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Abstract

Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation
detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally
estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to
heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue
used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array
profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH)
in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is
a medium correlation 0.42 (p-value = 0.0001) between tumor cellularity estimated by qpure and pathology review.
Interestingly there is a high correlation 0.87 (p-value v 2.2e-16) between cellularity estimates by qpure and deep Ion
Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (p-value = 0.004) between IonTorrent
sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than
pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.
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Introduction

Solid tumors are comprised of a variety of cell types, including

neoplastic cells and cells which make up the stroma (e.g.

connective tissue, blood vessels and inflammatory cells). Stromal

cell contamination is a key consideration in cancer genome studies

as the sensitivity of copy number analysis, mutation detection,

cancer methylation and cancer gene expression analysis are all

confounded by increasing amounts of normal cells in a tumour [1–

3]. Accurately estimating the tumor cellularity in genomic samples

is therefore an important first step in cancer genome experiments.

Pathology review of specimens is the most common method to

estimate tumour cellularity. It is based on the reviewing of tissue

sections taken from a tumor specimen. Ideally this is carried out on

the same tissue block used for DNA extraction. In many cases,

however, the pathological review is carried out on sections well

removed from the tissue from which DNA is extracted. In this

case, irregularities in tumour shape and heterogeneity in stromal

cell contamination can confound cellularity estimates. Alternative

approaches to cellularity estimation assay the DNA sample

directly.

There are several tools that can directly estimate tumour

cellularity from single nucleotide polymorphism (SNP) microarray

data. SOMATICs was developed to identify copy number changes

in SNP microarray data and reports the percent of the sample

which contains each event, this can be used to infer tumour

cellularity, however the tool is computationally expensive and

works best in samples containing 40–75% cancer cells [4]. ASCAT

was also developed to identify copy number changes, however
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during this process ASCAT initially estimates the fraction of

aberrant or tumour cells in the sample [5]. SiDCon is a spreadsheet

based application which can determine the level of stromal

contamination [6]. Both these tools were originally developed for

SNP microarrays containing thousands of probes and lack

scalability to process current SNP microarrays with millions of

probes.

Tumor cellularity can also be estimated based on the

quantification of mutant alleles by sequencing. This approach

requires prior knowledge and careful selection of the mutation to

ensure it is an early/driver event in the cancer. In pancreatic

cancer the KRAS gene is a hotspot for somatic mutations and is

frequently mutated [7]. KRAS mutations are early events in

pancreatic cancer, thus the mutations are thought to exist in all

malignant cells. High-throughput pyrosequencing sequencing

technology is the more sensitive assay for KRAS mutation detection

compared to the dideoxy sequencing [8]. Ion Torrent sequencing

technology [9] is one of the current pyrosequencing technologies

used in our laboratory and provides faster sequencing runs and

deeper coverage compared to other approaches [10].

In this study we have developed a tumor cellularity prediction

model (qpure), which uses SNP microarray data from paired

(tumor and normal) samples to directly estimate tumor cellularity

for a given sample. This method has the advantage that the DNA

sample used to run the SNP arrays for qpure cellularity

determination is the same sample used for future genomic studies

such as sequencing. To define the model, DNA was taken from

a matched pair of normal tissue and cancer cell line and mixed at

predefined ratios to create a set of 14 standards for which the

tumour cellularity was known. The qpure method was applied to

SNP data from each of these mixtures to create a standard curve

against which other samples could be compared. We describe the

model and compare the cellularity predictions to pathology

estimates and Ion Torrent sequence data and show that the

qpure tool can accurately predict tumor cellularity.

Materials and Methods

Ethics Statement
Informed consent was obtained in written form from each

donor. Ethics approvals were granted in written form by the

medical research ethics committee of the University of Queens-

land (Project Number: 2009000745); the human research ethics

committee of Westmead Hospital (Reference Number: JH/JL

HREC2002/3/3.19 1402); the human research ethics committee

of NSW Health Western Zone (Project Number: 2006/054); the

human research ethics committee of NSW Department of Health

(Protocol Number: X11-0220 HREC/11/RPAH/329); the HAR-

BOUR human research ethics committee of Northern Sydney

Central Coast Health (Protocol Number: 0612-251M); the re-

search ethics committee of Royal Adelaide Hospital (Protocol

Number: 091107a); the human research ethics committee of

Metro South Health Service District (Reference Number: HREC/

09/QPAH/220); the human subjects research institutional review

boards of Johns Hopkins (Study Number: NA_00026689); the

human research ethics committee of South Metropolitan Area

Health Service (Reference Number: 09/324); the St John of God

Health Care Ethics Committee (Reference Number: 385); the

human research ethics committee of the Southern Adelaide Health

Service (Application Number: 167/10); the human research ethics

committee of Austin Hospital (Protocol Number: H2011/04083).

We are unable to provide a test data set as all tumor/normal

pairs processed under the aegis of the Australian ICGC effort are

subject to ICGC data release guidelines. ICGC requires that all

genomic data be lodged in public data archives including the

ICGC Data Portal (http://dcc.icgc.org/) and the European

Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/),

however, due to ethics and privacy concerns, ICGC requires that

the public archives and all participating nations agree that no

germline data be made available without the access request being

processed through the ICGC Data Access Committee (DACO).

Many non-ICGC cancer projects operate under similar data

access restrictions and we were unable to identify an equivalent

alternative publicly available paired tumor/normal genotype and

sequencing dataset.

DNA Extraction and SNP Microarray Analysis
A total of 5 pancreatic cancer cell lines and 76 pancreatic

tumour samples were used in this study (Table S1). DNA was

extracted from samples, matched normal tissue and pancreatic cell

lines using the AllPrep DNA/RNA kit (Qiagen). 200 ng of each

DNA sample was profiled using 1 M HumanOmni-Quad

BeadChip (Illumina) following the manufacturers protocol. Chips

were scanned using an IScan (Illumina) and the B allele frequency

(BAF) and log R ratio (LRR) intensity values for each SNP

calculated using the GenomeStudio genotyping module v1.84

(Illumina).

Model Generation on Mixing Experiment
To create the qpure model a SNP microarray mixture

experiment was performed whereby DNA from a cell line and

a matched normal DNA sample from the same patient were mixed

at 14 predetermined ratios to mimic a broad range of tumour

cellularities (Table 1). The qpure cellularity prediction model

contains four major steps (Figure 1).

Step One: Select probes in regions of loss. To ensure

homozygous SNPs in the normal sample do not confound the

analysis, heterozygous SNPs from the normal sample were filtered

to select those in regions of single-copy loss in the matched tumour

sample. These SNPs should all show genotype AB in the normal

sample and either A or B in the matched tumour sample. The

DNA from any normal cell contamination within the tumour

sample reintroduces some of the lost allele and shifts the observed

allele frequency back towards genotype AB. The magnitude of the

Table 1. Design of mixing experiments.

Tumor Cellularity Sample ID Mixture

100% ND_0_CD_100 100% cell line tumor DNA

85% ND_15_CD_85 85% cell line tumor DNA

80% ND_20_CD_80 80% cell line tumor DNA

75% ND_25_CD_75 75% cell line tumor DNA

65% ND_35_CD_65 65% cell line tumor DNA

60% ND_40_CD_60 60% cell line tumor DNA

50% ND_50_CD_50 50% cell line tumor DNA

40% ND_60_CD_40 40% cell line tumor DNA

30% ND_70_CD_30 30% cell line tumor DNA

20% ND_80_CD_20 20% cell line tumor DNA

15% ND_85_CD_15 15% cell line tumor DNA

10% ND_90_CD_10 10% cell line tumor DNA

5% ND_95_CD_5 5% cell line tumor DNA

0% ND_100_CD_0 0% cell line tumor DNA

doi:10.1371/journal.pone.0045835.t001

Estimating Tumor Cellularity
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shift is directly related to the proportion of contaminating normal

cells (Figure 2). To select SNPs which show deletion of one allele in

the tumour a threshold method was employed, whereby a cutoff

value was chosen to determine the selection of the SNPs [11]. In

the qpure method, the cutoff value was calculated separately for

each sample using the median of all the selected SNPs minus the

standard deviation of middle 50% quantile.

Step Two: Determine the best possible number of

components to describe the distribution of the BAF. The

distribution of the BAF for selected SNPs in regions of loss was

determined in order to accurately identify the clusters. Two

different methods were used: a supervised clustering method k-

means clustering and an unsupervised mixture modeling method.

For a set of n observations (xi, . . . ,xn) each of which is a d-

Figure 1. Overview of the qpure method. Circos plots of the SNP array data for a paired normal (ND) and tumor (TD) sample showing regions of
LOH in the tumor sample (A). The chromosome ideograms are shown on the outer wheel, the logR and BAF values are plotted in the middle and
inner wheel respectively. The density plot of the probes in LOH regions (B) is used to calculate the d-score (C). The d-score is compared to the density
plots of probes within regions of LOH for the cell line: normal DNA mixtures which represent different cellularity (D). The d-score and cellularity are
highly correlated (E). Three plots from the left to the right are the scatter plot only, with fitting the simple linear model and with fitting the spline
regression model respectively.
doi:10.1371/journal.pone.0045835.g001

Figure 2. B allele frequency (BAF) and log R ratio (LRR) plots for a region of LOH with changing tumor cellularity. DNA from a cancer
cell line and matched normal DNA were mixed in different proportions and assayed using SNP arrays. BAF and LRR plots were generated using
GenomeStudio software (Illumina). For illustrative purposes a region of loss on the p arm of chromosome 7 in the cancer cell line is shown. In the 100
% normal sample (0% tumor) the SNPs are either heterozygous (BAF * 0.5) or homozygous (BAF= 0 or 1). In regions of single chromosome loss in
the tumour there is LOH. In the 100% cell line the BAF is showing a homozygous state and there is clear loss in the LRR. As tumour cellularity
decreases the separation of the BAF decreases.
doi:10.1371/journal.pone.0045835.g002

Estimating Tumor Cellularity
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dimensional vector, k-means clustering [12] aims to partition the

points into K clusters (C1, . . . ,CK ) so that the within-cluster

dispersion is minimised. It is described as

XK

j~1

X

xi[Cj

Exi{mjE
2,

where E:E denotes Euclidean distance, and mj is the center of

cluster j which in our case can be computed as the mean of the xi
in the cluster.

Unlike the k-means clustering method, the mixture model [13]

does not require the number of clusters to be predefined. Using

either the Akaike information criterion (AIC) or the Bayesian

information criterion (BIC) the model can search for the optimal

number of clusters or partitions. For a set of n observations

(xi, . . . ,xn) that are assumed to come from a mixture of G groups

in some unknown proportion (p1, . . . ,pG ) the mixture model is

described as

f (xi)~
XG

j~1

pj fj(xi),

where G is the best number of clusters or partitions selected based

on AIC or BIC criteria, p is estimated from the data using the

expectation maximization algorithm, and the feature vector xi
takes the mixture density function fj(xi) in group j. By default the

mixture model by Fraley and Raftery [13] estimates the

parameters based on the optimal number of clusters in the model

as determined by BIC.

Step Three: Define the d-score that is related to tumour

cellularity. The d-score for each sample is defined as the

absolute distance between centers of the two furthest clusters.

These clusters represent SNPs that are in regions of LOH in the

tumour cells. And the d-score can be computed as

d~Dm1{mnD,

where m1 and mn represent the means of the two furthest clusters.

Step Four: Modeling the relationship between d-score and

tumour cellularity. To derive a model that could be used to

predict tumour cellularity from the d-score, both a simple linear

model and spline regression model were employed the data from

the 14 synthetic samples where the cellularity was known. Given

a set of n points (Xi,Yi), i~1, . . . ,n a simple linear regression

model can be formulated as

Yi~b̂b0zb̂b1Xiz[i,

where Xi is the d-score (see Step 3) and Yi is the cellularity. The

spline regression model [14] can be formulated as

Yi ~ b̂b0 z b̂b1s(Xi)z [i,

where s(:) is the smoothing function using penalized regression

splines that are designed to be optimal.

Validation of Different Predictive Models
The leave-one-out cross-validation method was used to validate

performance of the different predictive models (Table 2). These

predictive models include different combinations of clustering

methods and prediction models. The testing score is defined by

1

n

Xn

i~1

(Yi{r̂r({i)(Xi))
2

where r̂r({i) is the cellularity estimation obtained by omitting the

ith pair (Xi,Yi).

Cellularity Estimation from Pathology and Deep-
sequencing of KRAS Mutations
Tumour cellularity was estimated by an anatomical pathologist

and sequencing of KRAS mutations was performed as an alternate

molecular measurement of tumour cellularity. Barcoded primers

were designed to amplify KRAS exon 2 and 3 (Table S2). These

exons are frequently mutated in pancreatic cancer [7] and are

known to harbor both driver/founder mutations and represent

a hot spot for somatic mutations in pancreatic cancer. Amplicons

spanning the highly perturbed codons (9,12,13,59,61) of exons 2

and 3 were generated and products were subsequently pooled and

subjected to Ion Torrent sequencing to an average depth of 5218

fold (range 609 to 21770) and 4145 fold (range 102 to 23980) in

the tumour and normal samples respectively. Identification of

somatic mutations was performed by sequence pileup and the

cellularity was calculated by determining the percentage of reads

bearing the mutation multiplied by a factor of 2 (assumes the KRAS

mutation is heterozygous).

Comparing Cellularity between Pathological Estimations,
qpure Estimations, KRAS Sequencing and ASCAT
Estimations
The correlation between pathological scores, qpure, KRAS

sequencing and ASCAT estimations was calculated either as

a Pearson’s correlation or a Spearman’s rank correlation. For

comparing the difference between two or three groups (different

estimation of tumour cellularity) either a two-sample t-test or

ANOVA test was employed.

Results

To create the qpure model SNP microarray experiments were

performed on a series of normal and cancer cell line DNAs mixed

at predetermined ratios to represent different tumour cellularites

(Table 1).

Table 2. The leave-one-out cross-validation results for each
model in the qpure method.

No Model Prediction Error

1 K-Means + Linear regression 0.5%

2 K-Means + Spline regression 0.3%

3 Mixture clustering (1:3) + Linear regression 0.2%

4 Mixture clustering (1:3) + Spline regression 0.16%

5 Mixture clustering (1:5) + Linear regression 3.4%

6 Mixture clustering (1:5) + Spline regression 2.8%

7 Mixture clustering (1:x) + Linear regression 0.2%

8 Mixture clustering (1:x) + Spline regression 0.13%

In the second column the number in the brackets is the pre-defined number of
components. The smaller prediction error is related a better prediction model.
doi:10.1371/journal.pone.0045835.t002

Estimating Tumor Cellularity
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The Relationship between Tumour Cellularity and the
Distribution of the BAF within Regions of LOH
In a normal diploid sample, SNPs occur in either a heterozygous

or homozygous state. Tumours are characterized by genomic

instability that frequently manifests itself as regions of DNA copy

number change. Loss of heterozygosity (LOH), or the loss of one

copy is a common event and manifests as regions of somatic

change of heterozygous SNPs to hemizygous SNPs. The distribu-

tion of the BAF of SNPs in regions of LOH varies with the

percentage of tumour to normal DNA in the sample (Figure 2).

The BAF distribution within regions of LOH can be presented as

two peaks which are close to the homozygous state (0 and 1) in

samples with high tumour content and which move towards the

heterozygous state (0.5) as the tumour content decreases (Figure 1D

or Figure S1).

The Relationship between Tumour Cellularity and the d-
score
We created a d-score that measures the absolute distance

between the two major BAF peaks and which can be used to

predict tumor cellularity. Two models were used to predict tumour

cellularity from the d-score: a k-means model and a mixture

model. The tumour cellularity is linearly correlated to the d-score

when the tumor cellularity is between 20–100%, but not at

cellularities v20% (Figure S2). This might be because the SNP

arrays are insensitive for very low cellularity samples or both the k-

means and mixture model are underestimating the best compo-

nents when the distribution is uni-modal for low cellularity

samples. Therefore a spline regression model was also implemen-

ted for cellularity prediction.

The stability and reliability of the d-score was tested by choosing

different log R ratio cut-off values to select probes within regions of

loss. Nine cut-off values were tested ranging from 1 percentile to

100 percentile of negative log R ratio values (Figure S3). SNPs

with log R ratio values lower than the testing cutoff values were

used in the model to estimate d-score and cellularity. The analysis

showed that the d-scores changed with the percentage of tumor

DNA in the sample, however, changing the threshold (cutoff

values) for selecting SNPs in regions of loss did not affect the d-

score significantly.

Validation of Cellularity Prediction Models
A leave-one-out cross-validation method was used to de-

termine the best model for cellularity prediction (Table 2). All

prediction models produced a prediction error (PE) of less than

5% and the mixture model without predefining the number of

cluster (1:x) with spline regression performed the best

(PE= 0.0013). The spline regression models perform best as

they not only describe the linear relationship between d-score

and the amount of tumour DNA above 20%, but also allow the

model to adjust for samples with lower amounts of tumor DNA

using the spline curve. Consequently the qpure tool has been

developed allowing for all models to be used, however the

mixture-clustering model combined with spline regression is the

default model used for cellularity prediction.

To further validate qpure, the model was used to estimate the

tumour cellularity, from SNP microarray data, of 5 pancreatic cell

lines, as cell lines are considered to be free of normal cell

contamination. The cellularity of the five pancreatic cell lines

(Table S1) were predicted as 99.8%, 100.0%, 99.5%, 100.0% and

99.9%.

Cellularity Estimation in Pancreatic Primary Tumours
DNA from a cohort of 76 primary pancreatic adenocarcinomas

was assayed using SNP microarrays and the qpure tool was used to

predict sample cellularity. The tumour cohort was also subjected

to pathological review where the sections for review were taken

from the surface of the fresh frozen tissue blocks used to isolate

tumour DNAs. Cellularity was also predicted for those tumours

bearing heterozygous KRASmutations after deep KRAS sequencing

(Table S3). The pathology, KRAS sequencing and qpure cellularity

estimates ranged from 10 to 90 percent (59+18), 7 to 83 percent

(36+19) and 12 to 72 percent (35+18), respectively. KRAS deep

sequencing and qpure estimates showed the closest concordance

(Figure 3A), with a correlation of 0.868 (p-value v 2.2e-16)

(Figure 3B). Both qpure and deep sequencing cellularity estimates

were only moderately correlated to the histological estimates:

0.421 (p-value = 0.0001) and 0.325 (p-value = 0.004) respectively

(Figure 3C and 3D). On average the pathological cellularity

estimation is about 1.7 times higher than the qpure estimation (p-
value 2.3e-13 based on a two-sample t-test).

Qpure was compared to ASCAT [5]. ASCAT estimated

cellularity for only 29 of the 76 pancreatic samples (38%) and it

ranged from 34 to 64 percent (46+8). The correlation between

ASCAT and KRAS estimations is 0.66. The ASCAT estimation

fails to converge for 47 samples, which could be due to the low

cellularity scores of those samples. The KRAS cellularity estima-

tions for the 47 samples that cannot be estimated by ASCAT

ranged from 7 to 51 percent (24+11). The pair-wise comparisons

across pathology, KRAS, qpure and ASCAT estimates are shown

in Figure S4.

Discussion

In this study we describe a tool (qpure) for estimating tumor

purity or cellularity directly from DNA samples. A key advantage

of using the qpure tool for the estimation of tumor cellularity is

that it is an unbiased statistical approach that directly measures

tumor content from the DNA sample that will be used in

downstream molecular studies. In contrast, cellularity estimates

from pathology review of histology slides are based on a tissue

section that may not be representative of the sample used for

nucleic acid extraction.

It is known that some factors such as intra-tumor heterogeneity

and tumor ploidy can confound with tumor cellularity estimation

[15]. In order to mitigate the effect of these factors on our estimate

of cellularity we applied a mixture model. Methods such as k-

means clustering require a priori knowledge of the factors

influencing the cellularity estimate; the user must pre-define the

number of clusters, or factors, before the algorithm can be applied

to the data. The advantage of using a mixture model is that it

accounts for tumour heterogeneity and tumour ploidy information

by discovering the optimal number of clusters that describe the

BAF distribution in that particular sample.

The performance of the qpure model was demonstrated using

three approaches: 1) the leave-one-out cross-validation analysis

showed that the predictive power of the qpure model is high; 2)

qpure cellularity estimates for five cell lines were all w 99%; 3)

qpure cellularity predictions were strongly correlated (0.87) with

cellularity estimates calculated from the allele frequency of KRAS

mutations detected by deep amplicon sequencing data within

a cohort of 76 pancreatic tumours. Compared to ASCAT, qpure

can predict cellularity from samples with a broad range of

cellularity levels including samples with low cellularity, while

ASCAT fails to converge for those samples. For samples that

ASCAT could process, the qpure cellularity estimates were more

Estimating Tumor Cellularity
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similar to KRAS estimates than ASCAT estimates. The correlation

of cellularity estimates by pathology and qpure within the cohort

of primary pancreatic tumours was low. This is likely because the

pathology analysis is done on a 2-dimensional section of the tissue

that may not reflect the cellularity of the sample used for nucleic

acid extraction and genomic studies. These results suggest that

qpure could be a useful tool for estimating tumor cellularity with

high accuracy and low error rate.

A limitation of the qpure method is that currently it is based on

Illumina genome-wide SNP data, however, qpure does not depend

on the resolution of the SNP array used. The model can also be

applied to other chips such as HumanOmni2.5 and Huma-

nOmni5-Quad. As long as the B Allele Frequency and log R ratio

values are provided, the tumour cellularity of the samples can be

estimated. Another requirement of the qpure method is that the

paired tumour-normal SNP data sets are used in the analysis so

that heterozygous SNPs in the normal sample can be selected.

Figure 3. Correlations of cellularity estimated by different methods in a pancreatic cancer cohort. Cellularity was predicted in the
pancreatic cohort using 3 methods: pathology review, qpure and deep Ion Torrent sequencing of KRAS. Cellularity predictions are shown in the
boxplot (A), the p-value was calculated using an ANOVA test to determine whether on average there is difference between the cellularity scores
returned by the different methods. The correlation between each method using Spearman’s rank correlation was calculated (B–D). Scatter plots are
shown which compare KRAS deep sequencing and qpure estimates (B), qpure and pathology estimates (C), and KRAS deep sequencing and
pathology estimates (D).
doi:10.1371/journal.pone.0045835.g003

Estimating Tumor Cellularity
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qpure is an effective method for estimating tumour cellularity in

samples to be used for cancer genomic studies where the presence

of normal tissue in the tumor sample can significantly affect

downstream analyses. The qpure method has been implemented

in an R package and can be downloaded from https://

sourceforge.net/projects/qpure/.

Supporting Information

Figure S1 (A) The number of normal het SNP array probes on

LOH regions in the mixture experiment. (B) The distribution of

BAF for the normal het SNPs on LOH regions in the mixture

experiment. Among 260257 heterozygous SNP probes in the

normal tissue, qpure looks for those that are in regions of LOH in

the tumour. In the mixture experiment the number of SNP array

probes was 12810, 18406, 17633, 16413, 16671, 16492, 17324,

12994, 13717, 12954, 18545, 11216, 12186 and 13004 for 100%
down to 0% respectively. Number of probes might vary in each

mixture due the threshold method used. SNP probes are identified

by qpure as present in regions of loss at 85%, 80%, 75%, 65%,

60%, 50%, 40%, 30%, 20%, 15%, 10%, 5% and 0% tumour DNA

(A). The distribution of these SNP array probes for each mixture is

shown (B).

(PDF)

Figure S2 Prediction model of tumor cellularity using d-
score in the mixing experiment. (A) fit simple linear

regression model with mixture clustering (B) fit spline regression

model with mixture clustering (C) fit simple linear regression

model with k-means clustering (D) fit spline regression model with

k-means clustering. In the plots the solid line is the fitted model

and the dash lines are its prediction intervals. The tables showed

the estimates of main parameters used in each model and the

adjusted R-squared.

(PDF)

Figure S3 D-score estimates using different thresholds
to select probes in LOH regions for samples with
different percentage of tumor DNA. The amount of tumor

DNA in the samples decreased from the left to the right. The

‘‘mycutoff’’ value is equal to the median of all the selected SNPs

minus the standard deviation of middle 50% quantile. The figure

showed that the change of cutoff value for the selection of probes

do not affect the d-score.

(PDF)

Figure S4 Pair-wise correlations between cellularity
estimates across four different methods: pathology,
qpure, KRAS sequencing and ASCAT for the 76 pancre-
atic tumour samples. As the pair-wise correlaitons get bigger

the font size gets bigger. The red line in the scatter plot showed

a linear correlation between each pair of the estimates.

(PDF)

Table S1

(PDF)

Table S2

(PDF)

Table S3

(PDF)

Text S1

(PDF)
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