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Abstract: The aged population is currently at its highest level in human history and is expected to
increase further in the coming years. In humans, aging is accompanied by impaired angiogenesis,
diminished blood flow and altered metabolism, among others. A cellular mechanism that impinges
upon these manifestations of aging can be a suitable target for therapeutic intervention. Here we
identify cell surface receptor CD47 as a novel age-sensitive driver of vascular and metabolic
dysfunction. With the natural aging process, CD47 and its ligand thrombospondin-1 were increased,
concurrent with a reduction of self-renewal transcription factors OCT4, SOX2, KLF4 and cMYC
(OSKM) in arteries from aged wild-type mice and older human subjects compared to younger controls.
These perturbations were prevented in arteries from aged CD47-null mice. Arterial endothelial
cells isolated from aged wild-type mice displayed cellular exhaustion with decreased proliferation,
migration and tube formation compared to cells from aged CD47-null mice. CD47 suppressed ex vivo
sprouting, in vivo angiogenesis and skeletal muscle blood flow in aged wild-type mice. Treatment of
arteries from older humans with a CD47 blocking antibody mitigated the age-related deterioration
in angiogenesis. Finally, aged CD47-null mice were resistant to age- and diet-associated weight
gain, glucose intolerance and insulin desensitization. These results indicate that the CD47-mediated
signaling maladapts during aging to broadly impair endothelial self-renewal, angiogenesis, perfusion
and glucose homeostasis. Our findings provide a strong rationale for therapeutically targeting CD47
to minimize these dysfunctions during aging.
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1. Introduction

Aging is associated with and driven by vascular dysfunction and metabolic derangements.
Vascular aging and metabolic disorder play a key role in determining the health status of the
aged population since they represent independent cardiovascular disease (CVD) risk factors [1].
Manifestations of aging include decreased vascularity and blood flow, impaired wound healing,
compromised organ and tissue function and in some individuals, dysregulated glucose and lipid
homeostasis. The simultaneous occurrence of diabetes, dyslipidemia, obesity and hypertension is
termed metabolic syndrome (MetS) [2]. MetS is found in roughly one third of the U.S. population and
is a key risk factor for the development of cardiovascular disease and diabetes [3,4]. At the molecular
level, aging coincides with diminution in the salutary signaling moieties such as nitric oxide (NO) and
vascular endothelial growth factor (VEGF) and decline in the expression of cellular self-renewal factors
among others [5].

CD47 (also called the integrin-associated protein, IAP) is an integral membrane protein that was
first co-purified with αvβ3 integrin and is expressed ubiquitously [6]. We previously showed that
CD47 binds to thrombospondin-1 (TSP1) to inhibit the beneficial effects of NO [7] and VEGF [8],
and drives tissue injury caused by hypoxia, ischemia, reperfusion, radiation and chemotherapy [6].
Skin from aged wild-type (WT) mice displayed increased levels of TSP1 and aged TSP1-null mice
were protected from tissue ischemia [9] while CD47 antagonists enabled cellular self-renewal and
reprogramming by overcoming negative regulation of c-Myc and other stem cell transcription factors
in young cells [10]. However, the role of CD47 in promoting aging through vascular and metabolic
imbalance was unknown.

We report that with natural aging, CD47 and TSP1 increase in expression in arteries of aged
WT mice and older human subjects, promoting deterioration of multiple restorative and homeostatic
mechanisms. Age-related induction of TSP1 and CD47 is accompanied by decreased levels of the crucial
self-renewal transcription factors OCT4, SOX2, KLF4 and cMYC (abbreviated OSKM), concurrent with
diminished angiogenic capacity. In addition, CD47-null endothelial cells (ECs) from aged animals
showed enhanced migration, proliferation and tube formation compared to cells from aged WT
controls. Further, CD47 blockade improved the angiogenic response of arteries from older human
subjects. Aged CD47-null mice were protected from decrease in angiogenesis, blood flow, high fat diet
(HFD)-induced weight gain, glucose intolerance and insulin resistance. Taken together, these findings
indicate that CD47 signaling globally promotes aging by suppressing angiogenesis, and escalating
vasculopathy and metabolic imbalance.

2. Materials and Methods

2.1. Animals

All animal studies were performed under protocols approved by the University of Pittsburgh
Institutional Animal Care and Use Committee in accordance with NIH guidelines or under protocols
approved by the Western Sydney Local Health District Animal Ethics Committee (#5128). Male 3-month
old mice C57BL/6 wild-type (CD47+/+) and CD47-null mice (strain B6.129S7-Cd47tm1Fpl/J) were
purchased from Jackson Laboratory (Bar Harbor, ME) and maintained for at least 18 months before
being used as aged mice. Mice were fed ad libitum with either a standard chow diet (8% calories
from fat; Gordon’s Specialty Stockfeeds, Yanderra, Australia) or a high-fat diet containing lard/sucrose
(45% calories from fat, based on rodent diet D12451; Research Diets, New Brunswick, NJ, USA).
As described, some of the aged mice received a standard HFD for a total of 16 weeks, starting at
14 months of age.

2.2. Reagents

Antibodies used were cMyc (#5605, 1:1000), KLF4 (#4038, 1:1000), Sirt1 (#8469, 1:1000), β-Actin
(13E5, #4970, 1:4000), β-Actin (8H10D10, #3700, 1:4000) and total eNOS (#32027, 1:1000) from Cell
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Signaling (Danvers, MA, USA). Phosphorylated eNOS (p-eNOS) detecting serine 1177 (ab215717,
1:500), anti-glutathione peroxidase-1 antibody (ab108427, 1:1000), SPRED1 antibody [M23-P2G3]
(ab64740, 1:1000) and anti-Ki67 antibody (ab15580, 1:300) were from Abcam (Cambridge, MA, USA).
CD47 MIAP301 (sc-12731, 1:500) and CD47 B6H12 (sc-12730, 1:500) were from Santa Cruz Biotech
(Santa Cruz, CA, USA). Matrigel® Growth Factor Reduced (GFR, Product Number 354230) was from
Corning, Inc. (Corning, NY, USA). Endothelial cell growth media (Catalog #: CC-3156) was from
Lonza (Basel, Switzerland). VEGF Recombinant Human Protein (#PHC9393) was from ThermoFisher
Scientific (Waltham, MA, USA) and reconstituted in PBS according to the manufacturer’s instructions.
Dispase® II was from Sigma-Aldrich (St. Louis, MI, USA). Mouse FibrOut™ 11 and Human FibrOut™
custom prepared for Blood Vessels and Endothelial Tissues were from Chi Scientific Inc. (Maynard,
MA, USA).

2.3. Human Mesenteric Arteries

Fresh small bowel specimens from healthy young and old individuals were obtained from the
International Institute for the Advancement of Medicine (IIAM, Edison, NJ, USA; https://www.iiam.org/).
Distal 5th-order systemic mesenteric arteries were gently harvested from the small bowel specimens
under magnification and employing sterile technique. Strict criteria for IIAM for the exclusion of
specimens from diseased individuals ensured that arterial samples varied simply by the age of the
donor. The arterial segments all appeared grossly normal and the tissue sections did not show any
obvious pathology.

2.4. mRNA Isolation and Quantitative Reverse-Transcription PCR

Total RNA was extracted using Qiagen RNeasy® Mini Kits (Qiagen, Hilden, Germany) with
on-column DNase digestion. RNA was quantified using a Nanodrop 8000 spectrophotometer
(Thermofisher, Waltham, MA, USA) and reverse-transcribed using Superscript III First Strand Synthesis
SuperMix (Invitrogen, Carlsbad, CA, USA). cDNA was amplified using Platinum® PCR SuperMix-UDG
(Invitrogen) with gene-specific TaqMan primers and probed on the ABI Prism 7900HT Sequence
Detection System (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
instructions. Thermal cycling conditions were 50 ◦C for 2 min, 95 ◦C for 2 min, followed by 40 cycles
of 95 ◦C for 15 s and 60 ◦C for 1 min. Data were analyzed using the ∆∆Ct method with expression
normalized to the housekeeping gene.

2.5. Endothelial Cell (EC) Isolation and Culture

Murine arterial ECs were isolated employing a published protocol [11] with several modifications.
Murine thoracic aortas from 18 months old mice were excised and divided into 8–10 square sections
using microdissection scissors and implanted on growth factor-reduced Matrigel (Corning, Corning,
NY, USA) with the lumen-side faced down. On day 4 after plating, the aortic segments were gently
removed from the matrix without disrupting the growing ECs. ECs were allowed to proliferate on
the matrix for a further 2–3 days, after which Dispase was used to digest the Matrigel. Freed ECs
were plated on 0.1% gelatin-coated 6 cm culture dishes. To specifically select for ECs, CD31-coated
magnetic beads (CellBiologics, Chicago, IL, USA) were added to cell suspensions and the non-EC
fraction removed. Aged ECs proved fragile and ≥10 murine aortas were needed to isolate sufficient
cells to maintain viability in a single culture dish and allow for further experiments.

2.6. Protein Extraction and Western Blotting

SDS-PAGE was performed as described previously [12]. In brief, cells were washed twice
with ice-cold DPBS and lysed in RIPA lysis buffer (Cell Signaling Technology, Danvers, MA, USA)
supplemented with 1 × protease inhibitors cocktail (Sigma, St Louis, MO, USA) and 1 × phosphatase
inhibitors cocktail (Roche Applied Science, Hercules, CA, USA). The samples were then centrifuged for
5 min at 10,000× g. Protein concentration was determined by BCA (bicinchoninic acid assay) protein
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assay (Thermo Fisher, Waltham, MA, USA). 20 µg of protein was denatured using Laemmli SDS
buffer, heated to 95 ◦C for 5 min, and subjected to SDS-polyacrylamide gel electrophoresis. ECs were
pooled together from ≥10 murine aortas for each group/lane and samples were loaded in three wells.
When proteins were at a similar molecular weight, parallel blots were employed to overcome the
ineffectiveness of the restriping and reprobing process.

2.7. Immunofluorescence

Immunofluorescence staining was performed as described [13] with minor modifications. In short,
endothelial cells were seeded onto gelatin-coated 13-mm glass coverslips and incubated overnight.
At 70% confluence, media was removed, and cells were washed with PBS, fixed with paraformaldehyde
(4%) and permeabilized with Triton X at 0.5% in PBS for 10 min. Cells were then washed with PBS and
blocked in 5% bovine serum albumin in PBS for 1 h at room temperature (RT), then incubated with
the indicated primary antibodies overnight at 4 ◦C in a humidified chamber. Alexa Fluor 488 or 568
secondary antibodies were added for 1 h at RT. DAPI (Sigma-Aldrich) was used to stain cell nuclei.
Cells were mounted in Prolong Gold (Invitrogen) and fluorescent images were captured with a Nikon
Eclipse E 800 microscope.

2.8. In Vivo Matrigel Plug Assay and Immunohistochemistry

Mice were injected subcutaneously near the supraspinal midline with 0.5 mL of growth factor
reduced Matrigel (Corning, Inc., Corning, NY, USA). After 14 days, Matrigel plugs were removed,
fixed with 10% buffered paraformaldehyde, and embedded in paraffin. After tissue fixation and cutting,
sections were stained with the anti-CD31 antibody and Masson’s trichrome. Immunohistochemical
staining was performed as described [13]. CD31-positive vessel-like structures per high-powered field
(100 µm × 100 µm; ×20 magnification) were counted from five Matrigel plugs and averaged for each
genotype. The blood vessel quantification per field of view was semiquantitative and vessels containing
or devoid of RBCs were counted for both genotypes. Quantification of staining was performed using
ImageJ program (NIH, Bethesda, Rockville, MD, USA). Hemoglobin content in the plugs was measured
using Drabkin’s reagent (Sigma-Aldrich, #D5941).

2.9. Tube Formation Assay

Endothelial tube formation assays were performed following a published protocol [14]. 6× 104 WT
and CD47-null aortic ECs were seeded onto the growth-factor reduced Matrigel in 24 well plates.
Cells were pooled from ≥10 animals from each group. Tube formation was monitored on an hourly
basis and images taken at 5×magnification. Tube formation parameters (total tube length, branching
length and number of nodes) were calculated using the Angiogenesis Analyzer Program for ImageJ
(NIH, Bethesda, Rockville, MD, USA).

2.10. Arterial Ring Assay

Arterial ring assays were performed following a published protocol [15]. In brief, murine thoracic
aortas and human distal mesenteric arteries were dissected and extraneous fat, tissue and branching
vessels removed and cut into 1 mm wide rings. Rings were placed in Opti-MEM for 4 h before
embedding into the growth-factor reduced Matrigel with cell media. In some instances, rings were
incubated with a CD47 blocking (clone B6H12) or IgG control antibody, with VEGF or with both.
Sprouts were counted daily in several replicate wells and images acquired. Mouse FibrOut™ 11 and
Human FibrOut™ custom prepared for blood vessels and endothelial tissues was added to the cell
media following the manufacturers’ protocol to suppress fibroblast growth.
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2.11. Scratch Wound Healing Assay

Murine aortic ECs (1 × 103 cells/well) were isolated, pooled from ≥10 aortas from WT and
CD47-null mice and seeded onto Lab-Tek chambered cover glass with complete media (5% FBS) and
cultured until confluent. A wound was made by scraping the cell monolayer with a sterile 10 uL pipette
tip. The culture medium was changed immediately to remove detached cells and debris. Cultures
were incubated for 24 h in a live microscope chamber and images were taken at various timepoints.
Open wound area measurements were performed using the TScratch program and ImageJ (NIH,
Bethesda, Rockville, MD, USA). Hoechst stain was used to stain the DNA and the 10× objective was
used to track the wound inside a 2-well LabTek dish. Images were captured every 30 min for 24 h.
Three stage positions per condition were acquired at each time point. Distance (as pixels) moved by
individual cell fronts on both sides of the scratch were obtained and plotted on one side. ROIs (region
of interest) were made from the nuclei and the distance of migration by cells was calculated using
Nikon Elements software available with the Nikon Live Cell 218E microscope and obtained values
were divided by the time taken to close the wound. Measurements were taken at 100 separate points
in 3 separate wells for each condition.

2.12. Cell Proliferation Assay

ECs (1 × 103 cells/well) were isolated and pooled together from ≥10 aortas from WT and
CD47-null mice and seeded onto a 96-well tissue culture plate and incubated for 24 and 48 h.
After incubation, wells were washed to remove debris. Cell proliferation was determined using the
CyQUANT® Cell Proliferation Assay (Life Technologies, Grand Island, NY, USA). The comparative
proliferative capacity of aged WT and CD47-null endothelial cells was calculated as the number
of cells (based on total DNA content) by measuring fluorescence at 520 nm and comparing it
to the known cell number intensity as a reference. The assay was done in quadruplicate and
performed twice. JuLiTMBr live microscopy was utilized to measure confluence of ECs in tissue
culture dish for CD47 re-expression experiments. For transient knockdown of CD47, the mouse CD47
siRNA with sequence 5′-GGAAUGACCUCUUUCACCA-3′ and the control siRNA with sequence
5′-AATTCTCCGAACGTGTCACGT-3′ synthesized by Ambion Inc. were used. After knockdown,
tumor necrosis factor-alpha (TNF-α, 50 ng/mL, R&D) was added to ECs to upregulate CD47; 24 h prior
to placing the dishes inside the JuLiTMBr machine.

2.13. Laser Doppler Blood Flow Analysis

Hind limb blood flow was assessed in young and aged WT and CD47-null mice. Mice were
anesthetized with 2.5% isoflurane and placed in a supine position on a heating pad. Core temperature
was maintained at 37 ◦C and monitored continuously by a rectal probe thermometer. Prior to scanning,
skin was removed to expose the underlying vascular bed and muscle. Real-time blood flow was
measured using laser Doppler imaging (Moor LDI-2λ; Moor Instruments, Devon, UK) and results are
expressed at basal flux values obtained from the instrument.

2.14. Glucose (GTT) and Insulin (ITT) Tolerance Test

For the GTT, mice were fasted for 6 h in the morning. At time 0, a tail cut was made, a blood sample
taken and fasting blood glucose level (BGL) measured using a Stat Strip Glucometer (NovaBiomedical,
Runcorn, UK). A glucose bolus (2 g/kg body weight) was injected intraperitoneally and BGL measured
at 5, 10, 15, 20, 30, 45, 60 and 120 min post- injection. For the ITT, mice were fasted for 3 h and fasting
BGL measured. Then, an insulin bolus (0.75-1 U/kg body weight) was injected intraperitoneally and
BGL measured at 5, 10, 20, 30, 45, 60, 120 and 180 min post-injection. The area under the curve (AUC)
of the glucose measurements was calculated.
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2.15. Statistical Analysis

Data are presented as the mean ± SEM (unless otherwise indicated) of the results from at least 3
independent cell cultures, at least 6–8 animals per group or 3–6 human samples per group. Comparisons
were made using an unpaired Student’s t test, one-way or 2-way ANOVA according to the data type,
followed by Tukey’s test for multiple comparisons. A p < 0.05 was considered statistically significant.

3. Results

3.1. Expression of CD47 Is Increased and Self-Renewal Transcription Factors Decreased in Aged Arteries

It is not known what role aging plays in arterial CD47 expression. qPCR analysis of aortas
from aged (18-months-old) wild-type (WT) mice showed that both the ligand Thbs1 and the receptor
Cd47 transcript levels increased with age compared to younger (3-months-old) controls (Figure 1A).
With aging, the capacity for self-renewal is lost [16,17]. Several transcription factors are essential for
self-renewal including OCT4, SOX2, KLF4 and cMYC (OSKM) [18]. The effect of age on the arterial
expression of these key self-renewal factors was unknown. Interestingly, mRNA levels of the OSKM
factors were decreased in arteries from aged WT mice compared to vessels from young animals
(Figure 1B). To explore the translational relevance of this observation, mesenteric arteries from young
(<33 years) and old (>60 years) otherwise healthy human subjects were obtained. The demographic
characteristics of this cohort are presented in the supplemental files (Supplementary Figure S1A).
Arterial segments that looked grossly normal were utilized for the experiments. Consistent with
findings in arteries from aged mice, Thbs1 and Cd47 mRNA levels were elevated (Figure 1C), albeit not
to similar levels as found in mice. OSKM mRNA levels also decreased in arteries from older compared
to younger individuals, with Sox2 levels decreased almost 5-fold (Figure 1D).

3.2. Age-Associated Induction of TSP1 Is Attenuated and OSKM Sustained in the Absence of CD47

Our previous findings show that TSP1 is increased in the pulmonary vasculature of older
individuals [19,20]. Furthermore, TSP1, via CD47, suppresses self-renewal transcription factors in
cell culture [10]. However, it was unclear if CD47 was required for age-associated induction of
vascular TSP1 and alterations in OSKM expression. In arteries from aged WT mice, both Thbs1 and
Cd47 transcript levels increased significantly (Supplementary Figure S1B,C) while OSKM expression
(Supplementary Figure S1D–G) decreased compared to vessels from younger controls. Interestingly,
induction of arterial TSP1 was prevented in arteries from aged CD47-null mice compared to aged WT
animals (Supplementary Figure S1B,C). OSKM mRNA levels were generally maintained in arteries
from aged CD47-null mice except cMyc. While cMyc mRNA levels were reduced, expression was still
greater compared to vessels from aged WT controls (Supplementary Figure S1D–G).

3.3. Age-Associated Decrease in Arterial Endothelial Cell Proliferation is Abrogated in the Absence of CD47

Endothelial cell (EC) proliferation is necessary for angiogenesis and is lost with aging [21]. TSP1
and a CD47-specific binding domain of TSP1, inhibited NO-mediated proliferation of ECs from
young mice [7,22]. Additionally, pulmonary ECs from young CD47-null mice exhibited increased
proliferation compared to cells from young WT mice [10]. However, the effect of CD47 signaling on the
proliferation of aged mouse aortic endothelial cells (MAECs) is not known. Arterial ECs isolated from
aged mice (both WT and CD47-null) proliferated minimally and were not different in their proliferative
capacity during the first 24 h (Figure 2A, B). In contrast, by 48 h, wild-type ECs lagged significantly in
proliferation compared to CD47-null cells (Figure 2A,B), and this correlated with increased expression
of the cell proliferation marker Ki67 [23] in CD47-null cells (Figure 2C).
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Figure 1. TSP1 and CD47 are increased and self-renewal transcription factors decreased in arteries
from aged animals and older individuals. Gene expression profiling by q-PCR of Thbs1 and Cd47
(A) and self-renewal factors OCT4, SOX2, KLF4 and cMYC (B) in aortas from young (3-month-old)
and aged (18-month-old) mice and in distal 5th-order mesenteric arteries from young (<33 years)
and old (>60 years) healthy human subjects (C,D). Error bars represent the mean ± SEM, samples in
triplicate/mouse, 3–5 mice/group. Samples in triplicate/individual, 3 subjects/group. Data normalized
to the 18srRNA gene. An unpaired t-test was performed with * p < 0.05, ** p < 0.01, *** p < 001.

To confirm that these findings were CD47-specific, we conducted CD47 rescue experiments in
CD47-depleted ECs. Previous work showed that acute re-expression of CD47, using a human CD47
plasmid, in CD47-null lung endothelial cells promoted apoptosis [10]. Intracellular upregulation of
CD47 has recently been described where TNF-NFKB1 signaling directly regulates CD47 expression by
interacting with a constituent enhancer located within a CD47-associated super-enhancer region [24].
CD47 expression in aged wild-type ECs was transiently silenced first using siRNA to achieve a partial
loss-of-function, and then cell were stimulated with TNF-α for 24 h to physiologically restore CD47.
The attempt to upregulate CD47 in aged wild-type ECs in this manner also led to significant cell death,
possibly secondary to the overall fragility of aged endothelial cells. To overcome this, we used ECs
from 12 month old mice, which tolerated CD47 upregulation better than aged cells (Supplementary
Figure S2A). Using JuLiTMBr live microscopy, a time-course of cell confluency between wild-type,
CD47-depleted and CD47-re-expressed ECs was measured. Consistent with aged EC proliferation
data, we noted that CD47 knock down (CD47 KD) led to increased proliferation of 12-month aged
ECs. CD47 KD ECs reached 90% confluency within 12 h whereas wild-type ECs only achieved around
65% confluency in the same period (Supplementary Figure S2B). More importantly, we observed that
increasing CD47 levels in CD47-depleted cells could rescue its wild-type behavior. But increasing
CD47 levels in CD47-depleted cells resulted in their their enhanced proliferative capacity to decrease
below that of wild-type ECs (Supplementary Figure S2B).
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Figure 2. Age-associated decreases in arterial endothelial cell (EC) proliferation and migration are
abrogated in the absence of CD47. Aortic ECs from aortas from aged male wild-type (WT) and
CD47-null mice were characterized for DNA content using CyQUANT® fluorescence (A) and cell
count (B). Ki67 immunofluorescence (in white) in arterial ECs of arteries from aged WT and CD47-null
mice, von Willebrand factor in green and DAPI in blue (C). Representative images of ECs after
scratch wounding at 0 and 16 h (D). Quantification of the open wound area in respective images
(E). Quantification of average cell migration velocity (F). Scale bar: 32 µm. Error bars represent the
mean ± SEM, samples in triplicate wells. An unpaired t-test was performed with * p < 0.05, ** p < 0.01,
*** p < 0.001, ns: non-significant.
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3.4. CD47 Contributes to Age-Associated Decrease in Endothelial Cell Migration

Angiogenesis relies on the migration of ECs in addition to proliferation [25]. We examined the
migratory capacity of aged WT and CD47-null ECs in scratch wound assays. Arterial ECs obtained from
aged WT mice resurfaced scratch wounds slower than cells from aged CD47-null mice (Figure 2D,E),
and unlike proliferation, these differences manifested within 8 h of wounding. By 16-h post-injury,
CD47-null ECs had nearly covered the area of the scratch wound (Figure 2D and Supplementary
Figure S2C). Consistent with this, aged CD47-null ECs demonstrated a greater average migration
velocity compared to WT cells (Figure 2F).

3.5. CD47 Limits Tube Formation by Endothelial Cells from Aged Mice

ECs form capillary-like structures (tubes) when cultured on 3D extracellular matrix, reflecting a
propensity to form the inner lining of blood vessels [14]. This process recapitulates several features of
in vivo angiogenesis. Arterial ECs isolated from aged wild-type and CD47-null mice were isolated
and cultured for 2 days. Then they were seeded onto growth factor-depleted Matrigel. At 24 h,
quantification of tube formation parameters including tube length, branch length and the number of
branch points (nodes) was performed (Figure 3A). ECs from aged CD47-null mice were superior in all
three angiogenic readouts compared to cells from aged WT animals (Figure 3A–C).
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Figure 3. CD47 limits tube formation by endothelial cells from aged mice. Representative images (A,B)
and the quantification (C) of total tube length, total branching length and total number of nodes of
arterial ECs from aged male wild-type (WT) and CD47-null mice. Error bars represent the mean ± SEM.
An unpaired t-test was performed with ** p < 0.01, *** p < 0.001.
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3.6. Sprouting Angiogenesis in Aged Human and Murine Arterial Rings Is Hindered by CD47

Unlike mono-cellular assays, the arterial ring assay in Matrigel encompasses a more complex and
physiological angiogenic response [15]. Arterial rings from young individuals displayed a faster onset
and significantly greater amount of endothelial sprouting compared to arteries from older human
subjects (Figure 4A,B). Indeed, angiogenic sprouting took over twice as long to become evident in
arterial rings from old compared to young individuals (7 versus 3 days).

To further characterize the response, arterial rings from older subjects were treated with vascular
endothelial growth factor (VEGF), a well characterized inducer of angiogenesis [26]. Aged human
arterial rings treated with VEGF displayed an accelerated onset and overall greater degree of endothelial
cell sprouting compared to control-treated (IgG in PBS) rings (Figure 4C). It was not clear if CD47
signaling played a part in these results, therefore arterial rings from older individuals were treated with
a CD47 blocking antibody (clone B6H12). Angiogenic sprouting increased in CD47 antibody-treated
rings, similar in levels to rings treated with VEGF, compared to controls (Figure 4B, and Supplementary
Figure S3A for side-by-side comparison). Interestingly, treatment of arteries with both VEGF and
CD47 antibody shortened the time for the initiation of sprouting but suppressed total sprouting at
later time points compared to VEGF alone (Figure 4E). To further confirm the relevance of CD47 in the
age-mediated decrease in angiogenic sprouting, sprouting was investigated in arteries from young
and aged wild-type (WT) and CD47-null mice. Consistent with findings in human arteries, vessels
from aged WT mice had noticeably deficient sprouting compared to vessels from young animals
(Figure 4F). In contrast, arterial rings from aged CD47-null mice had cell sprouting comparable to
vessels from young mice (Figure 4G,H), which was persistently greater than sprouting from aged
WT animals (Figure 4H,I). TSP1 has previously been implicated in aging and inflammation [20,27].
To determine whether the effects of CD47 are cell autonomous or dependent on TSP1 in aged arteries,
we monitored angiogenic sprouting in aged WT and CD47-null aortic rings after incubation with
exogenous TSP1 (2.2 nM). TSP1 significantly inhibited sprouting from day 4 in aged WT rings compared
to controls, but this inhibition tapered off at day 8 (Supplementary Figure 3B). Interestingly, addition of
exogenous TSP1 was ineffective in inhibiting the increased sprouting seen in aged CD47-null aortic
rings (Supplementary Figure S3C,D for side-by-side comparison). Nonetheless, compared to controls,
TSP1-treated rings had slightly lower sprouting on each counted day (Supplementary Figure S3D).

3.7. CD47 Suppresses In Vivo Angiogenesis in Aged Mice

The role of CD47 in angiogenesis during old age in vivo is unknown. The Matrigel plug assay
is used to assess in vivo angiogenic capacity [28]. Matrigel plugs implanted in aged CD47-null mice
showed significantly greater angiogenic activity compared to plugs from aged wild-type (WT) controls
(Figure 5A). Increased hemoglobin content (Figure 5B) and endothelial-specific CD31 expression
confirmed the presence of blood vessels and endothelial cells (Figure 5C,D). In addition, Masson’s
trichrome staining showed a noticeably greater number of RBC-filled blood vessels in plugs from aged
CD47-null mice compared to WT controls (Figure 5E,F). Plugs implanted in aged WT mice showed a
minimal angiogenic response.
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Figure 4. Sprouting angiogenesis in aged human and murine arterial rings is hindered by CD47.
Quantification (A) and representative images (B) of sprouting of distal 5th-order human superior
mesenteric arteries from old (>60 years) and young (<33 years) individuals. Human arteries from old
(>60 years) versus young (<33 years) individuals were cultured in the presence of VEGF (50 ng/mL)
(C) or a human CD47 blocking antibody (clone B6H12, 2 µg/mL) (D) or antibody + VEGF (E) and
angiogenic sprouting quantified. Quantification of aortic sprouting from 3- and 18-month-old male
wild-type (WT) and CD47-null mice (F,G), and side-by-side comparison (H), with representative
images of aged mice artery sprouting (I). Scale bar: 200 µm. Error bar represents the mean ± SEM,
3 wells/vessel, 3 subjects/group for human arteries and 3 wells/vessel and 3 mice/group. * p < 0.05,
** p < 0.01, *** p < 0.001; 1-way ANOVA, followed by a Tukey’s multiple comparison test.
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3.8. Youthful Blood Flow Is Maintained in Aged CD47-Null Mice 

Figure 5. CD47 suppresses in vivo angiogenesis in aged mice. Inspection of angiogenesis (A), Matrigel
plug hemoglobin content (B) and CD31 expression and quantification (C,D). Quantification of blood
vessels in Matrigel plugs obtained from aged CD47-null compared to aged wild-type (WT) mice (E,F).
Representative whole Matrigel plug images (20× magnification), n = 6/group. Scale bar: 100 µm.
Error bars represent the mean ± SEM. An unpaired t-test performed with ** p < 0.01, *** p < 0.001,
ns: non-significant.

3.8. Youthful Blood Flow Is Maintained in Aged CD47-Null Mice

Aging male TSP1-null mice display better hind limb reperfusion following femoral artery ligation
compared to wild-type (WT) controls [29]. TSP1 interacts with cell receptors other than CD47 [30]
and it is not known whether CD47 impacts baseline blood flow with advancing age. Employing
laser Doppler analysis using our established protocol, hind limb blood flow was measured in 3 and
18-month-old animals. Blood flow markedly decreased with age in aged WT mice compared to young
ones (Figure 6A,B). Blood flow in young CD47-null mice was slightly lower compared to wild types,
but not significantly so. Remarkably, blood flow failed to decrease in aged CD47-null mice compared
to young nulls, as well as compared to aged WT animals (Figure 6A,B).
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Figure 6. CD47 drives age-related deterioration of hind limb blood flow. Representative laser Doppler
images and their quantification (A,B) of blood flow in the hind limbs of young and aged wild-type
(WT) and CD47-null mice. Error bars represent the mean ± SEM. 1-way ANOVA, followed by Tukey’s
multiple comparison test for blood flow measurement, 5–6 mice/group. An unpaired t-test performed
with ** p < 0.01, **** p < 0.0001, ns: non-significant.

3.9. CD47 Limits Angiogenic Gene Expression and Matrix Metalloproteinases in Endothelial Cells from
Older Animals

JinB8 cells (a human T cell line lacking CD47) exhibited increased VEGF receptor levels compared
to control cells, while VEGF mRNA and protein levels were increased in young CD47-null mice
compared to young wild-type mice [31]. These data suggested that age-associated induction of CD47
might suppress pro-angiogenic signaling moieties. Screening for angiogenic genes revealed that aortic
ECs from aged CD47-null mice displayed increased transcript and protein levels of cMyc, KLF4 and
phosphorylated (active) eNOS (Figure 7A–C). Interestingly, sprouty-related, EVH1 domain-containing
protein 1 (SPRED1), a negative regulator of VEGF signaling [32], was downregulated in aged CD47-null
ECs compared to aged WT cells (Figure 7A,E). These results show that CD47 limits a broad range
of angiogenic signals. To understand the mechanism of pro-angiogenic bias in CD47-null aged ECs,
we examined whether CD47 expression was associated with changes in matrix metalloproteinases
(MMPs) levels. MMPs are responsible for the degradation of a number of extracellular matrix (ECM)
components, including MMP- 2 and 9 in the basement membrane [33]. Cleavage of the basement
membrane is an essential cellular event for angiogenesis [33]. MMP-2 and MMP-9 levels were increased
in CD47-null aged ECs (Figure 7E,F).

3.10. Age-Related Aspects of MetS Are Mitigated in the Absence of CD47

Together with diminished angiogenesis and blood flow, the aging process is associated with
glucose intolerance, insulin resistance and obesity, all characteristics of MetS [34]. Metabolic imbalance
acts in a feed-forward manner to promote aging and age-associated vasculopathy. The TSP1 promoter
is glucose sensitive [35] and cells obtained from young diabetic TSP1-null mice show increased tube
formation [36]. Conversely, vascular cells cultured in high glucose display decreased insulin-like
growth factor-1 signaling and enhanced CD47 proteolysis [37]. Young (12-week-old) CD47-null mice
fed a high fat diet (HFD) weigh less than age-matched HFD-fed wild-type (WT) mice [38]. Together
these data suggested that the CD47 signaling axis might impact MetS. Consistent with previous
findings [39], glucose-challenged aged WT mice on a standard diet (SD) showed a modest, but not
significant impairment in glucose clearance compared to younger counterparts (Figure 8A). However,
aged CD47-null mice displayed superior glucose tolerance compared to aged WT animals (Figure 8B).
This suggested that CD47 receptor-mediated signaling might promote certain aspects of age-associated
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MetS. Aged 14-month old WT and CD47-null mice were fed a HFD (45% fat) for 16 weeks and glucose
tolerance assessed. Aged CD47-null mice resisted weight gain on a HFD (Supplementary Figure S4)
and displayed significantly better glucose clearance compared to aged WT mice (Figure 8B). Loss of
glucose tolerance may be due to decreased insulin secretion or sensitivity [40]. Whether CD47 plays
any role in glucose homeostasis is not known. SD-fed aged CD47-null mice displayed slightly higher
sensitivity to insulin compared to WT mice shortly (0–30 min) after insulin administration (Figure 8C).
However, the absence of CD47 significantly extended the duration and magnitude of insulin response
in later phases (50–180 min). Under the metabolic stress of a HFD, aged WT mice became insulin
resistant, showing minimal physiological response to exogenous hormone, while aged CD47-null mice
remained more sensitive to insulin, at both the early and late time points (50–180 min; Figure 8C).Cells 2020, 9, x 14 of 21 
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Figure 7. CD47 alters expression of pro- and anti- angiogenic moieties in endothelial cells from aged
mice. Arterial EC from aged wild-type (WT) and CD47-null mice were subjected to mRNA (A) and
protein (B–F) expression analysis for the indicated molecules. Aortic ECs isolated from aged WT and
CD47-null mice (≥10 vessels/group, n = 10) were pooled together and samples loaded in wells. Error
bars represent the mean ± SEM. An unpaired t-test performed with * p < 0.05, ** p < 0.01.
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Figure 8. Aspects of age-related metabolic syndrome are attenuated in the absence of CD47.
Intraperitoneal glucose clearance test results between young and aged wild-type (WT) mice (A),
between aged WT and CD47-null mice on standard diet (SD) and high fat diet (HFD) (B). Insulin
sensitivity test results between aged WT and CD47-null mice on SD and HFD (C). Six to eight
animals/group. BGL: Blood glucose level. Error bars represent the mean ± SEM. An unpaired t-test
between two groups and 1-way ANOVA, followed by a Tukey’s multiple comparison test for more
than 2 groups. * p < 0.05, ** p < 0.01, **** p < 0.0001, ns: non-significant.

4. Discussion

In the vasculature, aging is accompanied by decreased endothelial cell renewal, angiogenesis and
blood flow, as well as derangements in metabolism. Herein, we identified a novel role for CD47 in the
promotion of age-related perturbations in ECs, including angiogenesis, blood flow and in wole animals,
glucose homeostasis. Aging itself was sufficient to upregulate arterial TSP1 and CD47 expression,
while simultaneously downregulating essential self-renewal factors genes (OSKM) in rodent and
human arteries. These data are in line with reports of increased renal and myocardial TSP1 expression
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with age [41,42] and extend our previous findings in human pulmonary arteries that TSP1 expression
positively correlated with advancing age [20]. Together, our data support the idea that vascular CD47
expression is age-sensitive.

In the absence of CD47, vascular OSKM expression was resistant to age-mediated suppression,
suggesting a dominant role for CD47 to limit OSKM in the aging vasculature. The inverse relationship
between CD47 and OSKM manifested in reduced angiogenic capacity in vessels from old mice and
human subjects. CD47 depletion enhanced proliferation and migration of ECs isolated from aged WT
mice while CD47 re-expression curtailed the proliferative advantage seen in null-cells showing that
these effects are CD47-specific. Indeed, CD47 re-expression inhibited proliferation of CD47-depleted
ECs to levels lower than that of wild-type ECs, which could be due to higher cell death. Additionally,
TNF caused CD47 levels to rise in CD47-depleted cells to levels higher than seen in wild-type ECs.
The age-related increase in TSP1 expression was not found in arteries from aged CD47-null mice
indicating that ligandand receptor tandemly express with age. Interestingly, exogenous TSP1 did not
inhibit the higher degree of sprouting achieved by aged CD47-null aortic rings. These data demonstrate
that effects of CD47 are cell-autonomous in aging and TSP1-independent mechanisms may contribute
to the overall angiogenic effects of CD47.

Arteries from aged CD47-null mice had angiogenic capacity comparable to arteries from young WT
animals. Of therapeutic importance, a CD47 blocking antibody moderately improved the angiogenic
capacity of arteries from older individuals to levels, similar to but not quite as much as achieved
with VEGF. Given the increased expression of CD47 in aged cells, it is possible that the concentration
of CD47 antibody employed in the explant assay experiments was insufficient to obtain full target
coverage. Interestingly, combined treatment with a CD47 antibody and VEGF accelerated angiogenic
sprouting but limited the final degree of sprouting, suggesting possible antagonistic effects under
these conditions. These data build on our prior findings that CD47 blockade improves NO-mediated
vaso-relaxation in individuals with advanced vasculopathy [19].

Hind-limb blood flow also varied between aged WT and CD47-null animals. Whereas WT mice
showed a steep drop in blood flow (50%) with age, the CD47-null animals did not. Maintenance of
hind-limb blood flow in aged CD47-null mice was likely secondary to multiple factors including the
absence of CD47 signaling and the presence of enhanced NO and VEGF signaling. Greater overall
vascularity in CD47-null tissues, and variations in autonomic regulation of vascular tone, may have
also contributed to these findings.

Nitric oxide sustains the expression of OCT4 and SOX2 [43] and, in feed-forward signaling,
upregulates self-renewal genes in young cells [43]. Thus, changes observed in OSKM and pro-angiogenic
genes may, in part, be secondary to the established inhibitory effects of CD47 signaling on NO [44,45].
Regardless, in the absence of CD47-mediated signaling, ECs were resistant to age-mediated loss of
angiogenic capacity. To our knowledge, this is the first study to characterize the angiogenic capacity
of aortic ECs from 18-month old mice. Parenthetically, aged CD47-null ECs tolerated cell passage
better than aged wild-type cells (data not shown) providing additional evidence that with aging,
CD47 limits endothelial self-renewal. CD47 was also found upstream of a repertoire of pro-angiogenic
and regenerative genes. In aged aortic ECs, previously unknown relationships between CD47 and
pro-angiogenic KLF4, cMyc and anti-angiogenic SPRED1 were uncovered. This latter novel finding
warrants further study as SPRED1 inhibits angiogenesis through inhibition of microRNA-126 [46].
Increased MMP activity is essential for normal angiogenesis. Here too, CD47 limited MMP expression
in aged ECs. These findings provide alternative mechanisms by which CD47 promotes age-related
ischemia and vasculopathy. It remains to be seen how the single cell surface receptor CD47 functions
to simultaneously regulate multiple angiogenic and self-renewal genes. It alludes to the possibility of
CD47 being a major signaling node that modulates angiogenic and self-renewal signals during aging.

Metabolic syndrome (MetS) is a characteristic feature, and known stimulator, of aging.
Aged CD47-null mice responded with a more rapid normalization of blood glucose following a
glucose bolus compared to wild-type animals. cMYC functions to increase glucose uptake [47].
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Increased cMYC in CD47-null animals may contribute to improved glucose tolerance [48]. Glucose
and sodium-glucose transporters regulate glucose transit across the cell membrane. The role of CD47
in regulation of these systems is unknown but could also explain changes in blood glucose seen in
aged null mice. Additionally, aged CD47-null mice displayed greater insulin sensitivity compared to
wild types on SD and, under HFD, maintained this sensitivity for an extended time period. Overall,
aged CD47-null mice weighed less than aged wild types, and resisted weight gain following HFD.
These findings are relevant as TSP1 may be a clinical marker of impending MetS [49,50] while a lack of
CD47 protects young animals from diet-driven weight gain and glucose intolerance [38,51]. Skeletal
muscle insulin signaling maintains glucose balance and human skeletal muscle expresses both CD47
and signal regulatory protein 1 (SIRP-α) [52]. CD47 is a ligand of SIRP-α, the latter of which interacts
with the insulin receptor [53], suggesting alternative CD47 signaling pathways may contribute to
age-related metabolic dysfunction.

This study has certain limitations. First, the findings were based on the analysis of ECs and
arteries from male mice. NO signaling is modified by gender [54,55]. Additionally, TSP1 inhibits
vaso-relaxation in coronary arteries from aged but not young female rats [56] further alluding to
possible gender-specific aspects of TSP1-CD47 signaling. Second, as both TSP1 [57] and CD47 [58] can
modulate integrin signaling, our data could also reflect changes in cell adhesion as a cause of modifying
angiogenesis. Third, weight changes in wild-type and CD47-null mice may represent differences in
energy utilization as we previously reported [59]. Weight differences between mouse strains could
also be secondary to variation in food intake or activity level, which were not characterized. Fourth,
the Matrigel assay is partially inflammation-dependent and macrophage-derived TSP1 could play a
role in inflammation-induced angiogenesis [60]. However, bone marrow transplant studies showed
that parenchymal, not the circulating signal TSP1, was also important in limiting certain types of tissue
injury [61]. Lastly, interpretation of studies in human arteries may reflect unknown co-morbidities
among the organ donors and variations in tissue ischemic intervals.

Aging promotes vasculopathy and metabolic dysregulation while vasculopathy and metabolic
dysregulation promote aging. Our findings show that CD47 signaling is upregulated with age
in systemic arteries and ECs, concurrent with suppression of key self-renewal genes. A lack of
CD47 enhances EC self-renewal, angiogenesis, maintains tissue perfusion and glucose homeostasis,
while retarding weight gain, despite increasing age. CD47 blockade improves angiogenic capacity in
aged human arteries. Together, these results identify CD47-mediated signaling as an age-sensitive
mechanism promoting multiple negative ramifications, such as endothelial exhaustion, hypoperfusion
and aspects of MetS. Anti-CD47 therapies may enhance vascular capacity, tissue perfusion and
metabolism in the face of advancing age.
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CD47 levels rescues wildtype behavior in aortic ECs from12-month-old CD47-null mice, with representative
JuLi™Br images on the right; CD47 delays restoration of endothelial scratch wounds, representative images of
endothelial cell mono-layer scratch wounds at 0 and 16 h. Figure S3: Comparison of angiogenic sprouting in
human and mouse arteries under various conditions. Figure S4: Absence of CD47 retards HFD-induced weight
gain with age.
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