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Ruminants inhabit the consortia of gut microbes that play a critical functional role in their

maintenance and nourishment by enabling them to use cellulosic and non-cellulosic

feed material. These gut microbes perform major physiological activities, including

digestion and metabolism of dietary components, to derive energy to meet major protein

(65–85%) and energy (ca 80%) requirements of the host. Owing to their contribution to

digestive physiology, rumen microbes are considered one of the crucial factors affecting

feed conversion efficiency in ruminants. Any change in the rumen microbiome has an

imperative effect on animal physiology. Ruminal microbes are fundamentally anaerobic

and produce various compounds during rumen fermentation, which are directly used

by the host or other microbes. Methane (CH4) is produced by methanogens through

utilizing metabolic hydrogen during rumen fermentation. Maximizing the flow of metabolic

hydrogen in the rumen away from CH4 and toward volatile fatty acids (VFA) would

increase the efficiency of ruminant production and decrease its environmental impact.

Understanding of microbial diversity and rumen dynamics is not only crucial for the

optimization of host efficiency but also required to mediate emission of greenhouse

gases (GHGs) from ruminants. There are various strategies to modulate the rumen

microbiome, mainly including dietary interventions and the use of different feed additives.

Phytogenic feed additives, mainly plant secondary compounds, have been shown

to modulate rumen microflora and change rumen fermentation dynamics leading to

enhanced animal performance. Many in vitro and in vivo studies aimed to evaluate the

use of plant secondary metabolites in ruminants have been conducted using different

plants or their extract or essential oils. This review specifically aims to provide insights

into dietary interactions of rumen microbes and their subsequent consequences on

rumen fermentation. Moreover, a comprehensive overview of the modulation of rumen

microbiome by using phytogenic compounds (essential oils, saponins, and tannins) for
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manipulating rumen dynamics tomediate CH4 emanation from livestock is presented.We

have also discussed the pros and cons of each strategy along with future prospective of

dietary modulation of rumen microbiome to improve the performance of ruminants while

decreasing GHG emissions.

Keywords: rumen, microbiome, methane, fermentation, VFA, plant secondary metabolites

INTRODUCTION

Improving feed efficiency and livestock production is a more
coveted goal in animal agriculture being sought through selective
breeding, scientific management, and improvement of feed
composition. Feed efficiency in ruminants mainly depends upon
the quality of feed, rumen fermentation, and dynamics mediated
by rumen microbiomes. The rumen in animals is inhabited
by the diverse microbiome, including bacteria, protozoa, fungi,
and archaea. Different factors like temperature (38–42◦C), pH
(5.5–7), and redox potential (250–450mV) regulated by saliva
buffering provide a specific environment for degradation of
cellulolytic plant material by microbes (1).

Degradation of various feed components is being
accomplished by mutual interaction of microbiota to yield
mainly acetate, propionate, butyrate, hydrogen (H2), carbon
dioxide (CO2), and ammonia (NH3). Total VFA (75% of total
amount) are the primary source of energy for the animal (2).
Besides, microbial cell biomass is also utilized as the primary
origin of protein and amino acids by host animals (3). The
microbial ecosystem likewise produces vitamins B and K and
utilizes the products of phytotoxin and mycotoxin detoxification
processes (4). The ingested fiber is mainly degraded by bacteria
and fungi into soluble nutrients (5). These soluble nutrients are
subsequently used for the maintenance, growth, production, and
reproduction of animals. During rumen fermentation of feed,
some by-products are additionally produced, such as CO2 and
H2, which are further converted into CH4 by some methanogens
like Methanopyrales, Methanomicrobiales, Methanobacteriales,
Methanococcales, Methanocellales, and Methanosarcinales).
Some archaea (Methanoplasmatales or Thermoplasmatales) can
also form CH4 through other substrates, such as methanol
and mono-, di-, and tri-methylamine (6–8). Major greenhouse
gases (CH4 and CO2) are released during enteric fermentation
from ruminants. Production of CH4 also deprives the host
animal of carbon resources and results in loss of energy (13.3
Mcal/kg CH4), leading to poor feed efficiency (9). Maximizing
the flow of metabolic hydrogen ([H]) in the rumen away
from CH4 and toward VFA would increase the efficiency of
ruminant production and decrease its environmental impact.
Czerkawski (10) proposed that inhibiting methanogenesis could
favor microbial biomass production as an alternative [H] sink.
Chalupa (11) suggested that metabolic hydrogen incorporated
into excess NADH was redirected to fatty acid synthesis and
fermentation end products such as lactate and ethanol, although
the latter sinks were not quantitatively important (12).

Owing to its diverse physiological and metabolic functions,
the rumen microbiome is considered the ultimate target to

improve the energetic efficiency of animals while reducing
environmental hazards like CH4 emissions. Highly efficient
animals produce less CH4 and produce more milk, consuming
less feed owing to their unique set of rumen microbiome
(13). Specific physiological processes in lactating animals are
correlated with specific rumen microbes owing to their unique
fermentation and metabolic activities (14). The association of
VFA composition with rumen bacteria has been reported in
dairy cows possessing different efficiencies of production (15).
Moreover, the rumen microbiome varies significantly among
different animals, but intra-animal variation in microflora is
quite less (16). These facts indicate the crucial role of the
rumen microbiome in shaping the physiology of digestion and
production in lactating animals and its potential utility for
manipulation of performance and health.

Greenhouse gases (GHG) produced from ruminants have
been an area of environmental concern (17, 18). Improving
animal production systems must understand societal concerns
and should realize the effect of such systems on the environment
(19). Increasing feed efficiency to enhance animal production
should also focus on CH4 mitigation strategies to reduce GHG
emissions. In this regard, identification and manipulation of
the microbes associated with methanogenesis are considered
a significant and most crucial step (19, 20). Methanogenesis
occurs both in the rumen and hindgut, but 90% of the total
CH4 production originates from the rumen (21). A better
understanding of digestive physiology and feed fermentation in
rumen is necessary to ensure further improvement of production
efficiency in ruminants to overcome the increasing demand for
food by growing the human population. To achieve this daring
task, manipulation of rumen fermentation is required to increase
feed conversion efficiency while decreasing energy losses in the
form of CH4 emanations through dietary interventions (22).

Manipulation of rumen fermentation is considered as
an optimization process to seek suitable conditions for
maximization and/or minimization of the specific rumen
fermentation pathways, depending on factors such as type and
level of feeding and animal production. The basic target behind
such manipulation is the alteration in ruminal microflora that
can be achieved by dietary intervention and the use of additives
that selectively affect rumen communities. Improvement in
ruminant production is possible with the manipulation of rumen
fermentation to increase total VFA and propionate production
while decreasing CH4 emission through reducing rumen
methanogenesis (23). Many feed additives such as antibiotics,
ionophores, and defaunating agents have been utilized tomediate
rumen fermentation to improve the productivity of ruminants
and reduce methanogenesis. However, most chemical additives
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either are noxious to host animals or present a temporary
impact on methanogenesis (24, 25). Therefore, nutritionists
and microbiologists are continuously trying to explore some
natural substances with anti-methanogenic activity for eco-
friendly animal production by reducing CH4 emission and its
greenhouse effects (26).

We need to strengthen our understanding of diet–microbe
interactions to devise dietary interventions to modulate the
rumen microbiome to improve production efficiency and reduce
energy losses in the form of GHG emissions. Moreover, we
need to explore natural feed additives with limited or no
adverse effects to manipulate rumen fermentation to improve
feed digestibility and utilization. Plant secondary metabolites
are natural substances with the potential ability to alter rumen
fermentation without causing microbial resistance, and their
residual effects can positively affect the animal end products
(27, 28). Owing to the excellent antimicrobial activities of
phytochemicals, they are considered as a potential modulator of
the rumen microbiome to alter rumen physiology (29). Many
experiments, including both in vitro and in vivo studies, have
been conducted to explore the potential of phytochemicals
on rumen fermentation to increase feed digestibility and
reduce methanogenesis (30–32). Many of them have shown
promising results, but applicability in terms of efficient animal
production is questionable. Therefore, efforts are still underway
to find an appropriate feed additive to mitigate rumen CH4

production, simultaneously improving livestock production
while reducing greenhouse effects on the environment. To
accomplish this challenging task, an in-depth understanding of
rumen development, microbial colonization, the interaction of
rumen microbiome with the host, and diet is indispensable.
Therefore, this review aims to provide insights into the effect
of different phytogenic and dietary interventions on ruminal
microbes to mediate rumen fermentation and methanogenesis
to increase overall feed efficiency to make livestock production
sustainable and more profitable.

ONTOGENESIS OF THE RUMEN AND
INITIAL MICROBIAL COLONIZATION

The ruminant digestive system switches from monogastric to
become fully active post-weaning rumen with the ability to digest
fibrous feed. During the suckling period of the calf, milk bypasses
the rumen due to the esophageal groove. Developed rumen
comprises 60–80% of the total digestive system as compared to
the monogastric stomach in early life. Besides this, rumen villi
are not yet developed, which are necessary for the absorption
of nutrients (33, 34). Rumen microbial populations exhibit
an incredible impact on rumen structure and physiological
development. Initial inoculation of rumen microbes in calves
constitutes both aerobic and facultative anaerobic microbial taxa
following birth, which later on mostly are replaced by anaerobic
taxa (35). That is why 1-day-old calves have a massively different
bacterial population as compared to 3-days-old calves (14).

The oxidative condition of the rumen is a primary regulator
of shifts in the newborn rumen ecosystem, and redox has

an inert impact on the colonization of methanogenic species
(36). Ruminal bacteria such as cellulolytic species, Ruminococcus
flavefaciens, and Ruminococcus albus and members of the
Prevotella genus can already be detected on day one after birth.
These microbes are involved in various rumen functions, such as
cellulose and hemicellulose degradation (14). One of the primary
changes observed throughout the rumen development includes
modification in configuration within the Bacteroidetes phylum.
In the developed rumen, this phylum is dominated by the genus
Prevotella across several ruminant species (37). Nevertheless,
during the primary stages of development, Bacteroides is themain
genus within Bacteroidetes and is subsequently replaced by the
Prevotella during the first 2 months (38).

Quick fluctuations in community configuration also affect
methanogenic archaeal communities along with bacteria. Rumen
methanogenic communities in calves and lambs have been
detected as early as 20min after birth. Like bacterial populations,
the primary methanogenic population varies significantly
between young and adult animals (39–41). Both preweaning
calves and mature animals have a Methanobacteriales order,
but rumen of preweaning calves contains two additional
orders, Methanosarcinales and Methanomicrobiales (41). The
compositional variations in rumen archaea lead to shifts in
substrate utilization, methanogenic pathway, and extent of CH4

production (42).
The establishment and colonization of microbiota play a key

role in the development and function of the gastrointestinal
tract (GIT), which is subsequently associated with higher body
weight and feed efficiency of growing ruminants (43). Developing
a rumen ecosystem during weaning age is key to getting
improved growth rates and better health at a later stage of life
(44, 45). The main objective of such strategies is to overcome
the risk of undesirable health consequences associated with an
altered gut microbiome in neonatal animals and restoration of
the gut microbial community following dysbiosis. A complete
understanding of early gut colonization is necessary to designing
different effective strategies to manipulate the GIT microbiome.
Although a wealth of literature is available on different aspects
of rumen microbiome in adult animals and early colonization of
gut microbiota, information regarding the role of host genetics
and microbial interactions in the early development of the gut
microbiota is limited.

MODULATION OF RUMEN MICROBIOME
USING PHYTOGENIC FEED ADDITIVES

Ruminants can transform fibrous and non-fibrous plant material
into valuable products like meat and milk with the help of
rumen microbes (46). Rumen inhabits various microbes like
bacteria, protozoa, fungi, archaea, and bacteriophages (47). A
symbiotic relationship exists between rumen microbes and the
host animal in which both provide coveted substance to each
other mainly in three ways: (1) mastication and rumination
expand the surface area of feed particles for microbial attachment
and digestion, and consequently, microbes secrete fibrolytic
enzymes for degradation of cellulose, and hemicelluloses;
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(2) ruminal movements (peristalsis and antiperistalsis) bring
microbes in contact with the fresh substrate by mixing of
digesta and consequently yield fermentation products, especially
VFA; and (3) elimination of fermentation products by belching
and absorption is essential for keeping ideal conditions
(pH) for microbial development and utilizing non-protein
nitrogen (48).

Ruminal bacteria are the most prevailing microbiome, and
their population measured by direct counts is usually 1011 cells
per gram of rumen contents (4) comprising more than 200
species (49). Bacteria colonize inside rumen and have a major
role in the metabolism of dietary carbohydrates and nitrogen
and utilize fiber, starch, protein, and sugars. Generally, ruminal
bacteria used homoserine lactone-based quorum sensing to
communicate with each other (50). The most important genera
of ruminal bacteria are Butyrivibrio, Prevotella, Ruminococcus,
and Pseudobutyrivibrio.Mainly CH4 emissions depend upon the
abundance of H2-producing bacteria in the rumen (51).

Ruminal fungi comprise 5–20% of the total microbiota in
the rumen (52, 53). Anaerobic fungi are known as key players
for the breakdown of lignocellulosic fiber (54). Anaerobic fungi
are considered one of the most potent fiber-degrading agents,
because of their active and extensive set of enzymes for the
breakdown of plant polymers (55). Fungi produce enzymes
vital for the digestion of plant materials, including cellulases,
xylanases, mannanases, esterases, glucosidases, and glucanases
(56). Rumen fungi also possess amylolytic (57) and proteolytic
activities (58). The action of anaerobic fungi is promoted by the
methanogenic archaea (59). However, the present understanding
of rumen eukaryote function is far less than that of rumen
bacteria, primarily due to the restricted annotation of the
transcriptome and multiple-genome sequence availability (60). A
recent in vitro study reported that a combination of anaerobic
fungi (Caecomyces) andmethanogens (Methanobrevibacter) have
a greater ability to degrade lignocellulose and to produce CH4 as
compared to the combination of bacteria and methanogens, and
whole rumen content enrichment (61).

Ruminal protozoa represent about 20–50% of total microbial
biomass and are commonly grouped into flagellates and ciliates.
The flagellate proportion to overall ruminal fermentation is
negligible (62). However, ciliate protozoa have a fundamental
function in rumen fermentation as they engulf fermentable
carbohydrates (63) and prevent alternative bacterial fermentation
that would otherwise decrease pH and increase the onset of
lactic acid acidosis (64). There is a positive correlation between
ruminal protozoa and volatile fatty acid and CH4 production.
Ciliate protozoa can enhance the metabolic output of the rumen
microbiome; for instance, acetate, butyrate, iso-butyrate, and iso-
valerate concentrations were improved in microcosms incubated
with the protozoa population (65). The hydrogenosomes of
rumen protozoa are involved in the production of H2, which
is subsequently converted to CH4 by the methanogens through
the hydrogenotrophic pathway (66, 67). Approximately 11%
reduction in the CH4 output has been observed due to the
defaunation of protozoa (64, 68).

Archaea represent the third major domain of rumen microbes
that constitute about 21% of the rumen microbiome (69).

Methanogenic archaea belong to the phylum Euryarchaeota
and are ubiquitously involved in methanogenesis (7, 69).
Rumen methanogens have a synergistic association with
bacteria and a symbiotic association with protozoa as <1%
of the total microbial population (70). Different substrates are
utilized during methanogenesis including formate, or acetate,
methanol, H2, methylamines, and CO2 (71). Methane is
produced mainly through three pathways: (i) primarily by
reduction of CO2 through the hydrogenotrophic pathway,
(ii) less from the use of methyl groups (methylotrophic
pathway), and (iii) even less through acetate (acetoclastic
pathway) production (Figure 1). Methanogenic paths comprise
three stages: exchange of the methyl set to coenzyme M
(CoM-SH), reduction of methyl-coenzyme M with coenzyme
B (CoB-SH), and reuse of heterodisulfide CoM-S-S-CoB
(51, 68, 73).

The bacteriophage community is also an important
component of the rumen microbial ecosystem. Studies have
reported inconsistent findings of bacteriophage counts ranging
from >109 particles of phages (74) to between 3 × 109 and 1.6
× 1010 particles per ml of rumen content (75). Bacteriophages
possess a specific lysogenic ability against different bacteria
that helps in bacterial mass turnover in the rumen. Due to
a lack of information regarding the mechanisms of rumen
phage–host interactions and the environmental factors affecting
the relative proportions and dynamics of the phage population
in the rumen, it is not possible to definitively determine whether
the presence of phage in the rumen is disadvantageous or
advantageous. However, possible functional consequences of
rumen phages have been proposed as (1) the negative nutritional
consequences of phage-induced bacterial lysis resulting in the
recycle of nutrients within the rumen, (2) the positive effects of
maintaining bacterial population diversity and facilitating gene
transfer, and (3) the negative consequences of phage-mediated
gene transfer.

Keeping in view their critical role in digestive physiology
and nutrient metabolism, modulation of the rumen microbiome
is envisioned as a practical strategy to mediate fermentation
kinetics and methanogenesis. Modulation of the rumen
microbiome can be possible through different dietary
interventions; however, in this regard plant secondary
metabolites possess a greater potential as compared with
antibiotics to modulate the ruminal microbiome and mitigate
CH4 emission through diverse antimicrobial mechanisms
such as perturbation of cell membrane, modulation of signal
transduction or gene expression pathways, enzyme inhibition,
and inhibition of bacterial colonization (76, 77). Plant secondary
metabolites usually enhance the permeability and fluidity of the
cellular membranes, further causing an efflux of metabolites
and ions and ultimately leading to cell leakage and microbial
death. Besides, they can also desirably manipulate the rumen
metabolism by increasing the cell membrane’s permeability
of few specific rumen bacteria (78, 79). Putative mechanisms
of actions mainly include disturbance of the cytoplasmic
membrane, disruption of the proton motive force, electron
flow, active transport mechanisms, and coagulation of cell
composition (80).
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FIGURE 1 | Three enzymatic pathways of methanogenesis. 1, CO2-reducing pathway (hydrogenotrophic pathway); 1, acetoclastic pathway; 1, methylotrophic

pathway; MFR, methanofuran; H4MPT, tetrahydromethanopterin; H4SPT, tetrahydrosarcinapterin; 1G0′ , standard free energy change; CH3-R, methyl-containing

compounds such as methanol, methanethiol, dimethylsulfide, monomethylamine, dimethylamine, trimethylamine, and tetramethylammonium; Fdred, reduced form of

ferredoxin; Fdox, oxidized form of ferredoxin; 1µNa+, electrochemical sodium ion potential; 1µH+, electrochemical proton potential; FBeB, flavin-based electron

bifurcation; CDeT, cytochrome-dependent electron transfer; MCR, methyl-coenzyme M reductase; CODH/ACS, carbon monoxide dehydrogenase/acetylCoA

synthase/decarbonlyase complex. Adapted from Lyu et al. (72).

GENETIC MANIPULATION OF RUMEN
MICROBIOTA

The host diet has a major influence on the relative abundance
and diversity of the rumen microbiome. However, genetic
manipulation of rumen microbiota is also possible through
different techniques as host genetics influences some heritable
microbial traits (81–83). In this regard, recent biological
techniques such as transgenesis are getting attention for
improving the efficiency of animal production and reducing
environmental impacts (84). New genome editing tools provide
an efficient way to produce gene-edited ruminants, having
resistance against certain diseases and specific product quality

(85). In transgenic animals usually, a foreign gene of interest
is inserted into its genome to express a desirable trait (86).
In a study of pig transgenesis, neomycin phosphotransferase
transgene has been evaluated using high-throughput sequencing.
Neo-transgenic expression in transgenic pigs showed a
significant increase in the relative abundance of some bacteria
(Firmicutes, Bacteroidetes, and Proteobacteria) with a reduction
of potentially harmful bacteria such as Escherichia–Shigella–
Hafnia (87). A recent study by Yang et al. (88) showed
inactivation of the ABO acetyl-galactosaminyl-transferase
gene through a deletion of 2.3 Kb, potentially affecting the
microbiota composition and its relative abundance (particularly
Christensenellaceae and Erysipelotrichaceae families).
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Presently, different studies are being focused to identify
heritable microbes and microbial features in humans and
animals, considering gut microbiomes as heritable phenotypes,
(89). Elucidation of the association between host genetics and
rumen microbiome composition will help to identify persistent
microbial taxa and functions that are characteristic of efficient
animals, thereby directly facilitating efforts to genetically select or
permanently alter the rumen microbiome. Within the next 5–10
years, significant progress is expected regarding the relationship
between gut microbiomes and the genetics of their ruminant
hosts, unraveling an intricate network that paves the way for the
genetic selection of heritable microbes and keystone microbial
species. These efforts will rapidly advance microbial ecology
research and animal production to efficiently and sustainably
produce high-quality protein for human consumption to
considerably contribute to global food security (90).

DIET–MICROBE INTERACTIONS

Emerging feeding techniques to limit CH4 emissions are
necessarily required both for preserving the environment and for
increasing the efficacy of energy utilization. Different microbes
are involved in the production of VFA (Figure 2). The rumen

of dairy cow possesses diverse consortia of microbes that
produce significant amounts of GHG gases (mainly CH4)
during feed digestion (48). Methodologies to divert rumen
carbon and nitrogen metabolism away from these products
offer opportunities for improving the efficiency of ruminant
production by enhancing nutrient utilization while reducing
GHG emissions.

Many studies have been conducted regarding the development
of nutritional interventions to cut down CH4 emissions from
ruminants (91–93). With increasing food safety concerns,
different natural compounds of plants are being considered
ideal for moderating/mitigating CH4 emissions (94). The diet
fed to ruminants is the primary determinant of bacterial
community structure (95–97). Co-oscillations of microbiota are
very important to maintaining homeostasis in gastrointestinal
ecology after dietary perturbations (98). It is important to adjust
the animal diet according to their age and physiological condition
and to provide proper time to adapt to different dietary changes.
Diet is also considered as an important factor to ensure proper
animal health and performance because digestion and utilization
of nutrients mainly depend upon collaboration and competition
of the microbiome. Important diet–microbe interactions are
discussed as below.

FIGURE 2 | Microbes involved in VFA production.
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Carbohydrate–Microbe Interactions
Rumen microbiology involves the characterization of microbes
and processes associated with fiber digestion (17, 99, 100).
Rumen bacteria play a dominant role in fiber digestion, although
anaerobic fungi and protozoa have been reported to contribute
to lignocellulose breakdown by attacking lignocellulosic material
differently (60, 64) and discharging different enzyme complexes
(101). Microbial communities found in the rumen of cows fed
total mix ration (TMR) vary as compared to pasture-fed cows,
owing to the variable dietary composition (102, 103). Different
rumen bacteria have shown associations with specific diets like
Fibrobacteraceae with TMR and Veillonellaceae with pasture-
based diets (104).

Feeding concentrate diets have shown to lower the ruminal
pH, increase VFA concentrations and osmolality, and induce
metabolic disorders (105). Moreover, high starch feeding
substantially increases the activity of lactic acid consuming
and producing bacteria in the rumen because these microbes
are not susceptible to lower pH and hence opportunistically
utilize higher substrate availability (106). In contrast, feeding a
considerable amount of roughages may limit feed consumption,
energy efficiency, and microbial protein synthesis in ruminants
(107). Therefore, an increasing quantity of starch in the diet is
considered as a promising strategy to decrease methanogenesis
per unit of dry matter intake through shifting ruminal
fermentation toward propionogenesis (108). It is mainly
attributed to the fact that the supply of substrates and microbial
growth depends upon the dietary fiber or starch contents (109).
Increased dietary starch levels have shown a relatively lower
proportion of cellulolytic bacteria R. albus and R. flavefaciens,
owing to their higher sensitivity toward low pH. However, in
an acidic ruminal environment F. succinogenes have shown to
remain stable due to their gram-negative nature and different
cell membranes than R. albus and R. flavefaciens (110). Feeding
grain-based diets to cattle could reduce the bacterial diversity
compared to forage-based diet (111). This reduction might
be attributed to less availability of substrates for bacteria
that ferment structural carbohydrates and the subsequent
lower pH.

Feeding of high starch and low fiber diets has also been
shown to enhance the growth of amylolytic bacteria in the
rumen. Propionate is produced by S. ruminantium through
decarboxylation of succinate (6). This bacterium is capable of
using starch and sugar for its growth. Higher dietary starch
contents have been shown to increase the concentrations of
propionic acid in the rumen substantially. Furthermore S.
ruminantium is also capable of using lactic acid to stabilize the
rumen pH (112). Thus, an increase in the population of these
bacteria can enhance the utilization of fermentable substrates
generated in the rumen following a high concentrate diet. A
facultative anaerobe (S. bovis) predominated in ruminants fed
an increased amount of concentrate during lactic acidosis (109).
The activity of S. bovis only increases as a result of low pH
(<5.75) conditions in the bovine rumen (113). According to
McCaughern et al. (114), feeding a high-starch (220 g/kg of DM)
diet to dairy cows could reduce rumen pH (0.15 units lower than
normal pH) and increase milk yield (0.09 kg/d) and milk protein

content (2.8 g/kg). Feeding a high-starch diet can directly affect
the colonic lumen environment, which in turn alters the lumen-
specific functional taxonomic groups (Akkermansia, unclassified
Christensenellaceae, and vadinBB60). Consequently, the colonic
epithelium makes a new niche that triggers cell apoptosis to
achieve a functional transformation (98). These studies suggested
that microbe–host interaction is vital for remodeling of hindgut
homeostasis to allow adaptation to dietary perturbations.

Silage from various sources harbors different rumenmicrobial
communities. Feeding of alfalfa silage increased the relative
abundance of F. succinogenes and R. flavefaciens while reducing
CH4 production in the cow rumen as compared to sweet
sorghum silage. However, populations of Ruminococcus albus
and Ruminobacter amylophilus showed no change (115).
Contrarily, sheep fed an alfalfa hay diet had higher ruminal
Fibrobacter succinogenes compared to Ruminococcus (116).
According to Guo et al. (117), fermented corn stover showed
a positive effect on ruminal bacterial diversity favoring
four bacterial phyla; Bacteroidetes, Lentisphaerae, Firmicutes,
and Fibrobacteres, which constituted 77% of total bacterial
abundance. Additionally, feeding of fermented corn stover
shifted the rumen fermentation kinetics in cows through
increasing the relative abundance of Prevotella and stabilizing the
rumen microbial ecosystem. Recently, it has been reported that
feeding temperate grasses produce less enteric CH4 than tropical
grasses in ruminants (118) as feeding low-quality tropical grasses
emitted 17 g CH4/kg DM intake. However, a 10–25% decrease
in CH4 production has been observed, when foliage and pods of
trees and shrubs are included in the cattle diet (118).

A recent meta-analysis showed that feeding high-forage diets
(>40% DM) reduced milk production (0.087 L/d) and milk
lactose content (0.065 g/100 g) compared to high-concentrate
diets (>40% DM) in sheep. However, fat content and conjugated
linoleic acid concentrations were higher in the high-forage group
(119). These findings convincingly reveal that the appropriate
ratio of roughage and concentrate is required to optimize the
rumen microbial ecosystem for better digestion and utilization
of the dietary components while minimizing CH4 emission.
Chemostatic feedback regulation (energy feedback), physical
fill and feed passage rate of concentrate, and forage-type
diets are involved in affecting the DM intake of ruminants.
Moreover, inoculation of silage with specific groups of beneficial
microbes can positively influence rumen fermentation kinetics
and performance of animals on a sustainable basis.

Interaction of Dietary Fat With Rumen
Microbiome
Generally, supplementation of fatty acids (FA) is not required
for microbial proliferation in the rumen because microbes can
synthesize their own FA. Basal feed ingredients, including forages
and grains, provide about 3–3.5% fat on a dry matter (DM)
basis. However, for high-producing dairy cows, additional fat
supplementation up to 2% of rumen-active fat (vegetable blends,
oilseeds) and rumen-inert fat is usually recommended to make
total dietary lipids up to 6–7% of DM (120). These dietary lipids
are usually enriched in polyunsaturated fatty acids (PUFA) (121),
which can make complexes with bacterial cell walls and are
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considered toxic to gram-positive bacteria in the rumen (122). In
most ruminant diets, fat is below 5% of total DM. Higher dietary
fat contents, primarily unsaturated FA, are discouraged owing to
their adverse impacts on ruminal bacteria and feed degradation
(123). However, rumen microbiota can detoxify unsaturated FA
through the biohydrogenation process to reduce/eliminate the
adverse effects on rumen fermentation (121, 124).

The addition of fats from plant or animal sources is
an accepted approach for mitigation of CH4. However,
consideration of fat supplementation to mitigate enteric CH4

emission depends on the cost and expected adverse effect on
feed intake and digestibility (19). Improving the nutritive quality
(high fat and fiber digestibility) of the offered diets has shown
to reduce the DM intake in lambs but showed no effect on total
tract digestibility of DM, organic matter (OM), crude protein,
acid detergent fiber (ADF), and neutral detergent fiber (NDF)
contents (125). Adding fat up to 6–7% of DM has shown no
adverse effects on total tract digestibility (126). Recent studies
have reported no effects of rumen-protected fats on NH3-N
concentrations, total VFA, and overall bacterial population in
sheep (127). Changes in rumen microbiota (Acetitomaculum,
Lachnospira, and Prevotella) caused by an increased proportion
of concentrates were considerably more significant than fat (128).
Fibrobacter and Ruminococcus were most adversely affected
among different bacterial genera, but such effects were highly
variable for Butyrivibrio and Prevotella. These two genera
(Butyrivibrio and Prevotella) include many species with diverse
functions in metabolic pathways (129).

A decrease or no change was observed in major protozoa
genera in response to the addition of linseed oil, particularly in
high-concentrate diets (130). Moreover, increasing the degree
of unsaturation reduces the protozoal count, but due to high
random and animal variations, this change can be challenging to
assess, which may explain inconsistent experimental data (131).
Dietary supplementation of camelina oil has not shown any
effect on ruminal protozoa (132), but a decrease in bacterial N
and the number of cellulolytic bacteria was observed in diets
supplemented with 8% dietary lipids (133). However, Bayat et al.
(134) reported that the inclusion of camelina oil in the diet
exhibited no effects on the relative abundance of protozoa, total
bacteria, methanogens, fungi, and fiber-degrading bacteria.

Lipids from oilseeds, vegetable oils, and rumen-protected fat
of vegetable oils are usually used as energy sources for dairy cattle
(135). Oilseeds can be one of the efficient ways to reduce enteric
CH4 production tomitigate CH4 emission from ruminants. Plant
oils can mitigate CH4 by directly inhibiting rumen protozoa
and methanogens and increasing the biohydrogenation of PUFA
to act as a sink for hydrogen produced by rumen microbes
(136). The utility of lipids to reduce enteric CH4 production is
a better strategy as compared to antibiotics and ionophores like
monensin. Several studies have reported adverse effects of FA,
especially PUFA, on methanogenesis in the rumen (136). The
anti-methanogenic effects of PUFA generally get intensified with
the increase in double bond number per FA, as suggested by
Czerkawski and Clapperton (137).

Supplementation of fat has been shown to reduce CH4

emission in ruminants consistently. However, various factors

such as fat source, FA profile, basal diet, and fat type can
affect the anti-methanogenic efficiency of dietary fats (93). This
reduction in CH4 emission by dietary fat is mainly through the
depressed fiber digestion in the rumen (138). However, according
to McGeough et al. (125), a highly digestible fiber diet with
higher fat content tended to increase CH4 emissions per kg of
DMI and OMI, while the same amount of fat showed no effect
on these parameters in a diet with low fiber digestibility. The
inclusion of fat in a high-concentrate diet of sheep improved fat
and conjugated linoleic acid contents of milk (119). Bayat et al.
(139) reported a decrease in daily CH4 emission in lactating cows
fed a low concentrate diet supplemented with sunflower oil.

Recently, moringa and camelina oils have shown to effectively
reduce enteric in vitroCH4 production in different TMR through
modulation of rumen microbes and shifting rumen kinetics (140,
140). Variable effects of vegetable oils and unsaturated FA on
CH4 emission might be associated with the double bond number
per FA, type of oil (free oil or whole seed), and composition
(roughage-to-concentrate ratio) of the rations (134). An in vitro
study of Vargas et al. (141) shows that supplementation of
vegetable oil (sunflower and linseed) at 6% in high-concentrate
TMR has the potential to reduce CH4 emission (up to 21–28%),
butyrate concentration, and A:P, while increasing propionate
concentration. Recently, a meta-analysis showed that addition
of nitrates and vegetable oils in cattle diet has the ability
to reduce CH4 emission up to 6–20% (118). Considering
different studies regarding the reduction of CH4 emission,
the addition of plant oils to ruminant rations is suggested as
a feasible nutritional strategy with a cleaner repercussion on
the environment.

DIETARY MANIPULATION OF RUMEN
FUNCTION USING NATURAL FEED
ADDITIVES

Dietary changes have been reported as a major factor that
influences the dynamics of rumen microbial populations and
resultant metabolic shifts leading to significant changes in
ruminant production (142, 143).Many dietary interventions have
been used in ruminants for the manipulation of the rumen
microbiome to improve overall feed efficiency while reducing
methanogenesis. A few dietary methodologies have been assessed
for enhancing rumen fermentation, mainly to reduce CH4

emission. These strategies were focused to (i) improve feed
efficiency using the quality feed, (ii) shift rumen fermentation
pathways using assorted feed additives, and (iii) genetically
manipulate host animals using selective breeding. Each strategy
has some potential advantages and limitations. Recent issues of
drug residues and antibiotic resistance have shifted the interest
toward natural feed additives with potential abilities to modulate
performance in ruminants. Many encouraging results have been
observed by the application of different feed additives, including
organic acids, probiotics, enzymes, and phytochemicals. Ideally,
feed additives should diminish CH4 emission, enhance animals’
energetic efficiency by increasing propionate concentration,

Frontiers in Veterinary Science | www.frontiersin.org 8 November 2020 | Volume 7 | Article 575801

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Hassan et al. Phytogenic Additives Modulate Rumen Microbiome

improve N2 utilization efficiency by decreasing its excretion,
optimize rumen pH, and improve fiber digestion (144).

Most important natural feed additives are phytochemicals
produced by plants as secondary metabolites with diverse
biological activities. Some potential effects of these feed additives
and their mechanism of action as rumen modulators are
described as below.

Plant Secondary Metabolites as Rumen
Modulator
Despite the sustainability of functional redundancy in the
rumen microbiome, plant secondary metabolites have shown
significant manipulation of the rumen microflora leading to a
shift in fermentation dynamics and milk production in lactating
animals (29, 31, 145–147). They have also shown to reduce the
methanogenesis both in vitro and in vivo (29, 31, 76, 148, 149).
Recently, numerous plant extracts have been investigated for
their capacity to manipulate gut physiology and antimicrobial
activity. Some plant metabolites, for example, saponins, tannins,
and essential oils (EO), have shown promising potential for
decreasing CH4 emission from animals. They have shown
significant impacts on methanogens as well as protozoa, feed
degradation/absorption, and fermentation parameters.

Effect of Saponins on Rumen Methanogenesis and

Fermentation Characteristics
Saponins are a class of plant secondary compounds with
diverse chemical compositions and biological activities (31).
Saponins comprise mainly sapogenins and glycosides found
mostly in angiosperms. Steroidal and triterpenoid saponins are
two significant groups of saponins, which protect plants from
bacterial and fungal invasions (150). Saponin-rich plants such as
lucerne and soybeans are broadly utilized for ruminant feeding.
Additionally, Quillaja saponaria (soapbark), Yucca shidigera

(yucca), and Sapindus sp. (soap berries) are considered as well-
known sources of saponins (151). Saponins have a fat-soluble
nucleus, and they have shown antibacterial, antitumor, and
anti-inflammatory properties in animals (152, 153). Saponins
mediate rumen fermentation mainly by decreasing protein
degradation and concentrations of urea and NH3 in the rumen,
leading to an increased flow of amino acids to the small
intestine. Potential effects of saponins are associated with N2

metabolism, mainly through their lethal effect on protozoa,
which are primarily responsible for proteolytic activity in the
rumen (154). Saponins reduce the protozoal population and
some methanogens associated with protozoa, although their
effect on methanogens does not always correlate with the effect
on protozoa (31). The interaction of sterol moiety with saponin,
present in the protozoa membrane, has an association with the
antiprotozoal effect of saponins (154).

It is generally expected that a reduction in the population
of methanogens can decrease CH4 emissions. Extracts of S.
sesban have shown to decrease protozoal and methanogen
populations but surprisingly did not decrease CH4 production
(155). There was a frail relationship betweenmethanogenesis and
methanogens in the rumen. This is mainly because the enhanced
expression of some methanogenic genes may lead to enhanced
methanogenesis that ultimately compensated a decrease in the
overall number of methanogens (156). These findings provide
explicit insight regarding, managing gene interactions from the
microbiome to enhance nutrient utilization efficiency.

Tea saponins have been extensively used in many studies
in vitro and in vivo to evaluate the effects on rumen
fermentation and methanogenesis. Variable results regarding
microbial population and rumen fermentation parameters have
been observed in response to the supplementation of different
sources of saponins (Tables 1, 2). Despite the decline observed
in methanogenesis through a direct decrease in protozoa

TABLE 1 | Effect of saponins on rumen microbial population.

Sources Test system/dose Diet Total

bacteria

Protozoa Methanogens F.S R.F R.A B.F References

Tea saponin In vivo or in vitro both in

ewe 3 g/d

TMR + wildrye hay = ↓ = ↑ = = = (157)

Tea saponin (Lerak)

Tea saponin (Hibiscus)

In vitro rumen fluid from

Cattle (2 and 4%)

Cassava leaf silage =

=

=

=

=

=

=

=

=

=

=

=

NF

NF

(158)

Quillaja saponin In vitro rumen cows

(0.6 g/L)

TMR ↑ NF = NF NF NF NF (159)

Combination

(Enterolobium

cyclocarpum and

Gliricidia sepium)

In vivo or in vitro both in

heifer

TMR 3.3% of 15%

DM

= = = NF NF NF NF (160)

Tea saponin In vitro rumen fluid from

cows 0.77%

F:C (50:50) = = = NF NF NF NF (161)

Tea saponin Chambers 0.52% in

vitro bottles

TMR NF ↓ NF NF NF NF NF (162)

Quillaja saponin Open chambers (0.6

g/L)

F:C (50:50) = ↓ ↓ = ↑ ↑ NF (163)

F.S, Fibrobacter succinogenes; R.F, Ruminococcus flavefaciens; R.A, Ruminococcus albus; B.F, Butyrivibrio fibrisolvens; NF, not found; ↑, increase; ↓, decrease; =, no effect.
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TABLE 2 | Effects of saponin on methanogenesis, rumen fermentation, and feed degradability.

Sources Test system/dose Diet CH4 NH3 tVFA DMI Acetate Butyrate Isobutyrate Propionate Isovalerate Valerate Acetate/

Propionate

DMD References

Tea saponin In vivo or in vitro both in

ewe 3 g/d

TMR + wildrye

hay

= ↓ ↑ = = ↑ ↑ ↑ ↑ = ↓ ↑ (157)

Tea saponin (Lerak)

Tea saponin

(Hibiscus)

In vitro rumen fluid from

cattle (2 and 4%)

Cassava leaf

silage

=

↑

↓

↓

=

=

NF

NF

↑

↑

↑

=

=

=

↑

↓

=

=

↑

=

NF

NF

↑

↑

(158)

Quillaja saponin In vitro rumen fluid from

cows (0.6 g/L)

TMR = ↓ = NF = = = = = = = = (159)

Combination of

kulthi, patha, and

aritha

In vitro rumen fluid from

male buffaloes 2%

F:C (80:20) ↓ NF ↓ NF = ↓ = = = = ↓ ↑ (164)

Combination of

Enterolobium

cyclocarpum and

Gliricidia sepium

In vivo or in vitro both in

heifer

TMR 3.3% of

15% DM

= NF = = = = = = NF NF = = (160)

Sapindus

mukorossi fruits

acetone extract

Buffalo rumen 125ml

bottles fitted 0.5ml

Oat hay ↓ = NF = = = NF NF NF = = (165)

Alfalfa saponins In vivo lamb 0.4% F:C (50:50) NF NF NF = NF NF NF NF NF NF NF ↑ (166)

Tea saponin Open chambers 0.52%

in vitro bottles

TMR ↑ = = ↓ = = = NF NF NF = = (162)

F:C, forage to concentrate ratio; TMR, total mixed ration; tVFA, total volatile fatty acid; DMI, dry matter intake; DMD, dry matter degradability; NF, not found; ↑, increase; ↓, decrease;

=, no effect.

populations under in vitro conditions, the same plant extract
(0.52% on DM basis) failed to reduce daily CH4 production in
lactating dairy cows (162). This suggests that the impacts of tea
saponins under in vitro conditions must be confirmed in vivo to
develop effective CH4-mitigating strategies.

Inactivation of saponins has been observed through
deglycosylation into sapogenins by the rumen microorganisms
that lead to the transitory antiprotozoal property of saponins.
There are two approaches to improve the effectiveness of
saponins and reduce their degradation by rumen microbes.
One possible method is to use a combination of saponins
with glycosidase-inhibiting iminosugars (167). The second
option is altering the saponin structure, such as by combining
ivy saponins with stevia extract. Hederagenin bis-succinate
(HBS) obtained by hydrolysis of ivy fruit extract has shown
to shift fermentation toward propionate, attributed to its
structural modifications that mediated the diversity of bacterial
communities (167).

Recently, tea saponins have been supplemented in alfalfa hay
and soybean hull-based fiber diets and exhibited their ability
to alter ruminal lipid metabolism in cattle through reducing
the relative abundance of Lachnospiraceae (168). Furthermore,
tea saponins have also been shown to effectively decrease N2

emission in sheep (157). However, studies have revealed that the
activity of saponins fluctuates and even reduces during long-
term studies (158), probably because of microbial adaptation
(169). Moreover, saponins can increase the propionate ratio at
the expense of both acetate and butyrate (158). Studies have
shown that a combination of garlic oil, nitrate, and saponins can
additively lower CH4 emission with similar rumen fermentation
and degradability (163). Archaeal growth was inhibited by all
treatments, but the abundance of F. succinogenes R. albus,
and R. flavefaciens varied. According to Liu et al. (157), tea
saponin did not affect methanogens and the total bacterial

population including R. flavefaciens R. albus, and Butyrivibrio.
However, protozoa were effectively reduced in response to
tea saponins.

All saponins have no inherent antiprotozoal activity; that
is why their biological activity can be affected by even small
changes in their structure. For instance, sapogenins like asiatic
acid and madecassic acid have more ability for the inhibition
of protozoa than their corresponding saponins (Re and Rh1
and madecassoside). Therefore, further research is warranted
to understand the deglycosylation of saponins and the nature
of their antiprotozoal activity to devise effective ways to use
saponins for CH4 mitigation in ruminants (170).

Effect of Tannins on Rumen Methanogenesis and

Fermentation Characteristics
Tannins are polyphenolic compounds with molecular weights
ranging from 500 to 5,000 Da with two major groups [i.e.,
condensed tannins (CT) and hydrolyzable tannins (HT)].
Tannins can bind with dietary proteins, starch, and sugar
by making strong complexes at pH 3.5–7 (150). Tannins are
widely distributed in different plant species, particularly in
cereals, legumes, and fruits. They can limit the digestibility
and nutritional value of plants considerably when their
concentration reaches more than 5% (171). The action of
tannins in the rumen is not entirely well-conceived yet (172).
Although they possess bacteriostatic effects, the association of
tannins with the rumen microbes is different, as hydrolyzable
tannin is more susceptible to microbial hydrolysis than
condensed tannin (173). They can limit the degree of microbial
hydrolysis along with direct inhibition of methanogens.
Additionally, they can also lower methanogenesis indirectly by
decreasing H2 availability by reducing fiber digestion (Figure
3). Tannins can modify the ruminal microbiome, reduce
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TABLE 3 | Effect of tannins on rumen microbial population.

Sources Test

system/dose

Diet Total

bacteria

Protozoa Methanogens PV RC RB BV References

Acacia mearnsii In vivo lamb

15g daily

dose

TMR NF NF NF ↓ = NF NF (176)

Chestnut tannin

extract

In vitro Ewe

rumen 16

g/kg DM of

CHT extract

TMR = = = = = = = (177)

Tannic acid In vivo cattle

16.9 g TA/kg

DM

(TMR) Low

CP

High CP

=

=

NF NF =

=

=

=

NF =

=

(178)

DFPP condensed

tannin (6.9%)

In vitro steers

DFPP levels

1%

2%

3%

4%

F:C (30:70) NF ↓

↓

↓

↓

NF NF NF NF NF (179)

HT

Chestnut

Tannic acid

Gallic acid

Beef cattle

2%

1.5%

1.5%

Alfalfa silage NF
=

=

=

NF NF NF NF NF (180)

Tannin extracted

from pomegranate

peel

Lambs

29%

25%

30%

Recycled

poultry

bedding

=

↓

↓

NF NF NF
↓

↓

↓

NF NF (181)

HT

Gallic acid

In vitro

0.5%

1%

2%

TMR NF
=

=

=

NF NF NF NF NF (182)

HT

Syzygium

cumini

CT

Machilus

bombycina

In vivo Lambs

14.08 and

4.29 g/kg DM

F:C (50:50)
=

↑

↓

=

NF NF NF NF NF (183)

Tannin from

chestnut, valonea,

sumac and grape

seed

In vitro

Non-lactating

cows 1.5 g/d

TMR NF NF = NF ↓ NF NF (184)

i) HT

chestnut,

tara

ii) CT

mimosa,

gambier

In vivo lamb

40 g/kg

commercial

extract

Concentrate
=

=

=

=

=

↓

=

↓

=

=

↓

↓

↓

=

=

↓

=

=

=

=

=

=

↓

=

↓

=

=

↓

(185)

HT

chestnut

CT

mimosa

In vivo sheep

10%

Grass hay NF NF NF =

=

↑

↓

=

=

↑

↓

(186)

PV, Prevotella; RC, Ruminococcus; RB, Ruminobacter; BV, Butyrivibrio; NF, not found; ↑, increase; ↓, decrease; =, no effect.

protein degradation, decrease methanogenesis, and inhibit FA
biohydrogenation (174, 175).

Variable results regarding the shifting of microbial population
and rumen fermentation parameters have been observed
in response to the supplementation of different sources of
tannins (Tables 3, 4). Studies have reported quite different

effects of tannin supplementations regarding CH4 mitigation.
Some studies have also shown that tannins indirectly impede
the degradation of fiber (76). A recent study showed that
supplementation of acacia tannin (15 g/d/animal) reduced
short-chain fatty acids (SCFA) and acetate (molar percentage)
in lambs affected by gastrointestinal nematode infection.
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TABLE 4 | Effects of tannins on methanogenesis, rumen fermentation, and feed degradability.

Sources Test system/

Dose

Diet CH4 NH3 tVFA DMI Acetate Butyrate Isobutyrate Propionate Isovalerate Valerate Acetate/

Propionate

DMD References

Tannin-containing

hay

In vivo cows and

heifers

Hay ↓ NF NF NF NF NF NF NF NF NF NF NF (187)

ATE In vivo lambs 42

g/kg DM

Urea-containing

diet

= ↓ = = ↓ = NF ↑ NF ↑ ↓ ↓ (188)

Acacia mearnsii In vivo lamb 15g

daily dose

TMR NF = NF NF ↓ ↑ = = NF ↑ = NF (176)

lipid encapsulated-

ATE

In vitro 24 h TMR ↓ ↓ NF NF NF NF NF NF NF NF NF NF (189)

Oak tannin extract In vivo lactating

cows 169 g/DM

TMR including

linseed

= NF NF = NF NF NF NF NF NF NF = (190)

DFPP condensed

tannin (6.9%)

In vitro steers

DFPP levels

1%

2%

3%

4%

F:C (30:70)

↓

↓

↓

↓

=

=

=

=

=

=

=

=

↓

↓

↓

↓

=

=

=

=

NF

↑

↑

↑

↑

NF NF

↓

↓

↓

↓

↑

↑

↑

↑

(179)

i) HT

chestnut,

tara

ii) CT

mimosa,

gambier

In vivo lamb 40

g/kg commercial

extract

Commercial

concentrate diet NF =

=

=

=

=

=

=

=

NF
=

=

=

=

=

=

=

↓

↓

=

=

=

=

=

=

=

↓

=

=

=

=

=

=

=

=

=

=

=

NF
(185)

Quebracho tannin

extract

Crossbred

heifers,

1%

2%

3%

4%

Low-quality

tropical

Pennisetum

purpureum grass

=

=

↓

↓

=

=

=

=

=

=

=

=

=

=

=

↓

=

=

=

=

=

=

=

=

=

=

=

=

=

=

↑

↑

=

=

=

↓

=

=

=

=

=

=

↓

↓

=

=

=

↓

(191)

40% distillers

grains and solubles

with CT

Cannulated

crossbred beef

heifers 2.5% CT

extract

High protein

finishing diets

↓ = ↓ = = ↑ = ↓ = = ↑ ↓ (192)

Tannic acid In vivo cattle

16.9g TA/kg

(TMR)

Low CP

High CP

NF
↓

↓

↓

↓

=

=

↑

↑

=

=

=

=

=

=

↓

↓

↓

↓

↑

↑

↓

↓

(178)

HT

Chestnut

tannic acid

gallic acid

Beef cattle

2%

1.5%

1.5%

Alfalfa silage
=

=

↓

=

↓

=

↑

=

↑

=

=

=

=

=

=

=

=

=

↑

↑

↑

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

(180)

HT

syzygium

cumini

CT

Machilus

bombycina

In vivo lambs

14.08 and 4.29

g/kg DM

F:C (50:50)

↓

↓

↑

↓

↓

↓

=

=

↓

↓

↓

=

=

=

↓

↓

NF ↓

↓

↓

↓

(183)

(Continued)
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TABLE 4 | Continued

Sources Test

system/Dose

Diet CH4 NH3 tVFA DMI Acetate Butyrate Isobutyrate Propionate Isovalerate Valerate Acetate/

Propionate

DMD References

HT

gallic acid

In vitro

0.5%

1%

2%

TMR
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

↓

↓

↓

=

=

=

=

=

=

NF (182)

CT

Cistus ladanifer

In situ ram CT

levels

4%

8%

12%

Lucerne silage NF

↓

↓

↓

NF NF NF NF NF NF NF NF NF

↓

↓

↓

(193)

Tannin extracted

from pomegranate

peel

Lambs

29%

25%

30%

Recycled poultry

bedding

NF

=

↓

↓

=
=
=

=
=
=

=
=
=

NF

=
=
=

=
=
=

=
=
=

=
=
=

NF (181)

Combination of TA

and AF

In vitro TA

(0.02 g) + AF

(0.02 g) + Wheat

barn (0.01 g)

Commercial

concentrate diet

↓ NF = NF = NF NF = NF NF NF = (194)

CT In-vitro

incubation

2.5%

5%

7.5%

Cassava silage NF

=
=
=

NF

↑

↑

↑

↑

↑

↑

=
=
=

NF

=
=
=

NF NF NF

=
=
=

(195)

HT

Acacia nilotica

In vitro Sheep

25%

50%

75%

100%

Acacia nilotica

leaves ↑

↓

↓

↓

NF
=

↓

↓

↓

NF ↑

↑

↑

↑

↓

↓

↓

↓

↑

↓

↓

↓

↑

↓

↓

↓

↑

↑

↓

↓

↓

↓

↑

↑

↑

↑

↑

↑

NF (196)

Chestnut

tannin,

glycerol

In vitro Bull

Chestnut, 30%

Glycerol, 30%

Both 60%

Ensiled cassava

leaves F:C

(60:40)

↑

↓

=

↓

↑

↓

=

=

=

NF
=

=

=

=

↑

=

=

↑

=

=

=

=

↑

=

↑

=

=

=

=

=

=

=

=

=

(197)

HT

Chestnut

CT

mimosa

In vivo sheep

10%

Oil diets NF NF

↑

↓

↑

↓

=

=

=

=
↑

↓

=

=
↑

↓

=

=
↑

↓

NF (186)

F:C, forage to concentrate ratio; TMR, total mixed ration; tVFA, total volatile fatty acid; DMI, dry matter intake; DMD, dry matter degradability; NF, not found; ↑, increase; ↓, decrease;=, no effect; HT, hydrolysable tannins; CT, hydrolysable

tannins; DFPP, dragon fruit peel powder; TA, tannic acid; AF, Allium fistulosum L.; ATE, acacia tannin extract.
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Furthermore, supplementation also increased the diversity
and abundance of butyrate-producing and other beneficial
bacteria (including probiotic species like Bifidobacterium and
Lactobacillusamino), while enhancing the amino acid metabolic
pathways and purine, pyrimidine, and sphingolipid metabolism
(176). However, the precise mechanism of action and extent of
contributory effects of acacia tannin on the ruminal microbiome
are still not clear. Supplementation of tannic acid has shown
to reduce the CP digestibility and CH4 production in beef
cattle (198). Dietary supplementation of HT (chestnut) and CT
(quebracho) increased the relative abundance of Butyrivibrio
fibrisolvens by 3 and 5-fold, respectively, in the rumen of dairy
sheep. On the other hand, they decreased the B. proteoclasticus
population by 5 and 15-fold, respectively (199). Inhibition of
rumen bacteria by CT is probably due to interactions between
CT present in the tannin structure and the specific substrate
(e.g., protein, bacterial cell walls, etc.) to which it binds (200).
The addition of CT extracts to the diet reduced populations
of methanogenic archaea and some cellulolytic bacteria (R.
flavefaciens) (201). These reports suggest that dietary sources of
HT and CT can affect the rumen microbiome quite differently
owing to their structural variations.

Different sources of tannin have been used to mitigate CH4

emission while increasing animal performance. Gallic acid is
a phenolic monomer and one of the ruminal decomposed
metabolites of tannic acid (173), and it serves as an essential
bioactive component in modifying the rumen fermentation.
As a subunit of HT, gallic acid has the potential to decrease
the environmental impact of ruminants (by lowering CH4 and
NH3 emissions) without decreasing animal performance (180).
Gallic acid (0.015%) decreased the urine nitrogen emissions
by 28.5% (CP 0.11% DM) and 30.9% (CP 0.15% DM) when
applied to the soil (202). A recent study showed that gallic
acid can inhibit undesirable microorganisms such as Clostridium,
Listeria, and Escherichia coli during ensiling and can improve
fermentation quality and protein preservation (203). Extracts
of HT (tara) and CT (mimosa and gambier) inhibited the
activity of methanogens and protozoa without affecting ruminal
fermentation and animal production (185). Condensed tannins
have shown better protein efficiency and growth rate of lambs as
it can protect dietary proteins (e.g., soybean meal) from ruminal
degradation, leading to reduction in digestive losses (204).
Recently an in vitro study of Saminathan et al. (205) showed
that tropical legumes having CT with different molecular weights
can serve as potential feed additives to mitigate CH4 production
with no adverse effects on rumen fungal microflora and fiber
digestion. Contrarily, Rira et al. (196) reported that in vitro HT
(A. nilotica) are more promising for suppressing methanogenesis
than CT (from C. calothyrsus and L. leucocephala). Chestnut
tannin possesses sufficient potential to reduce methanogenesis,
without compromising feed efficiency and animal performance
due to its neutral effect on NDF digestibility (177). According
to Witzig et al. (184), CH4 emission was reduced in response
to monensin and chestnut tannin supplementation, owing to the
lower abundances ofM. ruminantium andM. stadtmanae.

Tannic acid (0–1.25 mg/mL) can alter microbial activities and
improve feed efficiency in ruminants. However, the increased

tannic acid concentration may lead to the complete inhibition
of ruminal bacteria in sheep (206). Mimosa CT could reduce
the abundance of specialized fibrolytic bacteria and inhibit
the biohydrogenation process as compared to chestnut HT.
Further investigations are required to evaluate the impact of
different sources of tannins on ruminal biohydrogenation (186).
Hydrolyzable tannins are considered more suitable for CH4

mitigation than CT. A. nilotica (HT) showed a more potent
inhibitory effect on CH4 production compared to C. calothyrsus
and L. leucocephala (CT). It may be attributed to the fact that HT
(e.g., gallic acid subunits) directly inhibit methanogens, but the
action of CT on rumen CH4 production is variable (172, 207).
However, long-term trials are required to assess the possible
adaptation of rumen microbes toward the optimal level of HT
and its subunit, gallic acid, to avoid their adverse effects on animal
performance (196).

Tannin containing hay has been shown to reduce the CH4

emission (5.4 DM vs. 3.5 ml/g) and urea N excretion in beef cattle
(187). To reduce the adverse effect of tannin on DM intake, the
encapsulation of tannin extract could be considered as a better
strategy as the slow release of tannin also improves its utilization
(208). Recently, Adejoro et al. (189) determined the effect of
crude (40 g/kg feed) and lipid encapsulated-acacia tannin (50
g/kg feed) extracts on sheep fed TMR. They reported a 30% and
19% reduction in CH4 production (g/kg DM) with crude and
encapsulated-acacia tannin, respectively. However, crude tannin
also imparted an adverse effect on NDF digestibility compared
to encapsulated-acacia tannin. Supplementation of tannin could
reduce the NH3 toxification which is usually produced in
response to NPN addition in ruminant diets (208).More recently,
Adejoro et al. (188) reported that supplementation of 42 g acacia
tannin /kg feed DM did not reduce CH4 production in lamb
fed nitrate or urea as an NPN source. A possible reason is the
comparatively higher affinity of acacia tannin for feed protein
than microbial protein or microbial enzymes (209). Tannin has
the potential to reduce the excretion of a more volatile form
of N into the environment by decreasing rumen degradability
of CP and shifting N excretion from urine to feces (210). A
meta-analysis showed reduction in ruminal ammonia N (16%),
milk urea (9%), and urinary N excretion (11%) in response to
supplementation of tannin in lactating dairy cows. However,
tannin exhibited no effect on fat- and protein-corrected milk
yield (211). A short-term effect of A. mearnsii (30 g/kg) showed a
negative effect on CH4 production in dairy cows.

Dietary supplementation of oak tannin has also been shown
to reduce the urinary N excretion by 12% while increasing
α-linolenic acid content in milk by 17.7% without affecting
CH4 production (190). Such divergent findings may possibly
be due to different dietary concentrations of tannin and a
variable number of hydroxyl groups in their structure (207).
Studies have suggested an association of milk FA profile with
CH4 emission, which can assist in determining the impact of
tanniferous supplement against enteric CH4 production (212).
The medium-chain FA (lauric and myristic acids) have shown
a positive correlation with enteric CH4 production as these FA
are synthesized (de novo synthesis) in the mammary gland from
ruminal acetate and butyrate (213). In this regard, it has been
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reported that supplementation of quebracho tannins (30 g/kg
DM) could reduce myristic acid content in dairy cows, which
reveals the negative effects of tannin on fiber digestibility (214).
However, long-chain FA (pentadecanoic and heptadecanoic
acid) exhibited a negative correlation with CH4 emission as
their de novo synthesis is mediated from ruminal propionate
(215). However, further careful investigations are warranted to
corroborate this relationship.

Tannins also possess antioxidant properties as they can
scavenge free radicals due to hydroxyl groups, degree of
polymerization, and redox activities (216–218). Supplementation
of tannin has been shown to improve the antioxidant status of
cattle and sheep (219–221). Hydrolyzable tannins are considered
the most potent antioxidants, which can prevent cellular damage
and neutralize free radicals (222), while condensed tannins
(catechin) also possess antioxidant activities (223). Pomegranate
as hydrolyzable tannin has shown better antioxidant activity
as tested on cultured bovine aortic endothelial cells; it has
no adverse effects on cell viability and apoptosis. Pomegranate
has also exhibited protective effects against membrane lipid
peroxidation, owing to its potent ability to reduce the production
of intracellular reactive oxygen species (224). However, the
optimum level of tannin for antioxidant capacity and its
putative mechanism of action in animal tissues require further
elucidation. A recent study has revealed that rumen microbial
taxa (Bifidobacterium, Lactobacillus, and Schwartzia) exhibited
a strong association with host antioxidant capacity and
immunomodulatory functions (225).

Prolonged use of the purified form of secondary compounds
can lead to antimicrobial resistance; however, tannin
supplementation as a crude extract of mixtures (having
different molecular sizes) offers a major advantage to control
antimicrobial resistance (226). Moreover, studies have shown
that CT-rich diets can effectively decrease CH4 emissions per
unit of DMI over a range of dietary CP from 15 to 25%. For
example, a decrease up to 25 to 50% was observed in in vitro
CH4 production in steers grazing on winter wheat forage (15
to 18% CP) supplemented with quebracho CT extract at 10–20
g/kg DMI (227, 228). This shows the effective inhibitory effects
of tannins on ruminal protein degradation and CH4 emission
but requires careful selection of diets and nutrient composition
to avoid adverse effects on feed digestibility and efficiency (229).
However, further studies are required to fully understand the
mechanism of action of tannins regarding modulation of the
rumen microbiome, potential inhibitory effects on methanogens
and protozoa, and their optimum inclusion levels to elucidate
their potential for CH4 mitigation. Furthermore, focused
investigations are required to explore the optimum levels and
types of tannins and feeding conditions to reduce GHG emission
in commercial ruminant production systems.

Effect of Essential Oils on Rumen Methanogenesis

and Fermentation Characteristics
Essential oils are terpenoids (monoterpenoids and
sesquiterpenoids) and phenylpropanoid compounds with
characteristic flavors and odors, formed by different plants
(herbs and spices). They contain numerous chemical substances,

for example, alcohols, hydrocarbons, ketones, aldehydes, ethers,
and esters, and mostly EO are lipophilic complexes (230, 231).
Various studies have been performed to evaluate the effect of
EO on rumen fermentation and feed degradability. Many in
vitro and in vivo trials have proved the favorable effect of EO in
reducing CH4 production and altering microbial populations
(Tables 5, 6). The potential effect of EO on rumen fermentation
and methanogenesis is mainly mediated by their antimicrobial
activities owing to their interaction with cell membranes of
microbes (by disrupting membrane stability of lipid bilayer).
They are most effective against gram +ve bacteria and possess
almost no activity against gram –ve (because of their hydrophilic
bilayer) except thymol and carvacrol (232). Garlic oil has
shown inhibition of HMG-CoA reductase, leading to membrane
instability and, eventually, cell death in methanogenic archaea.
Recently, metagenomic analysis of goat rumen revealed that
EO cobalt complexes significantly manipulated the structural
and functional profile of rumen microbiota. It was revealed
that Bacteroides sp. and Succinivibrio sp. showed a positive
correlation with enhanced VFA production in supplemented
groups. Moreover, functional prediction pathway analysis
exhibited upregulation of lipid and carbohydrate pathways by
EO (233).

Some studies have also reported a few unfavorable effects
of using EO as feed additives as they depressed synthesis
of VFA by reducing feed degradability (234). These harmful
effects might be due to their extensive and non-specific
antimicrobial properties in the rumen. In a study, no effect on
the rumen microbiome has been observed by supplementation
of a blend of EO having thymol, guaiacol, eugenol, vanillin,
salicylaldehyde, and limonene (235). The desirable effects of
EO on the rumen physiology are mainly attributed to their
phenolic compounds, which possess the potent ability to
affect the activity of both gram-positive and gram-negative
bacteria (236). Inhibition of gram-positive bacteria in the
rumen can potentially increase the propionate concentration
(235). Supplementing a blend of EO (cinnamaldehyde, eugenol,
carvacrol, and capsicum oleoresin) firstly increased rumen
acetate concentration, which was replaced by propionate
concentration afterward. This shift indicated a combined effect
of low pH and antimicrobial activity of EO. Furthermore, this
blend of EO showed the ability to improve microbial protein
synthesis in sheep (237). Higher microbial protein might be
attributed to the enhanced post-ruminal protein supply and
absorption. Moreover, it might possibly due to the reduction
of protozoal counts as ruminal protozoa devour many bacteria
and their protein flow toward the small intestine (237). Recently,
Garcia et al. (238) revealed that the chemical composition of EO,
especially proportion of oxygenated compounds, has a positive
interaction with fermentation pattern and indicate promising
potential regarding CH4 mitigation. However, EO have shown
inconsistent effects on rumen microbes and feed degradability
in different studies, owing to different types of EO used,
their chemical composition, and their variable dietary and host
responses (Tables 5, 6).

Supplementation of oregano EO at 4 and 7 g/d promoted the
population of primary cellulolytic bacteria and ruminal fungi,
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TABLE 5 | Effect of various EO and their compounds on rumen microbial population.

Sources Test

system/dose

Diet Total

bacteria

Protozoa Methanogens F.S R.F R.A B.F References

Oregano essential

oil

In vitro (13, 52,

91, and 130

mg/L

F:C

(65.5:34.5)

= NF NF ↓ = = = (239)

Oregano oil and

carvacrol

Cannulated

cows (50

mg/kg of DM)

TMR NF = NF NF NF NF NF (240)

Oregano essential

oil

In vivo sheep

4 g/d

7 g/d

F:C

(65.5:34.5) ↑

=

↓

↓

NF
↑

=

↑

↓

↑

=

NF (241)

Essential oil-cobalt Goat

52 mg/d

91 mg/d

Concentrate
↓

↓

NF
=

=

↑

↓

↓

=

↓

=

↓

=

(233)

Plant-derived EO

(carvacrol, eugenol

and thymol)

In vitro and vivo

both

Control

LCP

LCP 35 g/d

TMR NF =

=

=

NF NF NF NF NF (242)

Mixture of

cinnamaldehyde,

thymol, and

eugenol

Heifer

1 g/kg

substrate

2

g/kg substrate

F:C (60:50)

24 h

NF
=

↑

NF
=

=

=

↑

↑

=

=

↑

(243)

Thymol:carvacrol In vitro

0:100,

20:80,

40:60,

60:40,

80:20,

100:0

Rumen

culture of

bovine

=

↑

↓

↑

↑

↑

=

↑

↓

↑

↑

↑

NF NF NF NF NF (244)

Java cardamom In vitro cow

25 mg/l

50 mg/l

75 mg/l

100 mg/l

F:C (60:40) NF
=

=

=

=

NF NF NF NF NF (245)

Blend of

cinnamaldehyde

and garlic oil

In vitro

0.0043% of DM

F:C (50:50) NF = NF NF NF NF NF (246)

Anise EO

Anise extract

In vitro rumen

buffer

250 µL /30ml

500 µL /30ml

750 µL /30ml

1,000 µL /30ml

250 µL /30ml

500 µL /30ml

750 µL /30ml

1,000 µL

/30 ml

F:C (40:60) NF

=

=

=

=

=

=

=

=

NF NF NF NF NF (247)

F:C., forage to concentrate ratio; TMR, total mixed ration; NF, not found; ↑, increase; ↓, decrease; =, no effect; EO, essential oils; F.S, Fibrobacter succinogenes; R.F, Ruminococcus

flavefaciens; R.A, Ruminococcus albus; B.F, Butyrivibrio fibrisolvens; LCP, low CP diet.

respectively, in sheep (241). An in vitro study revealed that
the inclusion of EO of S. spicatum in a high-concentrate diet
significantly improved the rumen fermentation characteristics
by reducing CH4 and NH3-N while promoting propionate
concentration (252). Dietary supplementation of EO (coriander,

geranyl acetate, and eugenol) reduced CH4 production up to 6%
per cow/day and 20% less CH4 per kg of milk. It can be speculated
that energy saved through this reduced CH4 production may
be diverted toward milk production (253). A blend of EO
(carvacrol, caryophyllene, p-cymene, cineole, terpinene, and
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TABLE 6 | Effects of various EO and their compounds on methanogenesis, rumen fermentation, and feed degradability.

Sources Test

system/dose

Diet CH4 NH3 tVFA DMI Acetate Butyrate Isobutyrate Propionate Isovalerate Valerate Acetate/

Propionate

DMD References

Oregano essential

oil

In vitro (13, 52,

91, and 130

mg/L

F:C (65.5:34.5) ↓ ↓ ↓ NF ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ (239)

Oregano oil and

carvacrol

Cannulated

cows (50 mg/kg

of DM)

TMR = = = = = = NF ↑ NF = ↓ = (240)

Dried oregano Dairy cows (18,

36, and 53g

DM/kg of dietary

DM in low EO

TMR = = = = = = NF = NF = = = (248)

Essential oil-cobalt Goat

52 mg/d

91 mg/d

Concentrate NF
↓

↓

↑

=

=

=

↑

=

=

=

NF
=

=

NF NF NF NF (233)

Lippia turbinate

Tagetes minuta

Mix

In vitro sheep

1ml in fermenter

daily

F:C (80:20) ↓

↓

↓

=

↓

↓

=

=

=

NF =

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

↓

↓

↓

(249)

Cashew and

Castor

In vitro cow

1 g/d

2 g/d

4 g/d

8 g/d

F:C (20:80) NF
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

NF
=

=

=

=

NF NF
=

=

=

=

=

=

=

=

(250)

Mixture of

cinnamaldehyde,

thymol, and

eugenol

Heifer

1 g/kg substrate

2 g/kg substrate

F:C (60:50) 24 h NF
=

↑

=

=

=

=

=

=

NF
=

=

NF NF
=

=

↑

=

(243)

Thyme

Mint

Savory

In vitro cow 50

µl/l of total

culture medium

TMR NF ↓

↓

↓

NF NF NF NF NF NF NF NF NF ↑

↑

↑

(251)

Lavandula

angustifolia

Santalum spicatum

Sheep µl/g DMI

62.5

125

250

500

62.5

125

250

500

Hig- concentrate

diet ↑

=

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

↓

=

=

=

=

NF
=

=

↑

=

=

=

=

=

=

↑

=

↓

=

=

=

=

NF
=

↓

↓

↓

↑

↑

↑

↑

NF NF
=

↑

↑

↑

↓

↓

↓

↓

=

=

↓

↓

=

=

=

↓

(252)

(Continued)
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TABLE 6 | Continued

Sources Test

system/dose

Diet CH4 NH3 tVFA DMI Acetate Butyrate Isobutyrate Propionate Isovalerate Valerate Acetate/

Propionate

DMD References

Thymol:carvacrol

ratio

In vitro

0:100

20:80,

40:60,

60:40,

80:20,

100:0

Rumen culture

of bovine =

=

=

=

=

=

=

↑

↓

↑

↑

↑

NF NF NF NF NF NF NF NF NF
=

=

=

=

=

=

(244)

EO Dairy cow 1 g/d TMR ↓ NF NF ↑ NF NF NF NF NF NF NF NF (253)

Blend of EO

(cresols, thymol,

limonene, vanillin,

guaiacol, eugenol,

and salicylate)

In vitro cow

20 ml/l

100 ml/l

200 ml/l

600 ml/l

1,000 ml/l

F:C (60:40)
=

=

=

↓

↓

=

=

=

=

↓

=

=

=

↓

↓

NF
=

=

=

=

↓

=

=

=

↑

↑

=

=

=

↓

↓

=

=

=

↓

↓

=

=

=

=

↓

=

=

=

↓

↓

=

=

=

=

↑

=

↓

=

↓

↓

(254)

Lemon grass EO Lamb, 1 ml/kg of

DM

F:C (15:85) NF NF = = = ↓ ↓ = ↓ ↑ NF = (255)

Java cardamom In vitro cow

25 mg/l

50 mg/l

75 mg/l

100 mg/l

F:C (60:40)
=

=

=

=

=

=

↓

=

=

=

=

=

NF
=

=

=

=

=

=

=

=

NF
=

=

=

=

NF NF
=

=

=

=

↓

=

=

=

(245)

Plant-derived EO

(carvacrol, eugenol

and thymol)

In vitro and in

vivo both

Control

LCP

LCP 35 g/d

TMR NF
=

=

=

=

=

=

↑

↓

↓

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

↓

=

=

=

=

=

=

=

(242)

Blend of

cinnamaldehyde

and garlic oil

Sheep 0.0043%

of DM

F:C (50:50) = = = = = = = = ↑ = = = (246)

Microencapsulated

blend of EO

Sheep

0.02%

0.04%

TMR
↓

↓

=

=

↑

↑

=

=

=

=

↑

↑

=

=

=

↑

=

=

=

=

=

↓

=

=

(237)

Citrus essential

oils

In vitro 0.8 mL/L

rumen volume

TMR (3 weeks) = ↓ ↓ = ↓ = NF = NF NF = = (256)

F:C, forage to concentrate ratio; TMR, total mixed ration; tVFA, total volatile fatty acid; DMD, dry matter degradability; DMI, dry matter intake; NF, not found; ↑, increase; ↓, decrease; =, no effect; EO, essential oils; LCP, low CP diet.
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thymol) altered the rumen functions by selectively promoting
the growth of rumen bacteria (by decreasing Firmicutes while
increasing Bacteroidetes) in calves (257). Essential oils of Lippia
turbinata and Tagetes minuta have shown a 10-fold decrease
of in vitro CH4 production coupled with modification of N
metabolism in the rumen (249). Recently, ameta-analysis showed
that dietary supplementation of a blend of EO (coriander,
eugenol, and geraniol) increased the milk yield (3.6%), milk fat
and protein (4.1%), and feed efficiency (4.4%), while decreasing
DM intake (12.9%) and CH4 production (8.8%) during long term
trial in dairy cattle (258).

Essential oil–cobalt complexes have shown positive effects
in ruminants by enhancing productive performance while
decreasing NH3 emissions (233). Likewise, synergetic effects
of EO (thyme, mint, and savory) in a high-concentrate diet
have been observed regarding desirable shifts in microbial
fermentation and higher microbial protein yield in dairy cows
(251). Increased feed efficiency and calcium homeostasis have
been observed with supplementation of a plant bioactive EO
blend (>80% menthol, eugenol, and anethol). Increased uptake
of calcium and ammonium was also observed as a result of
specific cation-transporting proteins expressed by the rumen.
However, further investigations are needed to evaluate the fate of
the absorbed nutrients, especially calcium and N (259). Recently,
Zhou et al. (239) suggested that oregano EO (52 mg/L) in mature
ruminants canmodify ruminal fermentation andmitigate in vitro
CH4 production through mediating ruminal bacteria (Prevotella
and Dialister). Some studies involving supplementation of EO
in ruminants have shown contrary findings as the feeding of
oregano EO did not reduce CH4 yield together with no effect
on animal performance and rumen fermentation (240, 248).
These divergent findings may be partially explained by variable
experimental conditions of studies including the type of diets,
plant species, dose and type of EO, pH of rumen fluid, and host
animal (260, 261).

Studies have suggested the use of a combination or blend of
different EO as a better strategy to modulate rumen microbiome
to manipulate rumen fermentation than using individual EO.
This is mainly because each EO possesses a complex mixture
of phytochemicals and their synergistic effects can lead to the
synthesis of new compounds with a quite different bioactivity
that could not be harvested with individual compounds (29,
262). Additionally, using a combination of phytochemicals
is also advantageous for the host regarding the provision
of various phytonutrients from different plant combinations.
Moreover, the benefits of such a combination are its ultimate
utility for using on large scale in the animal industry as a
commercial feed additive to have an overall impact on the
improvement of global animal production while mitigating
GHG emissions.

FUTURE IMPLICATIONS

Rumen microbiome plays a critical functional role in N2

utilization, rumen feed fermentation, and CH4 production,
ultimately influencing the production, health, and welfare in
ruminants. Rumen microbes are highly active and can adapt to
an extensive range of dietary fluctuations or host physiological

conditions. Extensive literature supports the supplementation
of phytogenic feed additives like saponin, tannins, and EO
for the manipulation of rumen microbiome to modulate
ruminal fermentation to increase VFA and decrease NH3

and CH4 production. Decreasing methanogenesis using dietary
interventions at the expense of decreased VFA production is
nutritionally adverse and unadvisable. Inhibition of enteric CH4

emission in ruminants is possible through the use of plant
bioactive compounds; however, studies on the long-term effects
of these compounds to reduce methanogenesis are essentially
required. Studies summarized above clearly demonstrate that
although phytochemicals possess a potent ability to modulate
rumen microbiome and reduce methanogenesis in vitro, the
observed in vivo effects varied greatly. Many factors, including
variations of the chemical compositions of the compounds
due to the differences in plant origin, growing conditions, and
processing methods as well as different application methods,
feeding conditions, and progressive adaptation of microbes
for specific phytochemicals, contribute to this vast variability.
Because of the complexity of these issues, it is difficult to conduct
systematic and comprehensive evaluations of the efficacy and
safety of these compounds for commercial applications in the
animal industry. Therefore, controlling this variability is key
to developing phytogenic substances as natural feed additives.
This ideally should include all procedures from production,
extraction, processing, and application. Optimization of different
conditions during these steps can definitely help to address
problems like inconsistency and transient and adverse effects of
phytogenic feed additives in ruminants. Recent developments
in molecular docking analysis and three-dimensional structure
databases of phytochemicals have opened a new horizon for
the discovery of putative functions (particularly antimicrobial
and antimethanogenic) of different compounds by evaluating
the structure affinity relationships with different microbes
and their substrates. It will be of interest to identify potent
phytochemicals based on their structural homology and binding
affinity with functional proteins of rumen microbes particularly
methanogenic archaea through molecular docking analysis first
and then testing their biological activity in vitro and in vivo. This
approach will not only help to find out new phytochemicals with
potent activities but also help to understand their mechanism
of action and exploit their synergistic effects and interactions
with other compounds. Moreover, there is a dire need to exploit
advances in molecular chemistry like encapsulation techniques
to avoid ruminal degradation of phytochemicals and use their
nanostructures to enhance their bioactivity and bioavailability,
which seems to be an exciting area to explore their promising
effects on the rumen microbiome.

It has been proposed that highermolecular weight compounds
(such as polyphenols) were not dissolved well in water (263).
Nanoparticles are formulated with hydrophobic groups inside
and polar groups on the surface of particles and have shown
to significantly enhance the solubility and bioavailability of
less-water-soluble phenolic phytochemicals (264). Moreover,
nanoparticles of plant extracts and EO have shown higher
antioxidant and antimicrobial activities as compared with their
crude extracts or EO (265). The higher antimicrobial activity of
the nanoparticles or nanoemulsion of phytochemicals is related
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to the size of the nanoparticles or nanoemulsion droplets, which
is in the subcellular size range. This allows the penetration of
the nanoparticles or nanoemulsion droplets to the microbial
cells leading to enhanced activity (265, 266). It is anticipated
that the use of nanoparticles and nanoemulsions can potentially
enhance the modulatory effects of phytochemicals on the
rumen microbiome, subsequently leading to better health and
performance of ruminants.
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