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Perfusion magnetic resonance imaging (MRI), specifically dynamic susceptibility MRI 
(DSC-MRI) is routinely performed as a supplement to conventional MRI in human medicine 
for patients with intracranial neoplasia and cerebrovascular events. There is minimal data 
on the use of DSC-MRI in veterinary patients and a DSC-MRI protocol in the veterinary 
patient has not been described. Sixteen normal dogs, 6 years or older were recruited 
for this study. The sample population included 11 large dogs (>11 kg) and 5 small dogs 
(<11 kg). DSC-MRI was performed on a 1.5-T MRI using an adjusted protocol inherent 
to the MRI. Contrast media was injected using an automatic power injector. Injections 
were made after five MR measurements were obtained. Following image acquisition, an 
arterial input function (AIF) graph mapping the transit time of contrast within the cerebral 
arteries was generated. The manually selected time points along this graph were used 
to compute perfusion maps. A dose and rate of 0.1 mmol/kg gadolinium-based contrast 
media at 3 ml/s followed by 10 ml saline flush at 3 ml/s was used in all dogs greater than 
11 kg. In all dogs >11 kg, a useable AIF and perfusion map was generated. One dog 
less than 11 kg received the same contrast dose and rate. In this patient, the protocol 
did not generate a useable AIF. The remainder of the dogs less than 11 kg followed a 
protocol of 0.2 mmol/kg gadolinium-based contrast media at 1.5 ml/s with a 10 ml saline 
flush at 1.5 ml/s. A useable AIF and perfusion map was generated in the remaining dogs 
<11 kg using the higher contrast dose and slower rate protocol. This study establishes 
a contrast dose and administration rate for canine DSC-MRI imaging that is different in 
dogs greater than 11 kg compared to dogs less than 11 kg. These protocols may be 
used for future applications to evaluate hemodynamic disturbances in canine intracranial 
pathology.

Keywords: canine, perfusion, dynamic susceptibility contrast, magnetic resonance imaging, neuroimaging

Abbreviations: AIF, arterial input function; CBF, cerebral blood flow; CBV, cerebral blood volume; DCE-MRI, dynamic 
contrast-enhanced magnetic resonance imaging; DSC-MRI, dynamic susceptibility contrast magnetic resonance imaging; 
FLAIR, fluid attenuating inversion recovery; MRI, magnetic resonance imaging; MTT, mean transit time; ROI, region of 
interest; T1W, T1-weighted; T2(*)W, T2(*)-weighted.
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INtRodUCtIoN

Perfusion magnetic resonance imaging (MRI) is an important 
non-invasive tool in human medicine for evaluating cer-
ebral hemodynamics (1). Two contrast-based perfusion imag-
ing sequences are described: dynamic susceptibility weighted 
dynamic susceptibility MRI (DSC-MRI) and dynamic contrast-
enhanced MRI (DCE-MRI) (2). In human medicine, DSC-MRI 
is the most widely used method to measure brain perfusion due 
to the software availability and ease of use (2, 3).

Dynamic susceptibility MRI images the first pass of a bolus 
of gadolinium-based contrast through the brain by a series of 
T2*-weighted (T2*W) MRI images to generate a signal intensity 
to time curve, also known as an arterial input function (AIF). The 
susceptibility of the contrast causes a decrease in signal intensity, 
which leads to a signal loss in the AIF. From this curve, multiple 
hemodynamic parameters such as time to peak, mean transit 
time (MTT), cerebral blood flow (CBF), and cerebral blood vol-
ume (CBV) can be determined for each pixel and perfusion maps 
are generated (2, 4). A major assumption in DSC-MRI studies is 
that contrast remains within the blood vessels such that a suscep-
tibility gradient can be induced between the intravascular and 
extravascular space, this assumption can lead to underestimation 
of perfusion, specifically in brain tumors (5, 6). DCE-MRI allows 
for better quantitative measurement of the blood–brain barrier, 
assessing the tissue permeability and the extracellular space, the 
values are sensitive to tumor growth and treatment response (7). 
DCE-MRI techniques involve serial T1-weighted (T1W) images 
before, during, and after gadolinium contrast administration (7). 
The reason DSC-MRI is used more often in the clinical setting is 
due to the complexity in image acquisition and post-processing 
of DCE-MRI data and the lack of widely available software (2). 
In contrast, most commercially available MRI scanners have 
inherent acquisition parameters and software for DSC-MRI. To 
the authors’ knowledge, the only descriptive study in veterinary 
medicine using perfusion MRI is a quantitative perfusion study 
using DCE-MRI in dogs with intracranial neoplasia using 3-T 
MRI and manual contrast injection (8). Since both DSC-MRI 
and DCE-MRI involve dynamic imaging acquisitions, the use of 
an automated power injector is considered necessary to allow a 
fast injection needed for DSC-MRI and reproducible administra-
tion DCE-MRI perfusion (2). No studies using DSC-MRI in the 
normal canine brain have been described.

Extensive research and clinical applications of DSC-MRI 
are described in human patients with stroke (9, 10), neoplasia 
(11–13), dementia (14), anesthesia (15), epilepsy (16), and trauma 
(17, 18). Of the described clinical applications of DSC-MRI in 
human medicine, the use of DSC-MRI in intracranial neoplasia 
grading and therapeutic monitoring is the most clinically relevant 
to our canine patients and translational research (12, 19–24). 
Despite the amount of data available in human medicine, few 
reports in veterinary medicine have been published, with most 
available studies using animals as a model of disease. Examples 
include canine studies of ischemic stroke (25) and brain changes 
secondary to cardiac arrest (26). Within the veterinary literature, 
to the authors’ knowledge, in addition to the previously men-
tioned DCE-MRI study, two descriptive reviews are available 

for vascular and perfusion imaging in the canine brain, with no 
protocol details (27, 28).

A protocol for DSC-MRI at 1.5 T in the normal canine brain 
with a power injector has not been described. The aim of this 
study was to determine a DSC-MRI protocol for the normal 
canine brain.

Methods

The study protocol was designed in accordance with and approved 
by the Michigan State University animal care and use committee. 
The study was a prospective cohort study performed by recruiting 
client owned, consented healthy dogs, middle to senior in age 
(≥6 years).

All study dogs underwent a physical exam and bloodwork 
(complete blood count and serum chemistry) to ensure the ani-
mals were healthy and able to undergo anesthesia. All dogs were 
imaged under general anesthesia. All dogs received butorphanol 
(0.2  mg/kg, IV, or IM) as a premedication prior to induction. 
Varying by case, acepromazine (0.05  mg/kg, IV, or IM) was 
also administered as a premedication. General anesthesia was 
induced with propofol (4 mg/kg, IV, titrated to effect). The dogs 
were intubated and maintained on light anesthetic plane using 
sevofluorane gas anesthesia. Depending on patient size, an 18- or 
20-gauge catheter was placed within the cephalic vein approxi-
mately 20 min after premedication administration and prior to 
anesthetic induction for anesthetic intravenous fluid delivery and 
contrast bolus administration.

Images were acquired using a 1.5-T Siemens Espree 
(Melvin, PA, USA) and an 8-channel coil head or knee coil. 
In general, large dogs were placed in the head coil due to its 
greater internal diameter and smaller dogs in the knee coil to 
minimize air gap between the coil and patient. All dogs had 
an abbreviated pre-contrast conventional brain MRI study 
including transverse T1W and fluid attenuating inversion 
recovery sequences.

Dynamic susceptibility MRI images were acquired using a 
first pass gadolinium contrast-enhanced T2*W echo-planar 
image sequence (Siemens, ep2d_perf) with 50 measurements. 
Each measurement ranged from 1.5 to 2 s long depending on 
number of slices. Continuous transverse slices throughout 
the brain were made with each measurement. The number of 
slices was dependent on patient size. The image acquisition 
parameters were as follows repetition time: average 2,008  ms 
(range: 1,690–2,250), echo time: 62.4  ms, flip angle: 90°, slice 
thickness: 4 mm, field of view: 140 or 150, number of excita-
tions: 1, and matrix size of 64 × 64 × 16. Paramagnetic contrast 
media, gadobenate dimeglumine (Multihance®), was injected 
into the cephalic vein catheter using an automatic power injec-
tor (Spectris Solaris®, Medrad) after five measurements. All 
dogs greater than 11 kg received a 0.1 mmol/kg contrast bolus 
at 3 ml/s followed by10 ml saline flush at 3 ml/s. One dog less 
than 11 kg received the same dose and rate. The remainder of 
dogs less than 11 kg followed a modified protocol of 0.2 mmol/
kg contrast at 1.5 ml/s with a 10 ml saline flush at 1.5 ml/s. After 
perfusion data was obtained, all dogs underwent a post-contrast 
transverse T1W study.
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FIgURe 1 | t2*W echo-planar imaging sequence following 
gadolinium-based contrast injection at t = 0 (A) and time of peak 
arterial contrast susceptibility (B) at the level of the middle cerebral 
artery. Note the hypointense cortical arteries around the periphery of the 
cerebrum (arrow) and the middle cerebral artery (box) at peak contrast 
susceptibility.

FIgURe 2 | the arterial input function (AIF) generated at the level of the middle cerebral artery, mapping t2*signal (y-axis) against time (x-axis). Three 
AIF graphs were selected (A) and a representative averaged AIF was generated (B). Three points on the averaged AIF were selected 1—the baseline prior to the 
contrast arrival, 2—point on the graph immediately prior to signal loss peak, and 3—time immediately after return to baseline.
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Post-processing of DSC-MRI images was performed using the 
Siemens MRI analysis software (syngo.MR.NeuroPerfusion®) by 
one of the authors (Krystina L. Stadler). This commercially avail-
able software generates multiple AIF graphs based on a defined 
region of interest (ROI) centered over an area of high perfusion. 
For this study, the middle cerebral artery was used as the ROI 
(Figure  1). The AIF graphs T2*signal strength (y-axis) against 
time (x-axis). As the bolus arrives to the ROI, there is a drop-in 
signal strength (susceptibility on T2*W images), which remains 
until redistribution occurs (Figure 2). For further analysis, three 
of the AIF graphs were selected (Figure 2A). The selection of the 
three best AIF was subjective, defined by the AIF with the greatest 
defined peak and least amount of background noise. The graphs 
are then averaged by the software and used to generative a rep-
resentative averaged AIF that is used to create cerebral perfusion 
maps (Figure 2B). From the generated average, AIF, the baseline 
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FIgURe 3 | dynamic susceptibility MRI (dsC-MRI) in the normal 
canine brain. (A) DSC-MRI T2*W image at the level of the middle cerebral 
artery. Note the hypointensity of the cortical arteries (black arrow head) and 
middle cerebral artery (black arrow) during the arterial first pass of the 
gadolinium contrast bolus. (B,C) Cerebral blood volume (B) and cerebral 
blood flow (C) maps at the level of the middle cerebral artery. A blue-red 
scale is used on these maps, where red is high perfusion and blue is low 
perfusion. Note the red middle cerebral arteries and red–green cortical 
arteries (white arrow and arrow head) and the blue–green cerebral 
parenchyma (white asterisks).
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prior to the contrast arrival, point on the graph immediately prior 
to signal loss peak, and time immediately after return to baseline 
were selected (Figure  2B). After these points are selected, the 
software generates relative color perfusion maps of the entire 
brain based on the perfusion imaging physics in which CBV is 
represented by the integrated area under the AIF curve, relative 
MTT is the width of the curve and CBF as the ratio between CBV 
and MTT. The software uses a blue–green–red color scheme for 
CBV and CBF maps with red being highly perfused, dark blue 
indicating extremely low perfusion, and green being intermediate 
perfusion (Figure 3).

ResULts

Sixteen dogs met the inclusion criteria for this study. Multiple 
breeds were represented including: Staffordshire terrier 
(n  =  4), mixed breed dogs (3), Laborador retriever (1 pure, 
one crossbreed), and one of each the following: Papillion, 
Beagle, Shiba Inu, Jack Russel Terrier, German Shepherd and 
Chihuahua. Nine dogs were spayed females, five were neutered 
males, and one was an intact male. The mean dog weight was 
21.2  kg (range: 3.7–40.4  kg). Body condition score was not 
evaluated.

The injection protocol of 0.1 mmol/kg gadolinium followed 
by 10 ml saline flush at an injection rate of 3 ml/s generated a 
useable perfusion map in all dogs >11 kg (n = 11). In a small 
dog, weighing 10.5 kg, this protocol did not generate a useable 
map. This dog had evidence of contrast administration noted on 
the post-contrast T1W images. Following this dog, the protocol 
was augmented and a useable perfusion map was generated in 
the remaining dogs weighing less than 11 kg (n = 4) receiving 
the 0.2 mmol/kg of contrast medium and 10 ml saline flush at an 
injection rate of 1.5 ml/s protocol.

On the CBV and CBF maps, the large arterial structures 
(cerebral and cortical arteries) of the cerebrum were red on 
perfusion maps (high perfusion) with the smaller peripheral 
branches of these structures being green. The normal cerebral 
parenchyma was predominately royal blue (low perfusion) 
with small foci of light blue (low, but slightly higher perfusion). 

Areas of no perfusion, such as the lateral ventricles were dark 
blue.

dIsCUssIoN

The main clinical indications for perfusion imaging are neoplasia 
or a cerebrovascular event. Therefore, dogs 6  years or older 
were selected for this study to best match the age of dogs more 
commonly affected with intracranial diseases diagnosed by DSC-
MRI. In human medicine, quantitative MRI CBF changes with 
age; however, in adults, qualitative maps are generated without 
changing protocol (29). This study did not validate this protocol 
in dogs younger than 6 years. The cause of the 0.1 mmol/kg at 
3 ml/s protocol failure in one of the small dogs is unknown. This 
dog was the first small dog to be included in the study and was 
imaged after multiple successful DSC-MRI in dogs larger than 
this one. The augmentation of the protocol for smaller dogs was 
based on protocols successfully used in neonatal humans and 
piglets (1, 30, 31). Ideally, additional small dogs would have been 
tested at the protocol to see if the failure occurred repeatedly, 
however, given the funding available and limited availability of 
small dogs fitting our inclusion criteria, this was not possible 
and is a limitation to this study. The dog that failed to generate 
perfusion maps was 10.5 kg and thus the threshold weight limit 
between small and large dogs was placed at 11  kg. The closest 
large dog weight to the 11 kg cutoff was 15 kg; this dog generated 
a useable AIF with the lower contrast dose, higher rate protocol. 
The authors postulate that the small volume of contrast and/or 
the rate of contrast administration are a contributing factor of 
the lower contrast/higher rate DSC-MRI protocol not working 
in the small dogs. In the authors’ clinical experience, the lower 
contrast dose/higher rate was not successful in additional small 
dogs; these dogs were not included in this study because they 
had a known intracranial disease, which may have resultant 
alterations in their cerebrovascular perfusion. Dosing by mmol/
body weight (kg) is convention at our institution. Body condi-
tion score was not factored into contrast dosing. To the author’s 
knowledge, the relationship between patient body condition and 
gadolinium-based contrast media dosage has not been described. 
It is unknown if altering the DSC-MRI protocol for ideal body 
condition weight in patients that are over or under conditioned 
into the small or large dog protocol would affect the AIF and is a 
limitation of this study.

In this study, the middle cerebral artery was chosen to 
generate the AIF because of its reproducible susceptibility that 
occurred on arterial first pass and for continuity in map genera-
tion. Although not assessed in this study, the placement of the 
ROI on any large artery, preferably in the same slice as your 
pathology is recommended in human medicine and should 
generate a similar perfusion map (32). This study’s aim was 
to describe a contrast protocol that can be used in the canine 
patients for future studies evaluating cerebral perfusion. The 
testing of multiple different contrast doses and bolus rates were 
beyond the scope of this study. Additional studies with a large 
population of normal dogs may help to determine if any altera-
tions to the recommended dose and rate could be implemented. 
Gadolinium is a considered a safe contrast medium; doubling 
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