation, thus showing antioxidant properties [11].

The analytical methods proposed for the monitoring of nitrite addition in meat are
mainly based on the detection of residual nitrite by molecular absorption spectrophotome-
try using the Griess reaction [12] or high-performance liquid chromatography (HPLC) [13].
The Griess method is able to measure lower concentrations of nitrite than HPLC techniques;
however, it shows low selectivity and may suffer from interferences. Moreover, it has been
reported that residual nitrite disappears over time [14]. There is no relation between added
nitrite with residual nitrite in the final product because, once it is added, the nitrite is trans-
formed in NO and NO2 (nitrogen dioxide gas). NO forms nitrosyl or nitroso compounds
(in combination with myoglobin and/or SH amino acid group), while NO2 in combination
with water forms nitrous acid (residual nitrite) and nitric acid (residual nitrate) [15]. The
regulatory aspects for food additives along with the correct application and interpretation
of the norms have been recently discussed [16].

In this work, a procedure for the detection of nitrite from different sources in cooked
ham samples is described. The method is based on that proposed for NO determination in
tuna fish, as developed by Niederer et al. 2019 [17]. This method determines nitrous oxide
(N2O) from the reduction of nitric oxide (NO), released from the complex NO–Mb. The
novelty of the work presented here lies in it being the first application of the combination
HS-GC–MS as an approach for the analysis of cured pork ham based on the determination
of nitrous oxide from the nitrosylmyoglobin complex. The procedure permits, for the first
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time, establishing a methodology to distinguish real uncured meat from cured meat made
with several sources of nitrite.

2. Materials and Methods
2.1. Reagents

Sulfuric acid (95–97%), 1-octanol, sodium chloride, and sodium nitrite were all from
Merck (Buchs, Switzerland). Nitrous oxide gas (100% of purity) was supplied by Linde
(Dublin, Ireland).

All headspace extractions were carried out in hermetically sealed 20 mL vials with
PTFE/silicone septum caps of 20 mm (i.d.). Sodium nitrite was used to generate the nitrous
oxide for the calibration standards using hermetically sealed vials for HS-GC–MS.

Polyphenol-rich extract (PRE) was obtained from PROSUR (Murcia, Spain), commer-
cialized as NATPRE T-10 HT S. The NATPRE supplier reported less than 100 mg kg−1 in the
product specifications. External analyses performed using normalized method EN 12014-7
shows values between 6 (±2) and 42 (±3) mg kg−1. This means that with a maximum
recommended dosage (10 g kg−1), the possible ingoing nitrite in the meat is less than
1 mg kg−1 with no functionality in the final product.

2.2. Instrumentation and Software

A 7890A GC System gas chromatograph from Agilent Technologies (Palo Alto, Califor-
nia, USA), equipped with a programmable temperature vaporizer (PTV) model CIS4-C506
and an automatic injector (Headspace model Multipurpose Sampler MPS), both from Gers-
tel (Mülheim an der Ruhr, Germany), were used for HS-GC–MS analyses. Chromatographic
separation was carried out on a HP-MOLSIV column with an internal diameter of 0.32 mm,
a length of 30 m, and a film thickness of 12 µm, also from Agilent Technologies. The
injection was performed in split mode with a ratio of 1:10. The GC temperature program
was as follows: start temperature 70 ◦C, hold for 5 min, increase to 200 ◦C at 30 ◦C/min
and maintain for 3 min; next, the temperature of 220 ◦C was reached at 3 ◦C/min and held
for 5 min.

The detection was carried out using an Agilent 5973 mass spectrometer (Agilent
Technologies) operating in the electron ionization mode (EI) at 70 eV, and temperature of
the ion source was 230 ◦C. For the analyte identification, the selected SCAN mode was
used, scanning from 10 to 100 m/z [15]. The selected ion monitoring (SIM) mode was used
for quantification, the quadrupole was fixed at m/z 43.8; 29.8, and 28.0.

The HPLC with diode array detection (DAD) Agilent 1260, equipped with a Purospher®

Star RP-18 150 (5 µm) column, was used to determine residual sodium nitrite contents
according to EN 12014–4 (2005).

Meat color determination was performed in a X-Rite 962 spectrophotometer (X-Rite
Inc. Michigan, USA) using the D65/10◦ illumination/observation method.

Data were processed using Microsoft Office Excel (Microsoft, Washington, DC, USA), R
Studio (version 1.2.5019) and MS data were acquired using Maestro 2 Version 1.4.25.8/3.5 soft-
ware (GERSTEL).

2.3. Ham Processing and Sampling
2.3.1. Preparation of the Cooked Ham Model System

Hams were produced at the PROSUR Meat Laboratory. Fresh pork ham muscles were
received from a local processor and stored at 0 ◦C. The ham muscles were ground (CATO,
Girona, Spain) to a size of 8 mm.

Cooked hams were prepared containing a 90% of meat, 1.5% of salt, 0.5% of phosphate,
8% of water, and different amounts of sodium nitrite (0, 0.5, 1, 5, 10, 20, 30, 40, 50, 60, 80,
100, 130 and 150 mg NaNO2 kg−1). In addition, ham samples containing NATPRE T-10 HT
S with concentrations of 5, 10, and 20 g kg−1 and ham samples made with celery at 0.8 and
3 g kg−1 were also prepared. The final weight of each ham was 5 kg.
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Non-meat ingredients were placed in a vacuum mixer (CATO, Girona, Spain) together
with the ground ham and mixed for 1 h. The resulting meat–brine mixture (hereafter re-
ferred to as cooked ham model system) was transferred to a vacuum stuffer (CATO, Girona,
Spain), packed in sausage casing and cooked until 68 ◦C core temperature (maximum
oven temperature was 73–75 ◦C). Hams were chilled to 37 ◦C within 1.5 h and to 4 ◦C
within 4.5 h. The weight after the chilling process was checked to assure that all brine was
absorbed by the meat.

Afterwards, 500 g of the cooked ham model system was ground (Warning Com-
mercial, Conair Corporation, Stamford, CT, USA), portioned in 10 samples of 50 g, and
stored in polypropylene flasks with polyethylene caps at −25 ◦C until sample preparation
(approximately one week).

2.3.2. Commercial Meat Products

Commercial samples of meat products were obtained from local supermarkets. They
correspond to four samples of cooked ham: cooked ham 3 and 4 were labeled as “nitrite
free”, while no information about nitrite content was given for cooked ham 1 and 2. Two
other samples correspond to a commercial loin dried and salt-cured and a serrano ham
cured with salt, giving no information about the nitrite content.

2.4. Procedure for Residual Nitrite by HPLC–DAD

Residual sodium nitrite contents were determined according to EN 12014-4 (2005) by
HPLC–DAD. Experiments were carried out for the nitrite-added ham samples and for the
samples prepared with NATPRE T-10 HT S.

2.5. Color Measurement

For the color characterization (one week after preparation approximately), CIELAB
color space was used. The parameters L* (lightness), a* (balance between green and
red) and b* (balance between yellow and blue) were determined. A statistical analysis
was performed after the color measurement of the different samples. Considering the a*
parameter provided by the CIE L*a*b* technique, a discriminant analysis was carried out
looking for significant differences between the different groups of matrices.

2.6. Analytical Procedure for HS-GC–MS

Meat samples were stored at −25 ◦C until sample preparation. For the analysis by
HS-GC–MS, 15 g of sample was added into a 50 mL centrifuge tube with 5 g of crushed
ice and 12 mL of water. The mixture was homogenized at 7000–9000 rpm with a polytron
homogenizer (IKA, t25 digital Ultraturrax) and then centrifuged at 2500 rpm for 5 min at
10 ◦C. An aliquot of 8 mL of the resulting supernatant was transferred into a 20 mL vial
and 8 µL of 1-octanol and 4 mL of sulfuric acid (20% v/v of concentrated acid solution)
were added. The vial was immediately sealed and gently shaken by hand for 30 s.

The samples were incubated for the headspace analyses at 30 ◦C for 45 min, then
injected into the GC for final detection by MS.

In order to minimize the effects of the matrix, the standard addition calibration
method was used. Applying this methodology, the analytic signals for each of the samples
is similarly affected by matrix interferences. Five cooked hams were prepared by adding
increasing concentrations of sodium nitrite (10, 20, 40, 80, and 100 mg NaNO2 kg−1) for the
calibration graph.

2.7. Validation Procedure

The following criteria were used for the validation of the procedure: calibration graph,
linearity, accuracy, precision (repeatability and intermediate precision), limit of detection
(LOD), and limit of quantification (LOQ). The quality control of the method was performed
through routine analysis of procedural blanks as well as quality control of standards
and samples.
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The precision (repeatability and intermediate precision) was evaluated by analyzing
the samples at three concentration levels (k = 3) in triplicate (n = 3) over 3 non-consecutive
days (p = 3). The accuracy was assessed by control repetitions (3 per day) in three de-
terminate levels (10, 30, 60 mg kg−1). The selectivity of the method was established by
measuring the N2O concentration from real samples.

The LOD was assessed using the concentration value corresponding to three times
the standard deviation of the estimate of the calibration graph. In the case of LOQ, the
criterion was ten times the standard deviation of the estimate of the calibration graph. For
confirmation, the LOD and LOQ values were assessed using a range of concentrations to
the point of no detection or no quantification.

3. Results and Discussion
3.1. Evaluation of Color and Residual Nitrite Content

The three forms of myoglobin (Mb, MbO2, and Met-Mb) may occur together in meat
and have a characteristic visible absorption. NO–Mb has a similar spectrum to MbO2 [15].
To evaluate the cured meat color, the samples of cooked ham were divided into two groups,
a group was treated with sodium nitrite and another group with NATPRE T-10 HT S. For
each group of samples, three color replicate measurements were performed for each level
of additive. These measurements were carried out at different sections of the sample to
allow representative color values of each sample. The parameters L*, a*, and b* were
determined, and the variable a* (red pigmentation) was used for comparison purposes.
Figure 1 indicates that values of the variable a* increased for nitrite concentrations added
to the cooked ham up to about 80 mg kg−1, while the signal remained practically constant
for higher concentrations. However, the variable a* gave constant values for the uncured
ham samples treated with NATPRE T-10 HT S. A t-test was applied to check if significant
differences exist in the mean of the a* values between the groups when the maximum
values were reached (from 80 mg kg−1 for the nitrite group). The results show that the
means of the variable a* (red pigmentation) were not statistically significant at the 95%
confidence level, with a p-value of 0.923.
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These results indicate that the color of the product made with nitrite is similar to the
color of the final product made with the NATPRE T-10 HT S, although in the first case, the
color was produced by the direct bonding of nitrite, while for the ham made with addition
of NATPRE T-10 HT S, the color of the product is mainly favored by the antioxidant activity
of polyphenols, preventing the formation of Met-Mb [7–9]. Consequently, because the
color measurements did not permit the differentiation of the cured and uncured ham
samples, a new procedure is mandatory making possible to discriminate between both
type of samples.

The determination of residual sodium nitrite content was carried out by HPLC–DAD
on the same group of cooked ham samples. The results are shown in Table 1 and indicate
that residual nitrite contents are higher when the concentration of added nitrite increases,
whereas nitrite is not detected below LOD when 10 mg kg−1 or lower levels are added.
On the other hand, no nitrite was detected below LOD in the ham samples treated with
NATPRE T-10 HT S.

Table 1. Residual sodium nitrite content determined by high-performance liquid chromatography
with diode array detection (HPLC–DAD).

Sample Sodium Nitrite (mg NaNO2/kg)

Nitrite (mg NaNO2/kg)

5 ND 1

10 ND
20 3.7
30 5.8
40 5.6
60 8.5

NATPRE T-10 HT S (%)

1 ND
2 ND

1 ND means No detected (below limit of detection at 2.7 mg kg−1).

3.2. Optimization of HS-GC–MS Procedure

The parameters of split ratio injection, injection temperature, incubation temperature,
incubation time, and injection volume were investigated in order to optimize the HS-GC–MS
method using the SIM mode for the nitrous oxide ions. A cooked ham made with 100 mg kg−1

of sodium nitrite was used as sample to test the different instrumental parameters.
Preliminary experiments were carried out by volatilizing nitrous oxide from the

aqueous solution to the HS. However, the obtained peaks were not defined. Consequently,
a new approach including the addition of several microliters of a floating drop of an
organic solvent was tried. 1-Octanol has been proposed as a preconcentration solvent for
HS analysis of volatile compounds in aqueous matrices [18]. Thus, addition of 1-octanol
at levels of 6, 8, and 10 µL was assayed, and maximum sensitivity was obtained when an
8 µL volume was added.

The effect of split ratio between 1:10 and 1:30 was studied. Higher intensities were
obtained with the lower dilution rate, as was predicted. Therefore, the split ratio was set
at 1:10 (Figure 2a). The injection temperature was evaluated between 60 and 80 ◦C. As
the temperature increased, the intensity of signals highly increased up to 70 ◦C, while
this increment was very low for the temperature of 80 ◦C. Therefore, the optimal value
was established at 70 ◦C (Figure 2b). The incubation temperature for the ham sample was
optimized between 30 and 40 ◦C. An increase in both the baseline and the peak area were
observed when the temperature increased, affecting the sensitivity of the method in the
opposite way. Therefore, 30 ◦C was established as the optimal incubation temperature
(Figure 2c). The sample incubation time was studied between 15 and 45 min. The longer
incubation time was the optimal value. This can be explained by the longer time of
extraction that facilitated the release of volatile organic compounds. Therefore, 45 min
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was chosen as the optimal incubation time (Figure 2d). Finally, the injection volume was
optimized between 500 and 1000 µL. Higher peak areas were obtained when using the
1000 µL injection volume (Figure 2e).
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3.3. Detection and Identification of N2O

In order to identify the nitrous oxide, two criteria were considered: the first was the
addition of sodium nitrite when preparing the ham matrices; the results shows that the
corresponding nitrous oxide signal increased when a higher sodium nitrite concentration
was added, as shown in (Figure 3A).
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Characteristic m/z values used were 43.8, 29.8, and 28.0.
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The second criterion was to identify the analyte from the characteristic m/z ions. To
identify the analyte, the SCAN mode was used for the quadrupole in a sample prepared
with a concentration of 100 mg kg−1 of sodium nitrite. Then, the spectra were compared
with the Wiley/NIRST mass spectral library (Figure 3B). The selected ions for quantification
were fixed at m/z 43.8, 29.8, and 28.0. The ion at m/z 28.0 may also correspond to both
nitrogen and CO [19], which could also be present, thus providing a blank signal value.

In order to ensure the identification of nitrous oxide by the proposed HS-GC–MS
method, reference gas was measured in duplicate at six different injection volumes, from
0.1 to 3 µL, of pure nitrous oxide gas. A linear relation was obtained by plotting the peak
area against the nitrous oxide concentration.

3.4. Validation of the Method

The HS-GC–MS method provided a linear relation between sodium nitrite concentra-
tion and the chromatographic peak area. Each point of the calibration graph was generated
as the peak area of N2O within a concentration range of 10–100 mg kg−1 of NaNO2 added
to the meat product. Calibration standards were prepared at five (k = 5) concentration
levels of NaNO2: 10, 20, 40, 80, and 100 mg kg−1, each in triplicate (n = 3). The calibration
graph was performed by plotting the peak area against the nitrite concentration, obtaining
the following equation calibration: area = 5.4 × 105 × nitrite concentration – 7 × 106,
R2 = 0.9932.

The accuracy was established by repetitive daily injections. As shown in (Table 2),
trueness was found to be within an accepted value of −20% for the minor level and 4%
for the major level. To detect random errors, the precision test was applied. Table 2
also shows the relative standard deviation values for repeatability (intra-day precision)
and intermediate precision (inter-day precision) for each control sample concentration.
As demonstrated, the relative standard deviation values for repeatability were between
3.6 and 5.2%, and intermediate precision values were between 7.3 and 10%.

Table 2. Trueness and precision (relative standard deviation, RSD %) (k = 3, n = 3, p = 3) studies.

Level (mg
NaNO2/kg ham) Relative Bias (%) Repeatability (%) Intermediate

Precision (%)

10 −20 3.6 7.3
30 14 5.1 10
60 4 5.2 7.8

The LOD value was assessed using the concentration value corresponding to three
times the standard deviation of the estimate of the calibration graph (Sy/x = 176). Therefore,
the LOD was 2.7 mg kg−1. The LOQ value was estimated as 9 mg kg−1. For confirmation,
the LOD and LOQ values were assessed using a range of concentrations to the point of no
detection or no quantification, values of 3.3 and 10 mg kg−1 being respectively obtained.

3.5. Method Application

The method validation was carried out by the analysis of NATPRE T-10 HT S (at 5,
10 and 20 g kg−1) and celery (at 0.8 g kg−1) cooked pork hams and nitrite-free hams. In
order to study the variability of the samples, two different hams of each sample were tested.
In addition, cooked hams with sodium nitrite added at different concentrations (10, 20, 40,
80 and 100 mg kg−1) were also measured. Table 3 shows the results of this recovery study.
Sodium nitrite hams at different concentrations showed a good concordance between the
amount of sodium nitrite added and that detected. These results ensure the accuracy of the
proposed method.
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Table 3. Recovery study for sodium nitrite ham samples.

Concentration NaNO2 Added (mg kg−1) Concentration NaNO2 Found (mg kg−1)

10 13 ± 5
20 17 ± 6
40 40 ± 4
80 89 ± 4
100 118 ± 5

Values are mean concentration ± standard deviation (n = 3).

To study the applicability of the method, different commercial samples of meat prod-
ucts obtained from local supermarkets were analyzed, corresponding to four samples of
cooked ham and two samples corresponding to a loin and a serrano ham. The results
obtained are shown in Table 4.

Table 4. Sodium nitrite content in meat products determined by HS-GC–MS.

Meat Product Concentration NaNO2 (mg kg−1)

NATPRE T-10 HT S (5 g kg−1) NQ 1

NATPRE T-10 HT S (10 g kg−1) NQ
NATPRE T-10 HT S (20 g kg−1) NQ

Celery (0.8 g kg−1) ham 1 105 ± 3
Celery (0.8 g kg−1) ham 2 106 ± 4

Nitrite-free ham 1 NQ
Nitrite-free ham 2 NQ

Cooked ham 1 14 ± 1
Cooked ham 2 20 ± 5
Cooked ham 3 14 ± 6
Cooked ham 4 13 ± 1

Loin NQ
Serrano ham NQ

1 NQ means not quantifiable (below limit of quantification at 9 mg kg−1).

The products made with polyphenol-rich extract (NATPRE T-10 HT S), as well as
nitrite-free hams, did not have a measurable level of nitrite, as expected. In the case of celery
hams, the nitrate content is reduced to nitrite inside meat, which was measured by this
methodology. In the case of the commercial samples, in cooked ham 1 and 2, the presence
of nitrites was not explicitly shown in the ingredient list. However, nitrite appeared in both
samples, one near the LQ and the other at a high nitrite level. The two samples cooked ham
3 and 4 were labeled as “nitrite free”, and the levels of nitrite found using the proposed
method was very low, near the LQ level. The other two samples correspond to a loin and a
serrano ham, giving no information about nitrite content, and for these samples, the levels
of nitrite were not measurable by the method.

Therefore, the detection of nitrous oxide as a target compound using the proposed
method provides an efficient way to identify nitrite treated meats from different sources [20].
A concentration of at least 100 ppm of nitrite is required for meat preservation, so LOQ at
9 ppm can be considered suitable for the identification of nitrite in meat as a preservative.

4. Conclusions

The method described presents a sensitive and selective approach for the quantifica-
tion of nitrous oxide as a target compound, which is suitable for identifying nitrite-treated
hams. A linear relationship was obtained between nitrite concentration in the sample
injected in the headspace and the area of the nitrous oxide peak generated. Thus, a valuable
approach was developed allowing, for the first time, distinguishing between uncured
products which were truly made without nitrite addition and cured products made with
addition of nitrite from different sources. NATPRE provides a very low concentration
of incoming nitrite to the cooked hams, less than 1 mg kg−1. The antioxidant capacity
provided by polyphenols is the key to being an alternative cure.
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