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Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis
which rapidly releases high concentrations of glucocorticoid stress hormones, resulting
in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation.
High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular
proteins in addition to inhibiting components of the mitochondrial transport chain, leading
to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric
oxide production reduces indicators of anxiety- and depressive-like behavior in animal
models. Therefore, the purpose of this review is to present an overview of the current
literature on stress-evoked changes in the nitrergic system, particularly within neural
tissue.
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INTRODUCTION
An acute stress response is mediated by the tripartite activation of
the sympatho-adrenal-medullary (SAM), hypothalamic-spinal-
adrenal (HSA), and hypothalamic-pituitary-adrenal (HPA) axes.
The first of these axes to respond is the autonomic SAM sys-
tem, consisting of several hypothalamic and brainstem nuclei,
notably including the locus ceruleus (Jansen et al., 1995). The
locus ceruleus is the primary source of central noradrenergic
signaling, functioning via the ascending noradrenergic bundle
and descending through preganglionic neurons in the interme-
diolateral cell column (IML) of the spinal cord to innervate
the adrenal medulla (Sara, 2009; Ulrich-Lai and Herman, 2009).
Through the combined action of catecholamines, this system pro-
motes increased arousal and vigilance and is responsible for the
rapid generation of the “fight-or-flight” response (Jansen et al.,
1995). The paraventricular nucleus (PVN) of the hypothalamus
is considered the apex of the HPA stress response as release
of corticotropin-releasing hormone from the parvocellular neu-
rosecretory neurons triggers anterior pituitary corticotrophs to
release the pro-opiomelanocortin fragment, adrenocorticotropic
hormone (ACTH), into the circulation. However, the PVN also
facilitates corticosterone release directly through the HSA stress
axis via adrenocortical innervation from the IML, and indirectly
via an alternative stress pathway involving prolactin release (Buijs
et al., 1999; Lowry, 2002; Ulrich-Lai et al., 2006; Jaroenporn
et al., 2009). This ultimately sensitizes the adrenal gland to ACTH,
resulting in corticosterone release from the zona fasciculata of the
adrenal cortex thereby exerting the characteristics downstream
cellular and metabolic effects of stress (Buijs et al., 1999; Lowry,
2002; Weiser et al., 2011). Adrenal glucocorticoids accelerate cel-
lular metabolism to increase available energy which consequently
increases free radical formation in specific regions of the cen-
tral nervous system (Spiers et al., 2013). This stress-induced

increase in radical production, including nitric oxide (NO) for-
mation, leads to oxidative and nitrosative stress (Chen et al.,
2014). Furthermore, the toxic metabolite of NO, peroxynitrite,
is capable of inhibiting components of the mitochondrial respi-
ratory chain, leading to cellular energy deficiency (Sarti et al.,
2012). Since dysfunction of the nitrergic system has been impli-
cated in the neuropathogenesis of several stress-related disease
states, the present review summarizes our current understand-
ing and advances relating to the impact of stress on the nitrergic
system.

NITRIC OXIDE BIOSYNTHESIS AND FUNCTIONS
Nitric oxide, a gaseous free radical belonging to the family of
reactive nitrogen species (RNS), is synthesized through the con-
version of L-arginine to L-citrulline by nitric oxide synthase
(NOS) in the presence of oxygen, NADPH, and cofactors such as
tetrahydrobiopterin (Andrew and Mayer, 1999). There are three
main isoforms, each with a specific distribution profile; neu-
ronal NOS (nNOS, type I), inducible NOS (iNOS, type II), and
endothelial NOS (eNOS, type III) (Stuehr, 1999). Though nNOS
is predominantly active in the cytosol of central and peripheral
neurons for signaling and regulation, it has also been found in
the sarcolemma and cytoplasm of all muscle fibers (Frandsen
et al., 1996). Interestingly, nNOS is present in the hippocam-
pus, hypothalamus, pituitary, and adrenal gland, suggesting co-
localization with the HPA axis (Lai et al., 2005; Gadek-Michalska
et al., 2012). Furthermore, several studies have demonstrated
transcriptional regulation of nNOS by glucocorticoids in the
hippocampus, implicating its importance in the stress response,
although the upstream promoter of NOS1 does not carry a gluco-
corticoid responsive element (López-Figueroa et al., 1998; Reagan
et al., 1999; Zhou et al., 2011). There are four nNOS splice vari-
ants, α, β, γ, and μ, with nNOSα being the most dominant and
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therefore being physically and functionally coupled to the glu-
tamate receptors of the N-methyl-D-aspartate (NMDA) subtype
through their mutual post-synaptic density-95/discs-large/zona
occludens-1 (PDZ) binding motif (Eliasson et al., 1997). Within
the hippocampus, local calcium influx through NMDA receptors
can trigger the production of NO, which subsequently activates
its receptor, soluble guanylyl cyclase, leading to release of second
messenger cyclic guanosine monophosphate (cGMP) (Figure 1).
This NO-cGMP signaling has been implicated in the induction of
hippocampal long-term potentiation which is known to be one
of the principal mechanisms in learning and memory (Schuman
and Madison, 1991; Arancio et al., 1996; Kelley et al., 2010). The
nNOSμ mainly localizes in the skeletal muscles, with nNOSμ-
deficient muscles being myopathic (Percival et al., 2008). The β

variant lacks the PDZ domain while nNOSγ has very little to no

enzymatic activity (Eliasson et al., 1997). Endothelial NOS con-
tains a putative shear stress responsive element in the promoter
region of the NOS3 gene while the protein is membrane-bound
to the golgi apparatus and caveolae, producing NO mainly in
the endothelium of blood vessels responsible for vasodilation and
smooth muscle relaxation (Smith et al., 2006). The inducible form
of NOS responds at the transcriptional level to inflammatory
factors (Zamora et al., 2000; Aktan, 2004). Within the central
nervous system, the iNOS-mediated release of NO by astrocytes
and microglia has a major role in antimicrobial and tumorici-
dal activity in response to various inflammatory signals (Hua
et al., 2002; Brantley et al., 2010). Moreover, upon transcrip-
tional activation, this soluble subtype can produce micromolar
levels of NO and is known to be associated with diseases such
as artherosclerosis, rheumatoid arthritis, diabetes, septic shock,

FIGURE 1 | A schematic representation of the nitrergic system and its

downstream effects in hippocampal neurons following stress exposure. In
hippocampal neurons, the majority of nitric oxide (NO) production occurs via
the conversion of L-arginine to L-citrulline by the neuronal isoform of nitric oxide
synthase (nNOS) ①. High concentrations of NO can then covalently bond with
protein thiol groups (protein-SH) to form S-nitroso-proteins (protein-SNO) ② or
interact with the reduced form of glutathione (GSH) forming
S-nitrosoglutathione (GSNO) ③. This can be regenerated back to GSH via an
initial conversion to oxidized glutathione (GSSG) by S-nitrosoglutathione
reductase (GSNOR), and subsequent reduction of GSSG by glutathione
reductase (GSR) ④. Interaction of NO with the superoxide radical (O2

−) results
in the formation of the neurotoxic radical, peroxynitrite (ONOO−) which
irreversibly reacts with protein tyrosine (Tyr) residues to form 3-nitrotyrosine
(3-NT) ⑤. Increased NO and ONOO− are capable of causing cellular energy

deficiency by inhibition of all components of the electron transport chain
(Complex I–IV), including ATP synthase, resulting in decreased ATP production
⑥. Both post-synaptically produced NO, and NO produced by the inducible
isoform of nitric oxide synthase (iNOS), can act as a neurotransmitter on
pre-synaptic neurons ⑦. This pre-synaptic NO causes glutamate release, which
activates post-synaptic NMDA receptors (NMDAR) to increase calcium (Ca2+)
concentration and, in the presence of calmodulin, further potentiate
nNOS-derived NO ⑧. Stress exposure increases NO by activating inflammatory
cytokines to potentiate glial/astrocyte iNOS activity ⑨, and by increasing
circulating corticosterone (CORT) which induces nNOS activity via a
mineralocorticoid receptor (MR)-mediated pathway ⑩. This increase in NO
results in downregulation of hippocampal glucocorticoid receptors (GR) and
subsequently increases hypothalamic corticotropin-releasing hormone (CRH)
to induce depressive-like behaviors ©11.
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and multiple sclerosis (Kuhlencordt et al., 2001; Hill et al., 2004;
Maki-Petaja et al., 2008; Heemskerk et al., 2009; Soskic et al.,
2011). Both nNOS and eNOS are constitutively active isoforms
producing low concentrations of NO (in the nanomolar range)
over long periods and are activated by calcium ions though tran-
sient binding to the calcium-binding protein, calmodulin (Knott
and Bossy-Wetzel, 2009). Comparatively, the inducible form of
NOS can produce high concentrations of NO in relatively short
periods and is calcium independent due to a high binding affin-
ity to calmodulin (Aktan, 2004). The inorganic ions, nitrate and
nitrite (NOx), were previously thought to be the end products
of NO metabolism. However, recent studies have demonstrated
a NOS-independent pathway in which NO can be produced by
reducing NOx, a reaction catalyzed by xanthine reductase under
low oxygen tension and low pH environment. The NO pro-
duced by this nitrate-nitrite-NO pathway may have similar roles
to NO generated from the L-arginine-NOS pathway represent-
ing an important secondary pool (see review by Lundberg et al.,
2008).

NITROSATIVE STRESS
High levels of NO and its derivatives are destructive to cellu-
lar components such as proteins, lipids and DNA. Nitric oxide
can react directly with molecular oxygen to produce two rela-
tively strong oxidants, nitrogen dioxide and dinitrogen trioxide.
However, at physiological levels of NO these reactions are rela-
tively slow. A primary reaction in the production of RNS is the
combination of NO and superoxide anions to form the highly
reactive metabolite, peroxynitrite, a potent neurotoxin (Lipton
et al., 1993). It has been suggested that NO and peroxynitrite
can disrupt adenosine 5′-triphosphate (ATP) synthase and almost
all components of the mitochondrial respiratory chain (Almeida
and Bolanos, 2001; Sarti et al., 2012). These RNS reversibly or
irreversibly inhibit mitochondrial oxygen consumption, partic-
ularly at complex IV (also known as cytochrome c oxidase),
and may lead to cellular energy deficiency and ultimately cell
death in pathological conditions (Sarti et al., 2012). Inhibition
of cytochrome c oxidase by NO and peroxynitrite causes neu-
ronal dysfunction and, in addition to high iNOS expression, has
been observed in the cortex of Alzheimer’s patients (Mutisya et al.,
1994; Haas et al., 2002).

S-nitrosylation is the covalent attachment of NO to the
thiol side chain of the amino acid cysteine, forming other
NO derivatives termed S-nitroso-proteins. Under physiologi-
cal conditions, it has been demonstrated that NO is converted
to the nitrosonium ion which subsequently S-nitrosylates the
NMDA receptor, thereby preventing glutamate excitotoxicity by
blocking calcium influx, promoting cell survival (Lipton and
Stamler, 1994). Excessive production of NO can be counter-
acted by conjugation with reduced glutathione, forming the
stable adduct S-nitrosoglutathione which has important role
in signal transduction and regulation of a variety of protein
functions (Klatt and Lamas, 2000; Anand and Stamler, 2012).
Abnormal S-nitrosylation to proteins such as apolipoprotein E,
cyclin-dependent kinase 5, dynamin-related protein 1, parkin,
peroxiredoxin 2, protein disulfide isomerase, heat-shock pro-
tein 90, and X-linked inhibitor of apoptosis have all being

linked to neurodegenerative conditions such as Alzheimer’s and
Parkinson’s diseases (Anand and Stamler, 2012). Lastly, peroxyni-
trite provokes protein nitrotyrosination, an irreversible chemical
addition of a nitro group to the tyrosine residue in target proteins
generating 3-nitrotyrosine. This post-translational modification
usually impairs the normal physiological function of the pro-
teins and therefore nitrotyrosination has been used as a marker
in several neurodegenerative conditions such as amyotrophic lat-
eral sclerosis (Peluffo et al., 2004). These aspects of the nitrergic
system have been summarized in Figure 1.

STRESS-EVOKED MODULATION OF THE NITRERGIC SYSTEM
It has been generally accepted that psychophysiological stress
is associated with upregulation of NOS mRNA expression and
enzymatic activity. For example, a single 6 h acute immobiliza-
tion stress induces upregulation of iNOS expression and activ-
ity in the cerebral cortex which is mediated by the NMDA
receptor and subsequent activation of the transcriptional fac-
tor, nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) (Madrigal et al., 2001). The acute stress-induced
activation of the NMDA receptor also increases tumor necro-
sis factor-alpha (TNFα) via upregulation of TNFα-convertase.
Antagonism of TNFα-convertase prevents the stress-induced
translocation of NF-κB and subsequent iNOS expression, thus
confirming the involvement of TNFα (Madrigal et al., 2002).
This is also supported by Shirakawa et al. (2004) who demon-
strated glutamatergic activation and not catecholaminergic drive
of the hypothalamic paraventricular nucleus to be responsi-
ble for the acute stress-induced increase in NO metabolites.
Interestingly, biting activity is capable of suppressing the stress-
induced increase in hypothalamic nNOS mRNA expression in
rats (Hori et al., 2005). A single 2 h acute restraint stress signif-
icantly increases the density of neurons expressing nNOS visual-
ized by nicotinamide adenine dinucleotide phosphate-diaphorase
(NADPH-d) histochemistry in the amygdaloid nucleus, an effect
delayed by 5 days in the hippocampus and entorhinal cortex
(Echeverry et al., 2004). Predator-induced post-traumatic stress
significantly increases nNOS positive neurons and total NOx in
the medial prefrontal cortex 7 days after the 10 min predator
stress treatment (Campos et al., 2013). Conversely, Chakraborti
et al. (2014) demonstrated that acute restraint stress causes a
reduction in total NOx and an increase in the major endoge-
nous NOS inhibitor, asymmetric dimethylarginine, in whole
brain homogenates. This suggests that the stress-induced NOx
increases in regions such as the hippocampus and hypothala-
mus may hold a high degree of functional significance. These
biochemical changes in NOx and asymmetric dimethylarginine
were observed alongside anxiety-like behavior and were more
pronounced in male compared to female rats. The pharmaco-
logical blockade of estrogen biosynthesis exacerbated these bio-
chemical and behavioral changes in females, suggesting that the
observed sex differences are due to a protective role of estrogen.
Interestingly, bilateral injection of an NMDA receptor antagonist,
NOS inhibitor, or NO scavenger into the dorsal hippocampus
attenuated autonomic responses such as hypertension and tachy-
cardia following a 60 min acute restraint stress, suggesting that
NMDA/NOS activation within the hippocampus plays a role in
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autonomic modulation during stress (Moraes-Neto et al., 2014).
Another study from the same group proposed a glutamatergic
NMDA receptor-NO-cGMP signaling pathway in modulat-
ing contextual fear conditioning within the dorsal hippocam-
pus, where intra-hippocampal injection of NMDA receptor
antagonist DL-AP7, NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-
tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), and cGMP
inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ),
attenuated the fear-conditioned response (Fabri et al., 2014).

Chronic immobilization stress has been shown to increase
NOx, iNOS activity, and peroxynitrite-induced 3-nitrotyrosine
accumulation in cortical neurons (Olivenza et al., 2000). Notably,
de Pablos et al. (2014) recently found a degree of regional speci-
ficity associated with this chronic stress-induced iNOS expres-
sion, with little to no constitutive expression in the substantia
nigra following 9 days of unpredictable stress exposure. However,
this same unpredictable stress model potentiates iNOS expression
following exposure to exogenous immunostimulatory stressors
such as lipopolysaccharides. Recent studies in several animal
paradigms have demonstrated that inhibitors of NOS significantly
modulate stress-related behaviors. In support of these findings,
the commercially available antidepressant paroxetine, a selec-
tive serotonin reuptake inhibitor, also possesses NOS inhibition
capability (Finkel et al., 1996). Wegener and Volke (2010) have
reviewed and summarized these studies including data on each of
the NOS inhibitor’s specificity and potency, and their anxiolytic-
and antidepressant-like properties. Chronic unpredictable mild
stress increases plasma nitrite levels and iNOS mRNA expres-
sion in the cortex, in addition to damaging cortical neurons and
inducing depressive-like behavior (Wang et al., 2008; Peng et al.,
2012). These effects can be attenuated or prevented using NOS
inhibitors, which was demonstrated by intra-hippocampal injec-
tion of the selective iNOS inhibitor, aminoguanidine, resulting
in suppression of the chronic unpredictable mild stress-induced
depressive-like behavior in rats (Wang et al., 2008). Regional
infusion of a selective nNOS inhibitor 7-nitroindazole (7-NI)
into the hippocampus showed antidepressant-like effects sim-
ilar to those with the iNOS inhibitor, aminoguanidine (Joca
and Guimaraes, 2006). Likewise, the anxiogenic-like behavior
observed in rats during ethanol withdrawal is inhibited by
administration of the selective iNOS inhibitor, 1400W, into the
dorsolateral periaqueductal gray (Bonassoli et al., 2013). The
data with intra-cerebral NOS inhibition is further supported
by studies using systemic treatment. Intraperitoneal injection of
1400W increases survival of cortical neurons and decreases the
depressive-like behavior in mice (Peng et al., 2012). The nNOS
inhibitor 1-(-2-trifluoromethylphenyl)-imidazole (TRIM) given
systemically 30 min prior to testing induces anxiolytic-like behav-
ior shown by increased time spent in the light compartment of
a light-dark compartment test (Volke et al., 2003). Furthermore,
TRIM administration decreased the immobility time in the forced
swimming test, demonstrating an antidepressant-like effect com-
parable to the tricyclic antidepressant imipramine. In agree-
ment with these observations, Ulak et al. (2008) injected TRIM
intraperitoneally 50 min before a forced swim test and showed
the involvement of the serotonergic system in the antidepressant-
like actions of TRIM. This was further clarified in a later study in

which the serotonin type II receptors were found to be respon-
sible for this effect (Ulak et al., 2010). Furthermore, Joung et al.
(2012) demonstrated that following a 2 h immobilization stress,
the selective inhibitor 7-NI produced its anxiolytic-like effects
shown by an increase in the time spent on the open arms of the
elevated plus-maze through the direct reduction of NO metabo-
lites in the PVN and locus ceruleus. A less specific NOS inhibitor,
L-NG-Nitroarginine methyl ester (L-NAME), injected system-
ically 30 min prior to testing shows protective effects against
chronic swim stress-induced impairment of passive avoidance
learning and hyperalgesia in rats (Nazeri et al., 2014). In a similar
vein, Ferreira et al. (2012) performed behavioral, genomic, and
proteomic analyses in rats and suggested that the antidepressant-
like effects of NOS inhibition may involve the expression of
additional factors including members of the glutathione redox
system.

Genetic animal models have also contributed to the current
understanding of nitrergic changes in stress. Thus, inhibition of
NO production by nNOS gene deletion in mice suppressed hip-
pocampal neurogenesis and exhibited antidepressant-like proper-
ties while nNOS over-expression in the hippocampus was essen-
tial for chronic stress-induced depression (Zhou et al., 2007).
Recently, a number of studies have proposed a regulatory role
of NO on the limbic HPA stress axis. Zhang et al. (2010) used
mice lacking the nNOS gene to demonstrate an anxiolytic-like
phenotype when tested using an elevated plus-maze, similar to
normal mice treated with intra-hippocampal microinjection of
the selective nNOS inhibitor 7-NI. The authors proposed a sig-
naling pathway involving the activation of serotonin type IA
receptors which mediate, via an unknown mechanism, the down-
regulation of hippocampal nNOS, leading to a decrease in NO
and subsequent inhibition of cAMP response element-binding
(CREB) protein phosphorylation. A follow up study elucidated
further the link between NO and the HPA axis by showing that
chronic mild stress and glucocorticoid exposure lead to hip-
pocampal nNOS overexpression via activating hippocampal min-
eralocorticoid receptor (MR) (Zhou et al., 2011). The excessive
nNOS-derived NO significantly downregulated local glucocorti-
coid receptor (GR) expression through either the soluble guany-
lyl cyclase/cGMP or peroxynitrite/extracellular signal-regulated
kinase (ERK) signaling pathways. The significant downregulation
of GR in the hippocampus leads to an elevation in hypothalamic
corticotropin-releasing hormone and the depressive-like behav-
iors in mice as illustrated in Figure 1. It is important to note that
nNOS deletion, infusion of intrahippocampal nNOS inhibitor,
and NO-cGMP signaling blockade prevented the chronic mild
stress-evoked behavioral modification. Interestingly, this chronic
glucocorticoid-induced MR-nNOS-NO pathway is exclusive to
the MR-rich hippocampus and drives HPA axis hyperactivity
through impaired negative feedback (Zhu et al., 2014).

The considerable body of evidence from animal models is pro-
gressively expanding and supported by modest but significant
clinical studies. Several reports have shown that increased levels
of NO metabolites are present in depressed and autistic patients
(Suzuki et al., 2001; Sogut et al., 2003; Lee et al., 2006). Patients
with recurrent depressive behavior displayed higher plasma NOx
concentrations which were associated with cognitive impairment
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(Talarowska et al., 2012). Galecki et al. (2010, 2011) discovered
single nucleotide polymorphisms in exon 22 of the NOS2A gene
(iNOS) and exon 29 of the NOSI gene (nNOS) in depressed
Caucasian individuals. Furthermore, three single nucleotide poly-
morphisms located at the regulatory region of NOSI gene are
responsible for the susceptibility of an individual to depressive
disorders (Sarginson et al., 2014).

SUMMARY
A growing body of evidence suggests that the etiology of anxiety
and depression-related conditions can be derived from the sen-
sitization of particular stress-related circuits that are “primed”
following exposure to a short-term stressor. The duration for
stress-related circuitry priming far exceeds responses to adrener-
gic and glucocorticoid-mediated stress responses. Understanding
the mechanisms underlying the induction of this long latency
will provide a significant link between stress and the pathogene-
sis of anxiety and depressive disorders. The nitrergic system has
been implicated in regulating both short and long-term acti-
vation of the stress response, with a variety of NOS inhibitors
demonstrating potent anxiolytic and antidepressant activity. The
intrinsic cross talk between neuroendocrine stress and nitrergic
system activation is now an important physiological consider-
ation. Further understanding the role of this system is impor-
tant in identifying early players in stress-induced pathological
conditions.
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